Comparative Study on the Combustion Behavior and Mechanisms of Ti150 and TC11 Alloys in Oxygen-Enriched Environments
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Promoted Ignition-Combustion (PIC) Tests
2.3. Microstructure Characterization
3. Results
3.1. Combustion Behavior
3.2. Microstructural Characteristics After Combustion
4. Discussion
4.1. Comparison of Thermodynamic Parameters for Ignition of Ti150
4.2. Flame Propagation Mechanism of Ti150 Alloy
5. Conclusions
- The ignition phenomenon of the Ti150 alloy is analogous to that of typical titanium alloys. The critical ignition pressure and ignition temperature of Ti150 are both higher than those of the TC11 alloy. As the oxygen pressure increases, the burning velocity of the Ti150 alloy gradually increases. At the same oxygen pressure, the burning velocity of the Ti150 alloy is higher than that of the TC11 alloy.
- The Ti150 alloy exhibits significant differences from TC11 in terms of both the characteristics of its melting zone and the elemental enrichment at its solid–liquid interface. The melting zone of Ti150 is considerably wider (100–150 μm). Furthermore, at the solid–liquid interface, marked Zr enrichment is observed.
- The thermodynamic parameters of Ti150 and TC11 were obtained based on the ignition thermodynamic model. The ignition activation energy of the Ti150 alloy (118.41 kJ/mol) exceeds that of the TC11 alloy (97.72 kJ/mol), suggesting that the Ti150 alloy exhibits better combustion resistance. The higher burning velocity of Ti150 compared to TC11 is mainly attributed to two factors: firstly, the Ti150 alloy has a higher O content in the melting zone, which leads to increased reaction exotherm; secondly, the enrichment of Zr at the solid–liquid interface in Ti150 leads to a lower melting point. In contrast, Mo in TC11 exerts the opposite effect. The combined effect of these factors accelerates the burning velocity of Ti150 relative to TC11.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhu, Z. Recent research and development of titanium alloys for aviation application in China. J. Aeronaut. Mater. 2014, 34, 44–50. [Google Scholar] [CrossRef]
- Cai, J.; Mi, G.; Gao, F.; Huang, F.; Cao, J.; Huang, X.; Cao, C. Research and development of some advanced high temperature titanium alloys for aero-engine. J. Mater. Eng. 2016, 44, 1–10. [Google Scholar] [CrossRef]
- Mi, G.; Huang, X.; Cao, J.; Cao, C.; Huang, X. Frictional ignition of Ti40 fireproof titanium alloys for aero-engine in oxygen-containing media. Trans. Nonferrous Met. Soc. China 2013, 23, 2270–2275. [Google Scholar] [CrossRef]
- Chen, L.; Dong, Y.; Tong, Y.; Liu, M.; Yang, G. Improving fire retardancy of Ti alloys with a refractory ceramic barrier layer. Corros. Commun. 2023, 12, 19–28. [Google Scholar] [CrossRef]
- Mi, G.; Huang, X.; Li, P.; Cao, J.; Huang, X.; Cao, C. Non-isothermal oxidation and ignition prediction of Ti-Cr alloys. Trans. Nonferrous Met. Soc. China. 2012, 22, 2409–2415. [Google Scholar] [CrossRef]
- Filonenko, A.K. Spin combustion of titanium at reduced pressure. Combust. Explos. Shock Waves 1991, 27, 685–689. [Google Scholar] [CrossRef]
- Wang, B.; Tian, W. Combustion morphology and mechanism analysis of titanium alloy TC4. Gas Turb. Exp. Res. 2013, 26, 28, 50–52. [Google Scholar] [CrossRef]
- Huang, L.; Wang, B.; Gao, Y. Investigation of TC4 and TC11 titanium alloys’ combustion resistance properties. J. Mater. Eng. 2004, 33–35. [Google Scholar] [CrossRef]
- Shao, L.; Xie, G.; Liu, X.; Wu, Y.; Tan, Q.; Xie, L.; Xin, S.; Hao, F.; Yu, J.; Xue, W.; et al. Combustion behavior and mechanism of Ti-25V-15Cr compared to Ti-6Al-4V alloy. Corros. Sci. 2022, 194, 109957. [Google Scholar] [CrossRef]
- Chen, L.; Dong, Y.; Tong, Y.; Liu, M.; Yang, G. Critical firing conditions for titanium alloys by molten droplet ignition. Corros. Commun. 2023, 11, 33–43. [Google Scholar] [CrossRef]
- Wang, C.; Li, J.; Li, Y.; He, G.; Huang, J.; Zhang, C. Ignition and flame propagation behaviors of titanium alloys in oxygen-enriched atmospheres. J. Mater. Res. Technol. 2025, 34, 35–47. [Google Scholar] [CrossRef]
- Borisova, Y.A.; Sklyarov, N.M. Fireproof titanium alloys. Phys. Metallogr. 1993, 6, 21–24. [Google Scholar]
- Liang, X.Y.; Mi, G.B.; Li, P.J.; Huang, X.; Cao, C.X. Theoretical study on ignition of titanium alloy under high temperature friction condition. Acta Phys. Sin. 2020, 69, 216101–216112. [Google Scholar] [CrossRef]
- Wang, C.; Li, J.; Li, Y.; Dou, C.; Jin, P.; He, G.; Song, X.; Huang, J.; Zhang, C. A Comparative Study on the Mathematic Models for the Ignition of Titanium Alloy in Oxygen-Enriched Environment. Metals 2022, 12, 1812. [Google Scholar] [CrossRef]
- Frank-Kamenetskii, D.A. Towards temperature distributions in a reaction vessel and the stationary theory of thermal explosion. Dokl. Akad. Nauk. SSSR 1938, 18, 411–412. [Google Scholar]
- Gray, B.F. Critical Behaviour in Chemically Reacting Systems III—An Analytical Criterion for Insensitivity. Combust. Flame 1975, 24, 43–52. [Google Scholar] [CrossRef]
- Thomas, P.H. On the thermal conduction equation for self-heating materials with surface cooling. Trans. Faraday Soc. 1958, 54, 60–65. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Zu, Z.; Wang, C.; Zhang, Y.; Shao, L.; Huang, J. Comparison of Ignition Process and Thermodynamic Conditions of TC4 and TC17 Alloys Under High-Speed Rubbing Ignition. Materials 2025, 18, 16. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; LI, J.; LI, Y.; Jin, P.; Yu, S.; Wu, Y.; He, G.; Huang, J.; Zhang, C. Effect of grain boundary on the ignition and flame propagation mechanisms of TC11 alloy in oxygen-enriched environment. Corros. Sci. 2024, 237, 112291. [Google Scholar] [CrossRef]
- Shao, L.; Xie, G.; Liu, X.; Wu, Y.; Yu, J.; Hao, Z.; Lu, W.; Liu, X. Combustion behaviour and mechanism of TC4 and TC11 alloys. Corros. Sci. 2020, 168, 108564. [Google Scholar] [CrossRef]
- Shao, L.; Xie, G.; Li, H.; Lu, W.; Liu, X.; Yu, J.; Huang, J. Combustion Behavior and Mechanism of Ti14 Titanium Alloy. Materials 2020, 13, 682. [Google Scholar] [CrossRef]
- Jain, A.; Ong, S.P.; Hautier, G.; Chen, W.; Richards, W.D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; et al. The materials project: A materials genome approach to accelerating materials innovation. APL Mater. 2013, 1, 011002. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, W.; Bo, A.; Zhan, H.; Zhang, F.; Zhao, Y.; Zhao, Q.; Wan, M.; Gu, Y. Underlying burning resistant mechanisms for titanium alloy. Mater. Des. 2018, 156, 588–595. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, S.; Du, Y.; Peng, Y.; Xiong, J.; Guo, W. Interfacial microstructure evolution and mechanical response of TC19/Ti150 dissimilar joints obtained by diffusion bonding. Mater. Sci. Eng. A 2024, 915, 147183. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Z.; Jin, T.; Chai, L. Present situation and prospect of 600 °C high-temperature titanium alloys. Mater. Rep. 2018, 32, 1863–1869. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, B.; Li, W.; He, S.; Wang, Q.; Wang, X.; Wang, Y. Effect of Solution Temperature on Microstructures and Mechanica Properties of Ti150 Alloy Bar. Titan. Ind. Prog. 2019, 36, 31–34. [Google Scholar] [CrossRef]
- Peng, W.; Pan, B.; Zhao, C.; Li, G.; Zha, X.; You, R.; Ji, X. Effect of Micro-texture on Tensile Properties of Ti150 Alloy Forging. Titan. Ind. Prog. 2022, 39, 1–6. [Google Scholar] [CrossRef]
- Bache, M.R.; Copet, M.; Davies, H.M.; Evans, W.j.; Harrison, G. Dwell sensitive fatigue in a near alpha titanium alloy at ambient temperature. Int. J. Fatigue 1997, 19, 83–88. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, N.; Singh, V. Influence of stabilization treatment on low cycle fatigue behavior of Ti alloy IMI 834. Mater. Charact. 2003, 51, 225–233. [Google Scholar] [CrossRef]
- ASTM G124-18; Standard Test Method for Determining the Burning Behavior of Metallic Materials in Oxygen-Enriched Atmospheres. ASTM International: West Conshohocken, PA, USA, 2010.
- Bunting, E.N. Phase equilibria in the systems TiO2, TiO2-SiO2 and TiO2-Al2O3. Bur. Stand. J. Res. 1933, 11, 719. [Google Scholar] [CrossRef]
- Ren, C.; Min, X.; Fei, Q. Variant selection of a phase in B-type Ti-15Mo alloy. Heat Treat. Met. 2024, 49, 1–10. [Google Scholar] [CrossRef]
- Yin, B.; Xu, S.; Xiao, N.; Li, J.; Cai, J.; Zhang, H. Thermal deformation behavior and microstructure evolution of near a Ti60 titanium alloy. J. Plast. Eng. 2022, 29, 193–202. [Google Scholar] [CrossRef]
- Sui, N.; Mi, G.B.; Cao, J.X.; Huang, X.; Cao, C.X. Combustion Microstructure Characteristics and Formation Mechanism of Near alpha Type High Temperature Titanium Alloy Under Oxygen Enriched Conditions. Rare Metal Mater. Eng. 2022, 51, 3263–3275. [Google Scholar]
- Okamoto, H. Comment on Ti-Zr (titanium-zirconium). J. Phase Equilibria 1995, 16, 371. [Google Scholar] [CrossRef]
Material | Composition (wt%) | |||||
---|---|---|---|---|---|---|
Al | Sn | Zr | Mo | Nb | Si | |
Ti150 | 5.8 | 4 | 3.4 | 0.5 | 0.7 | 0.35 |
TC11 | 6.5 | 0 | 1.5 | 3.5 | 0 | 0.3 |
Region | Composition (at%) | |||||||
---|---|---|---|---|---|---|---|---|
Ti | Al | Sn | Zr | Mo | Nb | Si | O | |
Phase 1 | 34.53 | 2.56 | 0.03 | 1.64 | 0.04 | 0.13 | 0 | 61.07 |
Phase 2 | 53.11 | 5.06 | 7.23 | 2.43 | 0.92 | 1.07 | 3.41 | 26.76 |
Phase 3 | 4.49 | 39.23 | 0.09 | 1.42 | 0.03 | 0.06 | 0.08 | 54.6 |
Phase 4 | 18.27 | 4.77 | 1.23 | 23.76 | 0.22 | 0.34 | 0.24 | 51.16 |
Melting Zone | Composition | |||||||
---|---|---|---|---|---|---|---|---|
Ti | Al | Sn | Zr | Mo | Nb | Si | O | |
wt% | 70.51 | 4.30 | 3.54 | 6.78 | 0.57 | 1.12 | 0.26 | 12.93 |
at% | 57.27 | 6.20 | 1.16 | 2.89 | 0.23 | 0.47 | 0.36 | 31.43 |
Solid–Liquid Interface | Composition | |||||||
---|---|---|---|---|---|---|---|---|
Ti | Al | Sn | Zr | Mo | Nb | Si | O | |
wt% | 66.3 | 5.8 | 2.9 | 12.2 | 4.9 | 2.5 | 3.5 | 1.9 |
at% | 66.6 | 10.34 | 1.17 | 6.43 | 2.43 | 1.29 | 5.99 | 5.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zha, X.; Feng, K.; Wang, Y.; Yang, Y.; Zeng, X.-Y.; Zhang, C. Comparative Study on the Combustion Behavior and Mechanisms of Ti150 and TC11 Alloys in Oxygen-Enriched Environments. Materials 2025, 18, 4446. https://doi.org/10.3390/ma18194446
Zha X, Feng K, Wang Y, Yang Y, Zeng X-Y, Zhang C. Comparative Study on the Combustion Behavior and Mechanisms of Ti150 and TC11 Alloys in Oxygen-Enriched Environments. Materials. 2025; 18(19):4446. https://doi.org/10.3390/ma18194446
Chicago/Turabian StyleZha, Xiaohui, Kaikai Feng, Yang Wang, Yuchen Yang, Xin-Yun Zeng, and Cheng Zhang. 2025. "Comparative Study on the Combustion Behavior and Mechanisms of Ti150 and TC11 Alloys in Oxygen-Enriched Environments" Materials 18, no. 19: 4446. https://doi.org/10.3390/ma18194446
APA StyleZha, X., Feng, K., Wang, Y., Yang, Y., Zeng, X.-Y., & Zhang, C. (2025). Comparative Study on the Combustion Behavior and Mechanisms of Ti150 and TC11 Alloys in Oxygen-Enriched Environments. Materials, 18(19), 4446. https://doi.org/10.3390/ma18194446