Improving Bonding Durability in Dental Restorations: The Impact of Bioactive and Reinforcement Particles on Universal Adhesives
Abstract
1. Introduction
2. Materials and Methods
2.1. Sorption and Solubility
2.2. Bacterial Sensitivity Test by Agar Diffusion Technique (Inhibition Halo)
2.3. Degree of Conversion
2.4. Bond Strength
2.5. Failure Mode
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Isolan, C.P.; Sarkis-Onofre, R.; Lima, G.S.; Moraes, R.R. Bonding to Sound and Caries-Affected Dentin: A Systematic Review and Meta-Analysis. J. Adhes. Dent. 2018, 20, 7–18. [Google Scholar] [CrossRef]
- Borges, B.C.; Souza-Junior, E.J.; Brandt, W.C.; Loguercio, A.D.; Montes, M.A.; Puppin-Rontani, R.M.; Sinhoreti, M.A.C. Degree of conversion of simplified contemporary adhesive systems as influenced by extended air-activated or passive solvent volatilization modes. Oper. Dent. 2012, 37, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.S.; Vyas, R.; Vaddamanu, S.K.; Quadri, S.A.; Mosaddad, S.A.; Heboyan, A. Efficacy of different adhesive systems in bonding direct resin composite restorations: A systematic review and meta-analysis. Evid.-Based Dent. 2025, 26, 115. [Google Scholar] [CrossRef] [PubMed]
- Perdigão, J.; Lopes, M.M.; Gomes, G. In vitro bonding performance of self-etch adhesives: II--ultramorphological evaluation. Oper. Dent. 2008, 33, 534–549. [Google Scholar] [CrossRef] [PubMed]
- Brackett, W.W.; Haisch, L.D.; Pearce, M.G.; Brackett, M.G. Microleakage of Class V resin composite restorations placed with self-etching adhesives. J. Prosthet. Dent. 2004, 91, 42–45. [Google Scholar] [CrossRef]
- Mazzoni, A.; Angeloni, V.; Comba, A.; Maravic, T.; Cadenaro, M.; Tezvergil-Mutluay, A.; Pashley, D.H.; Tay, F.R.; Breschi, L. Cross-linking effect on dentin bond strength and MMPs activity. Dent. Mater. 2018, 34, 288–295. [Google Scholar] [CrossRef]
- Sinha, D.J.; Jaiswal, N.; Vasudeva, A.; Garg, P.; Tyagi, S.P.; Chandra, P. Comparative evaluation of the effect of chlorhexidine and Aloe barbadensis Miller (Aloe vera) on dentin stabilization using shear bond testing. J. Conserv. Dent. 2016, 19, 406–409. [Google Scholar] [CrossRef]
- Pashley, D.H.; Tay, F.R.; Breschi, L.; Tjäderhane, L.; Carvalho, R.M.; Carrilho, M.; Tezvergil-Mutluay, A. State of the art etch-and-rinse adhesives. Dent. Mater. 2011, 27, 1–16. [Google Scholar] [CrossRef]
- Brkanović, S.; Sever, E.K.; Vukelja, J.; Ivica, A.; Miletić, I.; Krmek, S.J. Comparison of Different Universal Adhesive Systems on Dentin Bond Strength. Materials 2023, 16, 1530. [Google Scholar] [CrossRef]
- Kemp-Scholte, C.M.; Davidson, C.L. Complete marginal seal of Class V resin composite restorations effected by increased flexibility. J. Dent. Res. 1990, 69, 1240–1243. [Google Scholar] [CrossRef]
- Hashimoto, M.; Ohno, H.; Sano, H.; Kaga, M.; Oguchi, H. Degradation patterns of different adhesives and bonding procedures. J. Biomed. Mater. Res. B Appl. Biomater. 2003, 66, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Sano, H.; Takatsu, T.; Ciucchi, B.; Russell, C.M.; Pashley, D.H. Tensile properties of resin-infiltrated demineralized human dentin. J. Dent. Res. 1995, 74, 1093–1102. [Google Scholar] [CrossRef] [PubMed]
- Van Landuyt, K.L.; Snauwaert, J.; De Munck, J.; Peumans, M.; Yoshida, Y.; Poitevin, A.; Coutinho, E.; Suzuki, K.; Lambrechts, P.; Van Meerbeek, B. Systematic review of the chemical composition of contemporary dental adhesives. Biomaterials 2007, 28, 3757–3785. [Google Scholar] [CrossRef] [PubMed]
- Conde, M.C.; Zanchi, C.H.; Rodrigues-Junior, S.A.; Carreño, N.L.; Ogliari, F.A.; Piva, E. Nanofiller loading level: Influence on selected properties of an adhesive resin. J. Dent. 2009, 37, 331–335. [Google Scholar] [CrossRef]
- Giannini, M.; Mettenburg, D.; Arrais, C.A.; Rueggeberg, F.A. The effect of filler addition on biaxial flexure strength and modulus of commercial dentin bonding systems. Quintessence Int. 2011, 42, e39–e43. [Google Scholar]
- Sharan, J.; Singh, S.; Lale, S.V.; Mishra, M.; Koul, V.; Kharbanda, P. Applications of Nanomaterials in Dental Science: A Review. J. Nanosci. Nanotechnol. 2017, 17, 2235–2255. [Google Scholar] [CrossRef]
- Boaro, L.C.C.; Campos, L.M.; Varca, G.H.C.; Dos Santos, T.M.R.; Marques, P.A.; Sugii, M.M.; Saldanha, N.R.; Cogo-Müller, K.; Brandt, W.C.; Braga, R.R.; et al. Antibacterial resin-based composite containing chlorhexidine for dental applications. Dent. Mater. 2019, 35, 909–918. [Google Scholar] [CrossRef]
- Moffa, E.B.; Malheiros, S.S.; Silva, L.T.S.; Branco, D.I.; Grassia Junior, R.C.F.; Brandt, W.C.; Goncalves, F.; Barao, V.A.R.; Boaro, L.C.C. Antimicrobial activity of PMMA enriched with nano-clay loaded with metronidazole and chlorhexidine. Braz. Oral Res. 2024, 38, e110. [Google Scholar] [CrossRef]
- Gonçalves, F.; Campos, L.M.d.P.; Sanches, L.K.F.; Silva, L.T.S.; Santos, T.M.R.d.; Varca, G.H.C.; Lopes, D.P.; Cogo-Muller, K.; Parra, D.F.; Braga, R.R.; et al. Antimicrobial activity and physicochemical performance of a modified endodontic sealer. Res. Soc. Dev. 2020, 9, e069119401. [Google Scholar] [CrossRef]
- da Silva, T.S.P.; de Castro, R.F.; Magno, M.B.; Maia, L.C.; Silva e Souza, M.H.d. Do HEMA-free adhesive systems have better clinical performance than HEMA-containing systems in noncarious cervical lesions? A systematic review and meta-analysis. J. Dent. 2018, 74, 1–14. [Google Scholar] [CrossRef]
- ISO 4049:2019; Dentistry—Polymer-Based Restorative Materials. International Organization for Standardization: Geneva, Switzerland, 2019.
- CLSI—Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Disk Susceptibility Tests: Approved Standard—Twelfth Edition (M02-A12); Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2015. [Google Scholar]
- Rueggeberg, F.A.; Hashinger, D.T.; Fairhurst, C.W. Calibration of FTIR conversion analysis of contemporary dental resin composites. Dent. Mater. 1990, 6, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Karadas, M.; Bedir, F.; Demirbuga, S. The role of etching protocols on bond strength of universal adhesives applied to caries affected dentin: A systematic review and meta-analysis. Clin. Oral Investig. 2024, 28, 683. [Google Scholar] [CrossRef] [PubMed]
- Angelo, E.; Guerra, A.; Vitti, R.; Martins, L.R.M. The Effect of Ethanol Associated with Universal Adhesive on Resin Composite Adhesion to Different Dentin Depths: A Long-Term In Vitro Study. Eur. J. Prosthodont. Restor. Dent. 2023, 31, 254–261. [Google Scholar] [PubMed]
- Lewis, N.V.; Aggarwal, S.; Borse, N.N.; Sonawane, S.; Dhatavkar, P.; Digholkar, R.; Agarwal, D. The Effect of Matrix Metalloproteinase Inhibitors on the Microtensile Bond Strength of Dentin Bonding Agents in Caries Affected Dentin: A Systematic Review. J. Int. Soc. Prev. Community Dent. 2023, 13, 173–184. [Google Scholar] [CrossRef]
- Mokeem, L.S.; Garcia, I.M.; Melo, M.A. Degradation and Failure Phenomena at the Dentin Bonding Interface. Biomedicines 2023, 11, 1256. [Google Scholar] [CrossRef]
- Mocharko, V.; Mascarenhas, P.; Azul, A.M.; Delgado, A.H.S. In Search of Novel Degradation-Resistant Monomers for Adhesive Dentistry: A Systematic Review and Meta-Analysis. Biomedicines 2022, 10, 3104. [Google Scholar] [CrossRef]
- Narayanan, S.K.; Hari, K.; Mathew, J.; Sukumaran, A.; Joy, B.; Mathew, J. Effect of MMP Inhibitors on Shear Bond Strength of Adhesive to Dentin after Different Drying Techniques: An In-Vitro Study. J. Pharm. Bioallied Sci. 2024, 16 (Suppl. S5), S4639–S4642. [Google Scholar] [CrossRef]
- Stanislawczuk, R.; Reis, A.; Loguercio, A.D. A 2-year in vitro evaluation of a chlorhexidine-containing acid on the durability of resin-dentin interfaces. J. Dent. 2011, 39, 40–47. [Google Scholar] [CrossRef]
- Solhi, L.; Atai, M.; Nodehi, A.; Imani, M. A novel dentin bonding system containing poly(methacrylic acid) grafted nanoclay: Synthesis, characterization and properties. Dent. Mater. 2012, 28, 1041–1050. [Google Scholar] [CrossRef]
- Silva, I.D.; Boaro, L.C.C.; Muniz, B.V.; Cogo-Muller, K.; Gonçalves, F.; Brandt, W.C. The impact of chitosan in experimental resin with different photoinitiator systems. J. Mech. Behav. Biomed. Mater. 2024, 150, 106323. [Google Scholar] [CrossRef]
- Ritto, F.P.; da Silva, E.M.; Borges, A.L.S.; Borges, M.A.P.; Sampaio-Filho, H.R. Fabrication and characterization of low-shrinkage dental composites containing montmorillonite nanoclay. Odontology 2022, 110, 35–43. [Google Scholar] [CrossRef]
- Encalada-Alayola, J.J.; Veranes-Pantoja, Y.; Uribe-Calderón, J.A.; Cauich-Rodríguez, J.V.; Cervantes-Uc, J.M. Effect of Type and Concentration of Nanoclay on the Mechanical and Physicochemical Properties of Bis-GMA/TTEGDMA Dental Resins. Polymers 2020, 12, 601. [Google Scholar] [CrossRef]
- Halvorson, R.H.; Erickson, R.L.; Davidson, C.L. The effect of filler and silane content on conversion of resin-based composite. Dent. Mater. 2003, 19, 327–333. [Google Scholar] [CrossRef]
- Gonçalves, F.; Silva, L.S.T.; Roschel, J.N.; Souza, G.; Campos, L.M.; Varca, G.; Parra, D.; Perez, M.A.; Gordilho, A.C.; Brandt, W.C.; et al. Antibacterial resin composite with sustained chlorhexidine release—one-year in vitro study. Pharmaceutics 2025, 17, 1144. [Google Scholar] [CrossRef]
Group | Sorption (µg/mm3) | Solubility (µg/mm3) |
---|---|---|
C—Control | 327 (34) a | 130 (17) a |
B—Bioactive | 262 (25) ab | 97 (11) ab |
B3 | 270 (23) ab | 98 (10) ab |
B5 | 272 (59) ab | 100 (26) ab |
B7 | 235 (36) b | 88 (17) b |
B10 | 226 (42) b | 83 (17) b |
B15 | 220 (17) b | 84 (8) b |
Group | Degree of Conversion % | ||
---|---|---|---|
24 h | 6 Months | 12 Months | |
C—Control | 87 (3) abA | 89 (3) aA | 88 (2) aA |
B—Bioactive | 70 (7) bA | 89 (7) aA | 87 (5) aA |
B3 | 69 (2) bB | 93 (1) aA | 92 (3) aA |
B5 | 85 (10) abA | 91 (10) aA | 92 (7) aA |
B7 | 93 (10) aA | 96 (6) aA | 94 (7) aA |
B10 | 91 (14) aA | 99 (12) aA | 91 (4) aA |
B15 | 70 (4) bA | 88 (7) aA | 88 (6) aA |
Group | Bond Strength (MPa) | ||
---|---|---|---|
24 h | 6 Months | 12 Months | |
C—Control | 12 (4) aA | 9 (2) aA | 6 (4) bB |
B—Bioactive | 10 (3) aA | 9 (4) aA | 8 (3) aA |
B3 | 9 (3) aA | 10 (3) aA | 9 (4) aA |
B5 | 11 (2) aA | 10 (2) aA | 9 (4) aA |
B7 | 13 (3) aA | 9 (3) aA | 8 (3) aA |
B10 | 12 (4) aA | 10 (3) aA | 9 (5) aA |
B15 | 9 (3) aA | 10 (4) aA | 9 (3) aA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brandt, W.C.; Silva, I.D.; Matos, A.C.; Gonçalves, F.; Boaro, L. Improving Bonding Durability in Dental Restorations: The Impact of Bioactive and Reinforcement Particles on Universal Adhesives. Materials 2025, 18, 4433. https://doi.org/10.3390/ma18194433
Brandt WC, Silva ID, Matos AC, Gonçalves F, Boaro L. Improving Bonding Durability in Dental Restorations: The Impact of Bioactive and Reinforcement Particles on Universal Adhesives. Materials. 2025; 18(19):4433. https://doi.org/10.3390/ma18194433
Chicago/Turabian StyleBrandt, William Cunha, Isaías Donizeti Silva, Andreia Carneiro Matos, Flávia Gonçalves, and Leticia Boaro. 2025. "Improving Bonding Durability in Dental Restorations: The Impact of Bioactive and Reinforcement Particles on Universal Adhesives" Materials 18, no. 19: 4433. https://doi.org/10.3390/ma18194433
APA StyleBrandt, W. C., Silva, I. D., Matos, A. C., Gonçalves, F., & Boaro, L. (2025). Improving Bonding Durability in Dental Restorations: The Impact of Bioactive and Reinforcement Particles on Universal Adhesives. Materials, 18(19), 4433. https://doi.org/10.3390/ma18194433