Damage Localization and Sensor Layout Optimization for In-Service Reinforced Concrete Columns Using Deep Learning and Acoustic Emission
Abstract
1. Introduction
2. Methodology
2.1. Experimental Design
2.2. Test Equipment
2.3. Test Procedure
2.4. K-Means Clustering Algorithm
2.5. BP Neural Network
2.6. Radial Basis Function Neural Network
2.7. Support Vector Regression Prediction
3. Results and Analysis
3.1. AE Data Cleaning Based on k-Means Clustering
3.2. Locating AE Sources Using Multiple Deep Learning Methods
4. Exploration of the Optimal Layout and Quantity of Sensors
4.1. Layout Schemes for Different Sensor Numbers and Locations
4.2. Research on Positioning Performance of Each Scheme
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rucka, M.; Knak, M.; Nitka, M. A study on microcrack monitoring in concrete: Discrete element method simulations of AE for non-destructive diagnostics. Eng. Fract. Mech. 2023, 293, 109718. [Google Scholar] [CrossRef]
- Yu, A.; Liu, T.; Miao, T.; Chen, X.; Deng, X.; Fu, F. Signal Recognition and Prediction of Water-Bearing Concrete Under Axial Compression Using AE and Machine Learning. Struct. Control Health Monit. 2025, 2025, 6633988. [Google Scholar] [CrossRef]
- Nitka, M.; Rucka, M. 3D DEM modelling of acoustic emission in concrete: Insights into elastic waves initiated by microcracks. Ultrasonics 2025, 150, 107599. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zhang, S.; Chayan, S.M.; Fan, Y.; Shah, S.P.; Zheng, J. Acoustic emission characteristics of concrete beam with different reinforcements during bending and damage process. Mater. Struct. 2025, 58, 171. [Google Scholar] [CrossRef]
- Huang, L.; Deng, J.; Hu, D.; Li, X.; Liu, Y.; Zhu, W. A comparative study of shear crack growth mechanisms in concrete through acoustic emission analysis. Sci. Rep. 2025, 15, 17272. [Google Scholar] [CrossRef]
- Triantis, D.; Pasiou, E.D.; Stavrakas, I.; Kourkoulis, S.K. Revealing the proximity of concrete specimens to their critical damage level by exploring the cumulative counts of the AE in the natural time domain. Materials 2024, 17, 1017. [Google Scholar] [CrossRef]
- Seye, M.M.; Kawasaki, Y.; Rahimi, E. Fracture analysis of short-scale corroded/healthy RC beams under bending using AE. Materials 2023, 16, 7011. [Google Scholar] [CrossRef]
- Ibarra-Zarate, D.; Tamayo-Pazos, O.; Vallejo-Guevara, A. Bearing fault diagnosis in rotating machinery based on cepstrum pre-whitening of vibration and AE. Int. J. Adv. Manuf. Technol. 2019, 104, 4155–4168. [Google Scholar] [CrossRef]
- Pal, A.; Datta, A.K. Development of smart real-time fault detection approach in railway track deploying a single AE sensor data. J. Vib. Eng. Technol. 2024, 12, 8529–8550. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, J.; Cao, Y.; Jiao, F. Tool wear status monitoring under laser-ultrasonic compound cutting based on AE and deep learning. J. Mech. Sci. Technol. 2024, 38, 2411–2421. [Google Scholar] [CrossRef]
- Xu, C.; Xue, L.; Cui, Y.; Zhai, M.; Bu, F. Critical slowing down phenomenon for predicting the failure of solid rocks and cement mortar materials: Insight from AE multiparameters. Constr. Build. Mater. 2023, 399, 132523. [Google Scholar] [CrossRef]
- Yang, J.; Gao, X.; Xu, J.; Lacidogna, G.; Shao, J.; Zhu, H.; Liu, C.; Ye, C. Insights into the fracture properties of recycled ceramic and rubber composite cement-based materials: Fracture mechanics, AE, and digital image correlation. Constr. Build. Mater. 2024, 435, 136896. [Google Scholar] [CrossRef]
- Wu, C.; Ma, G.; Hwang, H.J.; Kim, D.-J. Machine learning-based identification of the relationship between bond strength of GFRP bars and AE hits in concrete beams. Eng. Struct. 2025, 329, 119845. [Google Scholar] [CrossRef]
- Zhou, Z.; Rui, Y.; Cai, X.; Lu, J. Constrained total least squares method using TDOA measurements for jointly estimating acoustic emission source and wave velocity. Measurement 2021, 182, 109758. [Google Scholar] [CrossRef]
- Fu, W.; Zhou, R.; Gao, Y.; Guo, Z.; Yu, Q. A diffusion model-based deep learning approach for denoising acoustic emission signals in concrete. Measurement 2025, 251, 117143. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, F.; Yang, L.; Jiang, W. An improved algebraic solution for TDOA localization with sensor position errors. IEEE Commun. Lett. 2015, 19, 2218–2221. [Google Scholar] [CrossRef]
- Chen, J.C.; Yao, K.; Tung, T.L.; Reed, C.; Chen, D. Source localization and tracking of a wideband source using a randomly distributed beamforming sensor array. Int. J. High Perform. Comput. Appl. 2002, 16, 259–272. [Google Scholar] [CrossRef]
- Kalafat, S.; Sause, M.G.R. AE source localization by artificial neural networks. Struct. Health Monit. 2015, 14, 633–647. [Google Scholar] [CrossRef]
- De Fenza, A.; Sorrentino, A.; Vitiello, P. Application of Artificial Neural Networks and Probability Ellipse methods for damage detection using Lamb waves. Compos. Struct. 2015, 133, 390–403. [Google Scholar] [CrossRef]
- Ai, L.; Bayat, M.; Ziehl, P. Localizing damage on stainless steel structures using AE signals and weighted ensemble regression-based convolutional neural network. Measurement 2023, 211, 112659. [Google Scholar] [CrossRef]
- Cheng, L.; Xin, H.; Groves, R.M.; Veljkovic, M. AE source location using Lamb wave propagation simulation and artificial neural network for I-shaped steel girder. Constr. Build. Mater. 2021, 273, 121706. [Google Scholar] [CrossRef]
- Jierula, A.; Wang, S.; Oh, T.M.; Lee, J.-W.; Lee, J.H. Detection of source locations in RC columns using machine learning with AE data. Eng. Struct. 2021, 246, 112992. [Google Scholar] [CrossRef]
- Vy, V.; Lee, Y.; Bak, J.Y.; Park, S.; Park, S.; Yoon, H. Damage localization using AE sensors via convolutional neural network and continuous wavelet transform. Mech. Syst. Signal Process. 2023, 204, 110831. [Google Scholar] [CrossRef]
- GB/T 18182-2012; National Technical Committee for Standardization of Boilers and Pressure Vessels (SAC/TC 262). Method for AE Detection and Result Evaluation of Metal Pressure Vessels. Standards Press of China: Beijing, China, 2012.
- ASTM E976-15; ASTM Standard Guide for Determining the Reproducibility of AE Sensor Response. ASTM International: West Conshohocken, PA, USA, 2015.
- Chen, L.; Shan, W.; Liu, P. Identification of concrete aggregates using K-means clustering and level set method. Structures 2021, 34, 2069–2076. [Google Scholar] [CrossRef]
- Pang, H.; Qi, W.; Song, H.; Pang, H.; Liu, X.; Chen, J.; Chen, Z. Predictive Modelling of Alkali-Slag Cemented Tailings Backfill Using a Novel Machine Learning Approach. Materials 2025, 18, 1236. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Feng, M.; Zhang, X.; Yu, M.; Gao, S. Damage identification and failure characterization of plywood based on AE-BP Model. Eur. J. Wood Wood Prod. 2024, 82, 1615–1635. [Google Scholar] [CrossRef]
- Motahari-Nezhad, M.; Jafari, S.M. Comparison of MLP and RBF neural networks for bearing remaining useful life prediction based on acoustic emission. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2023, 237, 129–148. [Google Scholar] [CrossRef]
- Liang, P.; Duan, F.; Wang, J.; Zhou, H. Localization method for rock AE sources based on single sensor data and SVR-GBR machine learning models. Measurement 2025, 245, 116566. [Google Scholar] [CrossRef]
- Eshraghi, A.; Kodjo, S.A.; Rivard, P.; Shams, G. Machine-learning-based crack mode classification in plain concrete considering acoustic emission wave propagation effects. Constr. Build. Mater. 2025, 489, 142188. [Google Scholar] [CrossRef]
- Yu, A.; Chen, Z.; Zhang, L.; Li, X.; Shi, J.; Fu, F. Study on AE characteristics of concrete with different w/c ratio under uniaxial compression. Structures 2023, 58, 105443. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, W.; Xie, Y. A leak sensing method for offshore oil pipeline using AE signals and machine learning. Ocean Eng. 2025, 336, 121768. [Google Scholar] [CrossRef]
- Radhika, V.; Kishen, J.M.C. A comparative study of crack growth mechanisms in concrete through AE analysis: Monotonic versus fatigue loading. Constr. Build. Mater. 2024, 432, 136568. [Google Scholar] [CrossRef]
- An, X.; Hu, Z.; Zhang, L.; Liu, A.; Zhang, Y.; Li, F. Nonlinear energy evolution characteristics of diorite examined by triaxial loading–unloading and AE tests. Materials 2022, 15, 6434. [Google Scholar] [CrossRef]
- Stepanova, L.N.; Kuten, M.M.; Bobrov, A.L. Using Amplitude Analysis of AE Signals under Cyclic and Static Loading of Steel Samples. Russ. J. Nondestruct. Test. 2021, 57, 753–761. [Google Scholar] [CrossRef]
Name | Value | Name | Value |
---|---|---|---|
Threshold value (dB) | 35 | Peak definition time (µs) | 250 |
Preamplifier gain (dB) | 26 | Hit definition time (µs) | 500 |
Sampling frequency (MHz) | 1 | Hit lock time (µs) | 600 |
Number of sensors | 10 | - | - |
MAE (mm) | RMSE (mm) | R2 | |
---|---|---|---|
BP | 8.828 | 11.435 | 0.974 |
RBF | 16.341 | 20.660 | 0.915 |
SVR | 15.154 | 20.216 | 0.918 |
BP (Dataset 1) | 17.778 | 23.879 | 0.886 |
MAE (mm) | RMSE (mm) | R2 | |
---|---|---|---|
Sensor layout 1 | 3.656 | 4.260 | 0.996 |
Sensor layout 2 | 6.943 | 9.547 | 0.982 |
Sensor layout 3 | 11.868 | 16.301 | 0.947 |
Sensor layout 4 | 14.441 | 18.963 | 0.928 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.; Yu, A.; Li, Z.; Dong, M.; Deng, X.; Miao, T. Damage Localization and Sensor Layout Optimization for In-Service Reinforced Concrete Columns Using Deep Learning and Acoustic Emission. Materials 2025, 18, 4406. https://doi.org/10.3390/ma18184406
Liu T, Yu A, Li Z, Dong M, Deng X, Miao T. Damage Localization and Sensor Layout Optimization for In-Service Reinforced Concrete Columns Using Deep Learning and Acoustic Emission. Materials. 2025; 18(18):4406. https://doi.org/10.3390/ma18184406
Chicago/Turabian StyleLiu, Tao, Aiping Yu, Zhengkang Li, Menghan Dong, Xuelian Deng, and Tianjiao Miao. 2025. "Damage Localization and Sensor Layout Optimization for In-Service Reinforced Concrete Columns Using Deep Learning and Acoustic Emission" Materials 18, no. 18: 4406. https://doi.org/10.3390/ma18184406
APA StyleLiu, T., Yu, A., Li, Z., Dong, M., Deng, X., & Miao, T. (2025). Damage Localization and Sensor Layout Optimization for In-Service Reinforced Concrete Columns Using Deep Learning and Acoustic Emission. Materials, 18(18), 4406. https://doi.org/10.3390/ma18184406