Statistical and ANN Modeling of Corrosion Behavior of Austenitic Stainless Steels in Aqueous Environments
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Specimen Preparation
2.2. Potentiodynamic Polarization Test
2.3. Statistical Approach
2.4. ANN
3. Results and Discussion
3.1. Potentiodynamic Polarization Curves
3.2. Significance of Input Variables
3.3. Prediction of Pitting Potential Using Mathematical Regression Model
3.4. Prediction of the Polarization Curve Using ANN
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ANN | Artificial Neural Network |
PREN | Pitting Resistance Equivalent Number |
ANOVA | Analysis of Variance |
OCP | Open Circuit Potential |
References
- Zhao, J.; Cheng, C.Q.; Cao, T.S. Effect of Chemical Passivation Treatment and Flow on the Corrosion of 304 Stainless Steel in Hydrochloric Acid Solution. Corros. Sci. Technol. 2015, 14, 273. [Google Scholar] [CrossRef]
- Lee, Y.H.; Kim, Y.H.; Kim, H. Crevice Corrosion Resistance of Stainless Steels in Natural Sea Water with Different Post Welding Treatment. Corros. Sci. Technol. 2003, 2, 219–224. [Google Scholar]
- Xuan, J.; Xu, L.; Bai, S.; Zhao, T.; Xin, Y.; Zhang, G.; Li, L. Influence of Temperature on Corrosion Behavior, Wettability, and Surface Conductivity of 304 Stainless Steel in Simulated Cathode Environment of Proton Exchange Membrane Fuel Cells. Int. J. Hydrogen Energy 2021, 46, 22920–22931. [Google Scholar] [CrossRef]
- Lei, L.; Sun, Y.; Zheng, K.; Wang, X.; He, P.; Liu, Y.; Jiang, Y. A Comparative Study on the Critical Pitting Criteria of a Super Ferritic Stainless Steel at Different Temperatures in Chloride or Bromide Solution. Corros. Sci. 2021, 183, 109311. [Google Scholar] [CrossRef]
- Abdelfatah, A.; Raslan, A.M.; Mohamed, L.Z. Corrosion Characteristics of 304 Stainless Steel in Sodium Chloride and Sulfuric Acid Solutions. Int. J. Electrochem. Sci. 2022, 17, 220417. [Google Scholar] [CrossRef]
- Huttunen-Saarivirta, E.; Isotahdon, E.; Que, Z.; Lindgren, M.; Mardoukhi, A.; Jorcin, J.B.; Wegrelius, L. Pitting Corrosion on Highly Alloyed Stainless Steels in Dilute Sulphuric Acid Containing Sodium Chloride. Electrochim. Acta 2023, 457, 142404. [Google Scholar] [CrossRef]
- Kan, B.; Wu, W.; Yang, Z.; Zhang, X.; Li, J. Effects of Hydrostatic Pressure and pH on the Corrosion Behavior of 2205 Duplex Stainless Steel. J. Electroanal. Chem. 2021, 886, 115134. [Google Scholar] [CrossRef]
- Jiménez-Come, M.J.; González Gallero, F.J.; Gómez, P.Á.; Matres, V. Prediction and Detection of Localised Corrosion Attack of Stainless Steel in Biogas Production: A Machine Learning Classification Approach. Materials 2025, 18, 1057. [Google Scholar] [CrossRef]
- Dong, Z.; Zhang, M.; Li, W.; Wen, F.; Dong, G.; Zou, L.; Zhang, Y. Development of a Predictive Model for Carbon Dioxide Corrosion Rate and Severity Based on Machine Learning Algorithms. Materials 2024, 17, 4046. [Google Scholar] [CrossRef]
- Song, H.; Ahmad, A.; Ostrowski, K.A.; Dudek, M. Analyzing the Compressive Strength of Ceramic Waste-Based Concrete Using Experiment and Artificial Neural Network (ANN) Approach. Materials 2021, 14, 4518. [Google Scholar] [CrossRef] [PubMed]
- Kuppusamy, Y.; Jayaseelan, R.; Pandulu, G.; Sathish Kumar, V.; Murali, G.; Dixit, S.; Vatin, N.I. Artificial Neural Network with a Cross-Validation Technique to Predict the Material Design of Eco-Friendly Engineered Geopolymer Composites. Materials 2022, 15, 3443. [Google Scholar] [CrossRef]
- Kolesnyk, V.; Peterka, J.; Alekseev, O.; Neshta, A.; Xu, J.; Lysenko, B.; Hrbal, J. Application of ANN for Analysis of Hole Accuracy and Drilling Temperature When Drilling CFRP/Ti Alloy Stacks. Materials 2022, 15, 1940. [Google Scholar] [CrossRef]
- Huang, G.; Guo, Y.; Chen, Y.; Nie, Z. Application of Machine Learning in Material Synthesis and Property Prediction. Materials 2023, 16, 5977. [Google Scholar] [CrossRef]
- McGuire, M.F. Stainless Steels for Design Engineers; ASM International: Novelty, OH, USA, 2008. [Google Scholar]
- Ji, C.H.; Wang, H.; Chen, Q.; Ma, X.; Cai, Y. Corrosion Behavior Prediction for Hull Steels under Dynamic Marine Environments by Jointly Utilizing LSTM Network and PSO-RF Model. Ocean Eng. 2024, 300, 117371. [Google Scholar] [CrossRef]
- Akhlaghi, B.; Mesghali, H.; Ehteshami, M.; Mohammadpour, J.; Salehi, F.; Abbassi, R. Predictive Deep Learning for Pitting Corrosion Modeling in Buried Transmission Pipelines. Process Saf. Environ. Prot. 2023, 174, 320–327. [Google Scholar] [CrossRef]
- Durakovic, B. Design of Experiments Application, Concepts, Examples: State of the Art. Period. Eng. Nat. Sci. 2017, 5, 421–439. [Google Scholar] [CrossRef]
- Farooq, M.A.; Nóvoa, H.; Araújo, A.; Tavares, S.M. An Innovative Approach for Planning and Execution of Pre-Experimental Runs for Design of Experiments. Eur. Res. Manag. Bus. Econ. 2016, 22, 155–161. [Google Scholar] [CrossRef]
- Jankovic, A.; Chaudhary, G.; Goia, F. Designing the Design of Experiments (DOE)–An Investigation on the Influence of Different Factorial Designs on the Characterization of Complex Systems. Energy Build. 2021, 250, 111298. [Google Scholar] [CrossRef]
- Jones, D.A. Principles and Prevention of Corrosion; Macmillan: New York, NY, USA, 1992. [Google Scholar]
- Mathews, P.G. Design of Experiments with MINITAB; ASQ Quality Press: Milwaukee, WI, USA, 2005. [Google Scholar]
- Zhong, K.; Meng, Q.; Sun, M.; Luo, G. Artificial Neural Network (ANN) Modeling for Predicting Performance of SBS Modified Asphalt. Materials 2022, 15, 8695. [Google Scholar] [CrossRef]
- Nafees, A.; Javed, M.F.; Khan, S.; Nazir, K.; Farooq, F.; Aslam, F.; Vatin, N.I. Predictive Modeling of Mechanical Properties of Silica Fume-Based Green Concrete Using Artificial Intelligence Approaches: MLPNN, ANFIS, and GEP. Materials 2021, 14, 7531. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, T.C.; Gomes, D.P.P.; Bonomo, R.C.F.; Franco, M. Optimisation of Solid State Fermentation of Potato Peel for the Production of Cellulolytic Enzymes. Food Chem. 2012, 133, 1299–1304. [Google Scholar] [CrossRef]
- Malik, A.U.; Kutty, P.M.; Siddiqi, N.A.; Andijani, I.N.; Ahmed, S. The Influence of pH and Chloride Concentration on the Corrosion Behaviour of AISI 316L Steel in Aqueous Solutions. Corros. Sci. 1992, 33, 1809–1827. [Google Scholar] [CrossRef]
- Leckie, H.P.; Uhlig, H.H. Environmental Factors Affecting the Critical Potential for Pitting in 18–8 Stainless Steel. J. Electrochem. Soc. 1966, 113, 1262–1267. [Google Scholar] [CrossRef]
- Ramana, K.V.S.; Anita, T.; Mandal, S.; Kaliappan, S.; Shaikh, H.; Sivaprasad, P.V.; Khatak, H.S. Effect of Different Environmental Parameters on Pitting Behavior of AISI Type 316L Stainless Steel: Experimental Studies and Neural Network Modeling. Mater. Des. 2009, 30, 3770–3775. [Google Scholar] [CrossRef]
- Ruijini, G.; Srivastava, S.C.; Ives, M.B. Pitting Corrosion Behavior of UNS N08904 Stainless Steel in a Chloride/Sulfate Solution. Corrosion 1989, 45, 874–882. [Google Scholar] [CrossRef]
- Dodge, Y. The Concise Encyclopedia of Statistics; Springer: New York, NY, USA, 2008. [Google Scholar]
- Hu, Q.; Liu, Y.; Zhang, T.; Geng, S.; Wang, F. Modeling the Corrosion Behavior of Ni-Cr-Mo-V High Strength Steel in the Simulated Deep Sea Environments Using Design of Experiment and Artificial Neural Network. J. Mater. Sci. Technol. 2019, 35, 168–175. [Google Scholar] [CrossRef]
- Islam, N.; Huang, W.; Zhuang, H.L. Machine Learning for Phase Selection in Multi-Principal Element Alloys. Comput. Mater. Sci. 2018, 150, 230–235. [Google Scholar] [CrossRef]
- Géron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems; O’Reilly Media: Sebastopol, CA, USA, 2019. [Google Scholar]
- Kamrunnahar, M.; Urquidi-Macdonald, M. Prediction of Corrosion Behavior Using Neural Network as a Data Mining Tool. Corros. Sci. 2010, 52, 669–677. [Google Scholar] [CrossRef]
- Wang, C.; Li, W.; Wang, Y.; Xu, S.; Yang, X. Chloride-Induced Stray Current Corrosion of Q235A Steel and Prediction Model. Constr. Build. Mater. 2019, 219, 164–175. [Google Scholar] [CrossRef]
Material | PREN | C | Si | Mn | Ni | Cr | Mo | Cu | N | Fe |
---|---|---|---|---|---|---|---|---|---|---|
316L | 24 | 0.019 | 0.58 | 1.07 | 10.23 | 16.76 | 2.03 | 0.3 | - | Bal. |
904L | 34 | 0.02 | 0.64 | 1.53 | 24 | 19.27 | 4.21 | 1.3 | 0.04 | Bal. |
AL-6XN | 45 | 0.016 | 0.63 | 0.28 | 23.8 | 21.7 | 6.6 | 0.19 | 0.21 | Bal. |
Factors | Unit | Level (Normalized Value) | ||
---|---|---|---|---|
PREN (A) | 24 (0) | 34 (0.5) | 45 (1) | |
Temperature (B) | °C | 30 (0) | 60 (0.5) | 90 (1) |
Cl− concentration(C) | g/L | 20 (0) | 30 (0.5) | 40 (1) |
pH (D) | 2 (0) | 4 (0.5) | 6 (1) |
Exp. No. (PREN) | Factor | Ecorr., V | Epit, V | Erange, V | ||||
---|---|---|---|---|---|---|---|---|
Temp., °C | Cl−, g/L | pH | ||||||
1 (24) | 28 (34) | 55 (45) | 30 | 20 | 2 | 0.072 | 0.354 | 0.282 |
2 (24) | 29 (34) | 56 (45) | 30 | 20 | 4 | −0.029 | 0.279 | 0.308 |
3 (24) | 30 (34) | 57 (45) | 30 | 20 | 6 | −0.043 | 0.265 | 0.308 |
4 (24) | 31 (34) | 58 (45) | 30 | 30 | 2 | −0.085 | 0.277 | 0.362 |
5 (24) | 32 (34) | 59 (45) | 30 | 30 | 4 | −0.07 | 0.272 | 0.342 |
6 (24) | 33 (34) | 60 (45) | 30 | 30 | 6 | −0.081 | 0.309 | 0.39 |
7 (24) | 34 (34) | 61 (45) | 30 | 40 | 2 | −0.098 | 0.225 | 0.323 |
8 (24) | 35 (34) | 62 (45) | 30 | 40 | 4 | −0.066 | 0.285 | 0.351 |
9 (24) | 36 (34) | 63 (45) | 30 | 40 | 6 | 0.034 | 0.357 | 0.323 |
10 (24) | 37 (34) | 64 (45) | 60 | 20 | 2 | −0.13 | 0.152 | 0.282 |
11 (24) | 38 (34) | 65 (45) | 60 | 20 | 4 | −0.062 | 0.213 | 0.275 |
12 (24) | 39 (34) | 66 (45) | 60 | 20 | 6 | −0.118 | 0.146 | 0.264 |
13 (24) | 40 (34) | 67 (45) | 60 | 30 | 2 | −0.167 | 0.13 | 0.297 |
14 (24) | 41 (34) | 68 (45) | 60 | 30 | 4 | −0.116 | 0.065 | 0.181 |
15 (24) | 42 (34) | 69 (45) | 60 | 30 | 6 | −0.108 | 0.11 | 0.218 |
16 (24) | 43 (34) | 70 (45) | 60 | 40 | 2 | −0.117 | 0.091 | 0.208 |
17 (24) | 44 (34) | 71 (45) | 60 | 40 | 4 | −0.114 | 0.085 | 0.199 |
18 (24) | 45 (34) | 72 (45) | 60 | 40 | 6 | −0.295 | 0.123 | 0.418 |
19 (24) | 46 (34) | 73 (45) | 90 | 20 | 2 | −0.149 | 0.029 | 0.178 |
20 (24) | 47 (34) | 74 (45) | 90 | 20 | 4 | −0.157 | 0.065 | 0.222 |
21 (24) | 48 (34) | 75 (45) | 90 | 20 | 6 | −0.134 | 0.081 | 0.215 |
22 (24) | 49 (34) | 76 (45) | 90 | 30 | 2 | −0.166 | 0.043 | 0.209 |
23 (24) | 50 (34) | 77 (45) | 90 | 30 | 4 | −0.149 | 0.034 | 0.183 |
24 (24) | 51 (34) | 78 (45) | 90 | 30 | 6 | −0.114 | 0.055 | 0.169 |
25 (24) | 52 (34) | 79 (45) | 90 | 40 | 2 | −0.164 | 0 | 0.164 |
26 (24) | 53 (34) | 80 (45) | 90 | 40 | 4 | −0.107 | 0.015 | 0.122 |
27 (24) | 54 (34) | 81 (45) | 90 | 40 | 6 | −0.148 | 0.034 | 0.182 |
Term | R2 | Adjusted-R2 |
---|---|---|
Linear | 0.789 | 0.777 |
Quadratic | 0.973 | 0.966 |
Cubic | 0.993 | 0.989 |
Quaternary | 0.996 | 0.993 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|
Model | 15 | 19.5002 | 1.30001 | 272.54 | 0.000 |
Blocks | 1 | 0.0000 | 0.00004 | 0.01 | 0.926 |
Linear | 6 | 15.8551 | 2.64252 | 554.00 | 0.000 |
A | 2 | 10.0457 | 5.02287 | 1053.03 | 0.000 |
B | 2 | 5.6797 | 2.83987 | 595.37 | 0.000 |
D | 2 | 0.1296 | 0.06480 | 13.59 | 0.000 |
2-Way Interactions | 8 | 3.6450 | 0.45563 | 95.52 | 0.000 |
A·B | 4 | 3.5707 | 0.89267 | 187.15 | 0.000 |
A·D | 4 | 0.0744 | 0.01859 | 3.90 | 0.005 |
Error | 146 | 0.6964 | 0.00477 | ||
Total | 161 | 20.1966 | |||
R2 | Adjusted-R2 | ||||
96.55% | 96.20% |
Term | Regression Model | ||
---|---|---|---|
R2 | R2-Adjust | R2-Prediction | |
Linear | Epit = | ||
0.779 | 0.774 | 0.76 | |
Quadratic | Epit = 0.355 + 0.5890 A − 0.4017 B − 0.064 D − 0.036 A · B + 0.0753 A · B − 0.0767 B · D | ||
0.783 | 0.768 | 0.756 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, K.-H.; Kim, S.-J. Statistical and ANN Modeling of Corrosion Behavior of Austenitic Stainless Steels in Aqueous Environments. Materials 2025, 18, 4390. https://doi.org/10.3390/ma18184390
Jung K-H, Kim S-J. Statistical and ANN Modeling of Corrosion Behavior of Austenitic Stainless Steels in Aqueous Environments. Materials. 2025; 18(18):4390. https://doi.org/10.3390/ma18184390
Chicago/Turabian StyleJung, Kwang-Hu, and Seong-Jong Kim. 2025. "Statistical and ANN Modeling of Corrosion Behavior of Austenitic Stainless Steels in Aqueous Environments" Materials 18, no. 18: 4390. https://doi.org/10.3390/ma18184390
APA StyleJung, K.-H., & Kim, S.-J. (2025). Statistical and ANN Modeling of Corrosion Behavior of Austenitic Stainless Steels in Aqueous Environments. Materials, 18(18), 4390. https://doi.org/10.3390/ma18184390