Use of Experimental and Numerical Results in the Prototyping of 3D-Printed Water Jets
Abstract
1. Introduction
2. The Flow Characteristics of Nozzles Developed Through the Additive Manufacturing Technique Using FDM
2.1. Description of the FDM Method
2.2. Water Nozzles Developed with Additive Techniques
3. The Measurement System for Experimental Studies of Water Jets
4. The Numerical Model of the Water Flow Through a Nozzle
4.1. Geometric Model and Numerical Mesh
4.2. Boundary Conditions
- Inlet: A pressure inlet condition defined by the gauge pressure, with tested values of 0.5, 1, 2, 3, 4, and 5 bar (Figure 10);
- Outlet: A pressure outlet condition with a reference overpressure set to 0 Pa;
- Walls: All walls were assumed to be perfectly insulated, i.e., adiabatic, with no heat transfer.
5. Results of the Water Nozzles Investigations
6. Flow Characteristics of Prototype Water Jets
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Inlet Pressure pin, Bar | Inlet Temperature tin, °C | , dm3/min | , dm3/min | , dm3/min | Relative Error ε, % |
---|---|---|---|---|---|
0.50 | 23.26 | 5.91 | 6.40 | 0.49 | 8.30 |
0.75 | 23.27 | 7.01 | 7.91 | 0.90 | 12.84 |
1.00 | 23.27 | 8.18 | 9.18 | 1.00 | 12.26 |
1.25 | 23.27 | 8.82 | 10.31 | 1.49 | 16.85 |
1.50 | 23.27 | 9.93 | 11.32 | 1.39 | 14.02 |
1.75 | 23.27 | 10.44 | 12.26 | 1.82 | 17.41 |
2.00 | 23.27 | 11.43 | 13.13 | 1.70 | 14.85 |
2.25 | 23.43 | 12.10 | 13.95 | 1.85 | 15.26 |
2.50 | 23.48 | 12.74 | 14.72 | 1.98 | 15.54 |
2.75 | 23.69 | 13.36 | 15.46 | 2.10 | 15.70 |
3.00 | 23.77 | 13.99 | 16.16 | 2.17 | 15.52 |
3.25 | 23.92 | 14.59 | 16.84 | 2.25 | 15.40 |
3.50 | 23.94 | 15.05 | 17.49 | 2.44 | 16.20 |
3.75 | 24.15 | 15.69 | 18.12 | 2.43 | 15.46 |
4.00 | 24.15 | 16.23 | 18.72 | 2.49 | 15.36 |
4.25 | 24.08 | 16.77 | 19.31 | 2.54 | 15.16 |
4.50 | 24.15 | 17.39 | 19.89 | 2.50 | 14.35 |
4.75 | 24.16 | 18.02 | 20.44 | 2.42 | 13.44 |
5.00 | 24.20 | 18.63 | 20.98 | 2.35 | 12.64 |
Inlet Pressure pin, Bar | Inlet Temperature tin, °C | , dm3/min | , dm3/min | , dm3/min | Relative Error ε, % |
---|---|---|---|---|---|
0.50 | 23.48 | 6.41 | 6.47 | 0.06 | 0.90 |
0.75 | 23.52 | 7.69 | 7.99 | 0.30 | 3.88 |
1.00 | 23.48 | 8.83 | 9.27 | 0.44 | 5.01 |
1.25 | 23.48 | 9.83 | 10.40 | 0.57 | 5.84 |
1.50 | 23.48 | 10.78 | 11.43 | 0.65 | 6.02 |
1.75 | 23.48 | 11.63 | 12.37 | 0.74 | 6.38 |
2.00 | 23.43 | 12.38 | 13.25 | 0.87 | 7.02 |
2.25 | 23.49 | 13.13 | 14.07 | 0.94 | 7.20 |
2.50 | 23.43 | 13.82 | 14.86 | 1.04 | 7.49 |
2.75 | 23.43 | 14.48 | 15.60 | 1.12 | 7.73 |
3.00 | 23.48 | 15.12 | 16.31 | 1.19 | 7.87 |
3.25 | 23.56 | 15.76 | 16.99 | 1.23 | 7.81 |
3.50 | 23.43 | 16.37 | 17.65 | 1.28 | 7.80 |
3.75 | 23.43 | 17.04 | 18.28 | 1.24 | 7.28 |
4.00 | 23.43 | 17.83 | 18.89 | 1.06 | 5.97 |
4.25 | 23.43 | 18.54 | 19.49 | 0.95 | 5.11 |
4.50 | 23.43 | 19.14 | 20.07 | 0.93 | 4.83 |
4.75 | 23.43 | 19.74 | 20.63 | 0.89 | 4.49 |
5.00 | 23.43 | 20.40 | 21.17 | 0.77 | 3.79 |
Inlet Pressure pin, Bar | Inlet Temperature tin, °C | , dm3/min | , dm3/min | , dm3/min | Relative Error ε, % |
---|---|---|---|---|---|
0.50 | 23.27 | 7.17 | 7.08 | −0.09 | 1.31 |
0.75 | 23.36 | 8.72 | 8.70 | -−0.02 | 0.28 |
1.00 | 23.36 | 9.97 | 10.06 | 0.09 | 0.85 |
1.25 | 23.27 | 11.16 | 11.25 | 0.09 | 0.83 |
1.50 | 23.36 | 12.14 | 12.34 | 0.20 | 1.62 |
1.75 | 23.27 | 13.08 | 13.33 | 0.25 | 1.94 |
2.00 | 23.36 | 13.97 | 14.26 | 0.29 | 2.10 |
2.25 | 23.43 | 14.79 | 15.14 | 0.35 | 2.34 |
2.50 | 23.43 | 15.56 | 15.96 | 0.40 | 2.58 |
2.75 | 23.48 | 16.29 | 16.74 | 0.45 | 2.78 |
3.00 | 23.60 | 17.02 | 17.50 | 0.48 | 2.81 |
3.25 | 23.60 | 17.73 | 18.21 | 0.48 | 2.73 |
3.50 | 23.43 | 18.38 | 18.91 | 0.53 | 2.89 |
3.75 | 23.43 | 19.01 | 19.57 | 0.56 | 2.96 |
4.00 | 23.36 | 19.59 | 20.22 | 0.63 | 3.22 |
4.25 | 23.36 | 20.17 | 20.84 | 0.67 | 3.34 |
4.50 | 23.36 | 20.77 | 21.45 | 0.68 | 3.29 |
4.75 | 23.36 | 21.34 | 22.04 | 0.70 | 3.30 |
5.00 | 23.61 | 21.86 | 22.62 | 0.76 | 3.47 |
Inlet Pressure pin, Bar | Inlet Temperature tin, °C | , dm3/min | , dm3/min | , dm3/min | Relative Error ε, % |
---|---|---|---|---|---|
0.50 | 23.68 | 6.07 | 6.09 | 0.02 | 0.25 |
0.75 | 23.76 | 7.31 | 7.52 | 0.21 | 2.82 |
1.00 | 23.81 | 8.44 | 8.72 | 0.28 | 3.36 |
1.25 | 23.81 | 9.42 | 9.79 | 0.37 | 3.92 |
1.50 | 23.81 | 10.36 | 10.75 | 0.39 | 3.79 |
1.75 | 23.81 | 11.19 | 11.64 | 0.45 | 4.01 |
2.00 | 23.81 | 12.03 | 12.46 | 0.43 | 3.61 |
2.25 | 23.01 | 12.50 | 13.24 | 0.74 | 5.92 |
2.50 | 23.13 | 13.21 | 13.97 | 0.76 | 5.78 |
2.75 | 23.25 | 13.84 | 14.67 | 0.83 | 6.01 |
3.00 | 23.25 | 14.46 | 15.34 | 0.88 | 6.08 |
3.25 | 23.01 | 15.08 | 15.98 | 0.90 | 5.97 |
3.50 | 23.01 | 15.62 | 16.60 | 0.98 | 6.25 |
3.75 | 23.01 | 16.2 | 17.19 | 0.99 | 6.12 |
4.00 | 23.14 | 16.74 | 17.77 | 1.03 | 6.14 |
4.25 | 23.02 | 17.23 | 18.33 | 1.10 | 6.36 |
4.50 | 22.71 | 17.77 | 18.87 | 1.10 | 6.18 |
4.75 | 22.58 | 18.26 | 19.39 | 1.13 | 6.22 |
5.00 | 22.30 | 18.77 | 19.91 | 1.14 | 6.07 |
References
- Shahrubudin, N.; Lee, T.C.; Ramlan, R. An overview on 3D printing technology: Technological, materials, and applications. Procedia Manuf. 2019, 35, 1286–1296. [Google Scholar] [CrossRef]
- Jandyal, A.; Chaturvedi, I.; Wazir, I.; Raina, A.; Ul Haq, M.I. 3D printing—A review of processes, materials and applications in industry 4.0. Sustain. Oper. Comput. 2022, 3, 33–42. [Google Scholar] [CrossRef]
- Lee, J.Y.; An, J.; Chua, C.K. Fundamentals and applications of 3D printing for novel materials. Appl. Mater. Today 2017, 7, 120–133. [Google Scholar] [CrossRef]
- Bozkurt, Y.; Karayel, E. 3D printing technology; methods, biomedical applications, future opportunities and trends. J. Mater. Res. Technol. 2021, 14, 1430–1450. [Google Scholar] [CrossRef]
- Chen, G.; Xu, Y.; Kwok, P.C.L.; Kang, L. Pharmaceutical Applications of 3D Printing. Addit. Manuf. 2020, 34, 101209. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Singh, R.P.; Suman, R. 3D printing applications for healthcare research and development. Glob. Health J. 2022, 6, 217–226. [Google Scholar] [CrossRef]
- Nadagouda, M.N.; Ginn, M.; Rastogi, V. A review of 3D printing techniques for environmental applications. Curr. Opin. Chem. Eng. 2020, 28, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Morales, J.C.; Tarancón, A.; Canales-Vázquez, J.; Méndez-Ramos, J.; Hernández-Afonso, L.; Acosta-Mora, P.; Rueda, J.R.M.; Fernández-González, R. Three dimensional printing of components and functional devices for energy and environmental applications. Energy Environ. Sci. 2017, 10, 846–859. [Google Scholar] [CrossRef]
- Joshi, S.C.; Sheikh, A.A. 3D printing in aerospace and its long-term sustainability. Virtual Phys. Prototyp. 2015, 10, 175–185. [Google Scholar] [CrossRef]
- Larsson, R.; Ringertz, U.; Lundström, D.; Sobron, A. Rapid Prototyping in Aircraft Design Using CFD, Wind Tunnel and Flight Testing. In Proceedings of the 33rd Congress of the International Council of the Aeronautical Sciences, Stockholm, Sweden, 4–9 September 2022. [Google Scholar]
- Takeda, H.; Ohtake, Y.; Suzuki, H. 3D printing CFD simulation results using structural mechanics. J. Comput. Des. Eng. 2020, 7, 287–293. [Google Scholar] [CrossRef]
- Industrie Network. Dysze Wodne do Spraylab. Available online: https://www.industrie-network.com/dysze-wodne-do-spraylab/ (accessed on 5 April 2024).
- SICK. Nozzle Regulation in a Water Turbine—Hydropower. Available online: https://www.sick.com/pl/en/industries/energy/renewables/hydropower/nozzle-regulation-in-a-water-turbine/c/p675075 (accessed on 5 April 2024).
- Dysze Mgłowe—Charakterystyka, Zastosowanie i Zasada Działania. Available online: https://synapo.pl/do-czego-sluza-dysze-mglowe/ (accessed on 5 April 2024).
- Spraying Systems Europe. Why Spray Nozzles Are Essential for a Performant Cooling Process. Available online: https://www.spray.com/en-eu/blog/why-spray-nozzles-are-essential-for-a-performant-cooling-process (accessed on 5 April 2024).
- Lechler US. Spray Nozzles for The Energy Industry. Available online: https://www.lechlerusa.com/en/markets/the-energy-industry (accessed on 5 April 2024).
- Tan, D.K.; Maniruzzaman, M.; Nokhodchi, A. Advanced pharmaceutical applications of hot-melt extrusion coupled with fused deposition modelling (FDM) 3D printing for personalised drug delivery. Pharmaceutics 2018, 10, 203. [Google Scholar] [CrossRef] [PubMed]
- Skowyra, J.; Pietrzak, K.; Alhnan, M.A. Fabrication of extended-release patient-tailored prednisolone tablets via fused deposition modelling (FDM) 3D printing. Eur. J. Pharm. Sci. 2015, 68, 11–17. [Google Scholar] [CrossRef]
- Rajan, K.; Samykano, M.; Kadirgama, K.; Harun, W.S.W.; Rahman, M.M. Fused deposition modeling: Process, materials, parameters, properties, and applications. Int. J. Adv. Manuf. Technol. 2022, 120, 1531–1570. [Google Scholar] [CrossRef]
- Syrlybayev, D.; Zharylkassyn, B.; Seisekulova, A.; Akhmetov, M.; Perveen, A.; Talamona, D. Optimisation of strength properties of FDM printed parts—A critical review. Polymers 2021, 13, 1587. [Google Scholar] [CrossRef] [PubMed]
- Buksa, D.; Madejski, P.; Karch, M. Rapid prototyping of water nozzles using CFD modeling and 3D printing results. Min.—Inform. Autom. Electr. Eng. 2023, 3, 7–20. [Google Scholar] [CrossRef]
- Zore, K.; Sasanapuri, B.; Parkhi, G.; Varghese, A. Ansys mosaic poly-hexcore mesh for high-lift aircraft configuration. In Proceedings of the 21st Annual CFD Symposium, Bangalore, India, 8–9 August 2019; pp. 1–11. [Google Scholar]
- CFD-Wiki, the Free CFD Reference. Y Plus Wall Distance Estimation. Available online: https://www.cfd-online.com/Wiki/Y_plus_wall_distance_estimation (accessed on 29 April 2025).
- Fountas, N.; Kechagias, J.; Vaxevanidis, N. Statistical Modeling and Optimization of Surface Roughness for PLA and PLA/Wood FDM Fabricated Items. 2023. Available online: www.jme.aspur.rs (accessed on 12 April 2025).
- ISO 21920-2:2021; Geometrical Product Specifications (GPS)—Surface Texture: Profile—Part 2: Terms, Definitions and Surface texture Parameters. ISO: Geneva, Switzerland, 2021.
- Yang, H.; Ji, F.; Li, Z.; Tao, S. Preparation of hydrophobic surface on PLA and ABS by fused deposition modeling. Polymers 2020, 12, 1539. [Google Scholar] [CrossRef] [PubMed]
- Kryś, M.; Pawłucki, M. CFD dla Inżynierów. PRAKTYCZNE Ćwiczenia na Przykładzie Systemu ANSYS Fluent. Available online: https://mesco.com.pl/ksiazka-cfd-dla-inzynierow/ (accessed on 12 April 2025).
- Kumar, B.A.; Kumar, K.S.; Reddy, A.C. Mechanical properties of 3D-printed Onyx-fibreglass composites: Role of roof layers on tensile strength and hardness—Using anova technique. Next Mater. 2025, 8, 100650. [Google Scholar] [CrossRef]
Printing Settings | Value |
---|---|
Layer height | 0.1 mm |
Line width | 0.4 mm |
Wall thickness | 1.2 mm |
Top/bottom thickness | 0.8 mm |
Printing speed | 30 mm/s |
Extruder temperature | 210 °C |
Build plate temperature | 60 °C |
Nozzle diameter | 0.4 mm |
Infill density | 100% |
Infill patterns | Rectilinear |
Fan speed | 80% |
Parameter | D1 | D2 | D3 | D4 |
---|---|---|---|---|
Inlet/outlet diameter, mm | 15.4/4.0 | 15.4/4.0 | 15.4/4.0 | 15.4/4.0 |
Total length, mm | 86 | 86 | 86 | 86 |
Number of internal chambers | 1 | 0 | 2 | 1 |
Internal chamber length, mm | 26.03 | - | 14 | 16 |
Internal chamber diameter, mm | 28.23 | - | 25.0 24.4 | 11.7 |
Convergence angle, ° | - | 79.1 | - | 35 |
Throat length, mm | 41.97 | 38 | 7 | 48 |
Convergent section length, mm | - | 40 | 21 | 2 |
No. | Variable | Range | Sensor | Accuracy |
---|---|---|---|---|
1 | Pressure, p | −1 ÷ 3 bar 0 ÷ 20 bar | Pressure transducer 0A-10 | ±0.5% |
2 | Temperature, t | −50 ÷ 180 °C | TOPE-L0384-Pt100-A | ±0.15 °C +0.002 × |t| |
3 | Flow rate, | 0 ÷ 50 dm3/min | Flowmeter Picomag, DMA25, DN25 1 | ±0.1% |
4 | Current frequency, f | 0 ÷ 2.2 kW 0 ÷ 60 Hz | Astraada DRV-24 frequencyconverter, 3 × 400 V, vector control, STO. | Speed control accuracy: ±0.2% |
Nozzle D1 | Nozzle D2 | Nozzle D3 | Nozzle D4 | |
---|---|---|---|---|
Density, kg/m3 | 9.975 × 102 | |||
Specific volume, m3/g | 1.000 × 10−3 | |||
Dynamic viscosity, Pa·s | 1.002 × 10−3 | |||
Kinematic viscosity, m2/s | 1.003 × 10−6 | |||
Inlet diameter, m | 1.540 × 10−2 | |||
Outlet diameter, m | 4.000 × 10−3 | |||
Inlet area surface, m2 | 1.863 × 10−1 | |||
Outlet area surface, m2 | 1.257 × 10−2 |
Nozzle D1 | Nozzle D2 | Nozzle D3 | Nozzle D4 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Δp | KvEXP | KvCFD | ΔV | η3D | Kvexp | KvCFD | ΔV | η3D | Kvexp | KvCFD | ΔV | η3D | Kvexp | KvCFD | ΔV | η3D |
bar | m3/h | m3/h | dm3/min | % | m3/h | m3/h | dm3/min | % | m3/h | m3/h | dm3/min | % | m3/h | m3/h | dm3/min | % |
0.50 | 0.50 | 0.54 | 0.49 | 92.34 | 0.54 | 0.55 | 0.06 | 99.11 | 0.61 | 0.60 | 0.09 | 98.69 | 0.52 | 0.52 | 0.02 | 99.75 |
0.75 | 0.49 | 0.55 | 0.90 | 88.62 | 0.53 | 0.55 | 0.30 | 96.26 | 0.60 | 0.60 | 0.02 | 99.72 | 0.51 | 0.52 | 0.21 | 97.26 |
1.00 | 0.49 | 0.55 | 1.00 | 89.08 | 0.53 | 0.56 | 0.44 | 95.23 | 0.60 | 0.60 | 0.09 | 99.15 | 0.51 | 0.52 | 0.28 | 96.74 |
1.25 | 0.47 | 0.55 | 1.49 | 85.58 | 0.53 | 0.56 | 0.57 | 94.48 | 0.60 | 0.60 | 0.09 | 99.17 | 0.51 | 0.53 | 0.37 | 96.23 |
1.50 | 0.49 | 0.55 | 1.39 | 87.70 | 0.53 | 0.56 | 0.65 | 94.32 | 0.59 | 0.60 | 0.20 | 98.41 | 0.51 | 0.53 | 0.39 | 96.35 |
1.75 | 0.47 | 0.56 | 1.82 | 85.17 | 0.53 | 0.56 | 0.74 | 94.01 | 0.59 | 0.60 | 0.25 | 98.10 | 0.51 | 0.53 | 0.45 | 96.14 |
2.00 | 0.48 | 0.56 | 1.70 | 87.07 | 0.53 | 0.56 | 0.87 | 93.44 | 0.59 | 0.61 | 0.29 | 97.94 | 0.51 | 0.53 | 0.43 | 96.51 |
2.25 | 0.48 | 0.56 | 1.85 | 86.76 | 0.53 | 0.56 | 0.94 | 93.29 | 0.59 | 0.61 | 0.35 | 97.71 | 0.50 | 0.53 | 0.74 | 94.41 |
2.50 | 0.48 | 0.56 | 1.98 | 86.55 | 0.52 | 0.56 | 1.04 | 93.03 | 0.59 | 0.61 | 0.40 | 97.49 | 0.50 | 0.53 | 0.76 | 94.53 |
2.75 | 0.48 | 0.56 | 2.10 | 86.43 | 0.52 | 0.56 | 1.12 | 92.83 | 0.59 | 0.61 | 0.45 | 97.29 | 0.50 | 0.53 | 0.83 | 94.33 |
3.00 | 0.48 | 0.56 | 2.17 | 86.56 | 0.52 | 0.56 | 1.19 | 92.71 | 0.59 | 0.61 | 0.48 | 97.27 | 0.50 | 0.53 | 0.88 | 94.26 |
3.25 | 0.49 | 0.56 | 2.25 | 86.65 | 0.52 | 0.57 | 1.23 | 92.75 | 0.59 | 0.61 | 0.48 | 97.35 | 0.50 | 0.53 | 0.90 | 94.37 |
3.50 | 0.48 | 0.56 | 2.44 | 86.06 | 0.53 | 0.57 | 1.28 | 92.76 | 0.59 | 0.61 | 0.53 | 97.19 | 0.50 | 0.53 | 0.98 | 94.12 |
3.75 | 0.49 | 0.56 | 2.43 | 86.61 | 0.53 | 0.57 | 1.24 | 93.21 | 0.59 | 0.61 | 0.56 | 97.13 | 0.50 | 0.53 | 0.99 | 94.23 |
4.00 | 0.49 | 0.56 | 2.49 | 86.68 | 0.53 | 0.57 | 1.06 | 94.37 | 0.59 | 0.61 | 0.63 | 96.88 | 0.50 | 0.53 | 1.03 | 94.22 |
4.25 | 0.49 | 0.56 | 2.54 | 86.83 | 0.54 | 0.57 | 0.95 | 95.14 | 0.59 | 0.61 | 0.67 | 96.77 | 0.50 | 0.53 | 1.10 | 94.02 |
4.50 | 0.49 | 0.56 | 2.50 | 87.45 | 0.54 | 0.57 | 0.93 | 95.39 | 0.59 | 0.61 | 0.68 | 96.82 | 0.50 | 0.53 | 1.10 | 94.18 |
4.75 | 0.50 | 0.56 | 2.42 | 88.15 | 0.54 | 0.57 | 0.89 | 95.70 | 0.59 | 0.61 | 0.70 | 96.80 | 0.50 | 0.53 | 1.13 | 94.15 |
5.00 | 0.50 | 0.56 | 2.35 | 88.78 | 0.55 | 0.57 | 0.77 | 96.34 | 0.59 | 0.61 | 0.76 | 96.65 | 0.50 | 0.53 | 1.14 | 94.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madejski, P.; Buksa, D.; Bryk, M. Use of Experimental and Numerical Results in the Prototyping of 3D-Printed Water Jets. Materials 2025, 18, 4367. https://doi.org/10.3390/ma18184367
Madejski P, Buksa D, Bryk M. Use of Experimental and Numerical Results in the Prototyping of 3D-Printed Water Jets. Materials. 2025; 18(18):4367. https://doi.org/10.3390/ma18184367
Chicago/Turabian StyleMadejski, Paweł, Dominik Buksa, and Mateusz Bryk. 2025. "Use of Experimental and Numerical Results in the Prototyping of 3D-Printed Water Jets" Materials 18, no. 18: 4367. https://doi.org/10.3390/ma18184367
APA StyleMadejski, P., Buksa, D., & Bryk, M. (2025). Use of Experimental and Numerical Results in the Prototyping of 3D-Printed Water Jets. Materials, 18(18), 4367. https://doi.org/10.3390/ma18184367