Corrosion Behavior of Biocompatible Ti3Mn Alloy in Different Physiological Conditions for Biomedical Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Material Preparation
2.2. Microstructural Characterization
2.3. Microhardness and Nanoindentation Tests
2.4. Electrochemical Tests
2.4.1. Ecorr vs. Time (EVT)
2.4.2. Linear Polarization (LP)
2.4.3. Potential Electrochemical Impedance Spectroscopy (PEIS)
3. Results and Discussion
3.1. Microstructural Investigation
3.2. Microhardness Test
3.3. Electrochemical Tests
3.3.1. Corrosion Potential
3.3.2. Polarization Resistance and Corrosion Rate
3.3.3. Electrochemical Impedance Spectroscopy
4. Conclusions
- The vacuum arc remelting method followed by quenching at 1050 °C and water cooling were employed for the synthesis of the Ti3Mn alloy and allowed us to obtain the required microstructure.
- The incorporation of Mn into titanium caused the formation of fine precipitates of Mn-rich features at the grain boundaries, which can limit the grain boundary expansion. The mixture of acicular α/α′ in an α + β microstructure of titanium was obtained, having a reduced porosity, and being an optimal profile for biomedical applications.
- The Ti3Mn alloy exhibited microhardness levels that exceeded commercially pure titanium (cp-Ti), although inferior to Ti-6Al-4V.
- Under the three physiological conditions that were simulated (room temperature, simulated fever at 40 °C, and acidic medium pH 1.2), the alloy exhibited good corrosion resistance. A passive double-layer film was identified on the alloy surface, composed of a porous outer film in contact with the physiological medium and a compact inner one in contact with the base metal, which contributes to corrosion protection.
- The derived findings suggest that the Ti3Mn alloy has considerable potential as a biomaterial for medical uses, attributable to its conjunction of mechanical and chemical characteristics.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Spector, M. Biomedical Materials to Meet the Challenges of the Aging Epidemic. Biomed. Mater. 2018, 13, 030201. [Google Scholar] [CrossRef] [PubMed]
- Brunette, D.M.; Tengvall, P.; Textor, M.; Thomsen, P. Titanium in Medicine; Engineering Materials; Springer: Berlin/Heidelberg, Germany, 2001; ISBN 978-3-642-63119-1. [Google Scholar]
- Luo, B.; Miu, L.; Luo, Y. Titanium Alloys for Biomedical Applications: A Review on Additive Manufacturing Process and Surface Modification Technology. Int. J. Adv. Manuf. Technol. 2025, 137, 3215–3227. [Google Scholar] [CrossRef]
- Murr, L.E. Handbook of Materials Structures, Properties, Processing and Performance; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; ISBN 978-3-319-01814-0. [Google Scholar]
- Al-Muhanna, K.; Habib, K. Corrosion Behavior of Different Alloys Exposed to Continuous Flowing Seawater by Electrochemical Impedance Spectroscopy (EIS). Desalination 2010, 250, 404–407. [Google Scholar] [CrossRef]
- Ibrahim, P.; Garrard, R.; Penchev, P.; Man, K.; Cox, S.C.; Dimov, S.; Attallah, M.M. Hybrid Manufacturing and Performance Evaluation of β Ti-Alloy Stents. Mater. Des. 2024, 247, 113420. [Google Scholar] [CrossRef]
- Geetha, M.; Singh, A.K.; Asokamani, R.; Gogia, A.K. Ti Based Biomaterials, the Ultimate Choice for Orthopaedic Implants—A Review. Prog. Mater. Sci. 2009, 54, 397–425. [Google Scholar] [CrossRef]
- Kim, J.-W.; Hwang, M.-J.; Han, M.-K.; Kim, Y.-G.; Song, H.-J.; Park, Y.-J. Effect of Manganese on the Microstructure, Mechanical Properties and Corrosion Behavior of Titanium Alloys. Mater. Chem. Phys. 2016, 180, 341–348. [Google Scholar] [CrossRef]
- Santos, P.F.; Niinomi, M.; Cho, K.; Nakai, M.; Liu, H.; Ohtsu, N.; Hirano, M.; Ikeda, M.; Narushima, T. Microstructures, Mechanical Properties and Cytotoxicity of Low Cost Beta Ti–Mn Alloys for Biomedical Applications. Acta Biomater. 2015, 26, 366–376. [Google Scholar] [CrossRef]
- Domingo, J.L. Vanadium and Tungsten Derivatives as Antidiabetic Agents. Biol. Trace Elem. Res. 2002, 88, 97–112. [Google Scholar] [CrossRef] [PubMed]
- Genchi, G.; Carocci, A.; Lauria, G.; Sinicropi, M.S.; Catalano, A. Nickel: Human Health and Environmental Toxicology. Int. J. Environ. Res. Public Health 2020, 17, 679. [Google Scholar] [CrossRef]
- Jimenez-Marcos, C.; Mirza-Rosca, J.C.; Baltatu, M.S.; Vizureanu, P. Effect of Si Contents on the Properties of Ti15Mo7ZrxSi Alloys. Materials 2023, 16, 4906. [Google Scholar] [CrossRef]
- Jiménez-Marcos, C.; Mirza-Rosca, J.C.; Baltatu, M.S.; Vizureanu, P. Preliminary Studies of New Heat-Treated Titanium Alloys for Use in Medical Equipment. Results Eng. 2025, 25, 104477. [Google Scholar] [CrossRef]
- Voiculescu, I.; Geanta, V.; Stefanoiu, R.; Vizureanu, P.; Sandu, A.V.; Binchiciu, E.F. The Influence of Alloying Elements on the Microstructure and Microhardness of Welded Titanium Alloys for Medical Applications. Zavar. Zavarene Konstr. 2019, 64, 171–181. [Google Scholar] [CrossRef]
- Gouda, M.K.; Salman, S.A.; Ebied, S. Improvement in the Microhardness and Corrosion Behaviour of Ti-14Mn Biomedical Alloy by Cold Working. Mater. Res. Express 2022, 9, 015401. [Google Scholar] [CrossRef]
- Nishimura, T. Effect of Microstructure on the Electrochemical Behavior of Ti-10 Mass% Mn Alloys in High Chloride Solution. J. Mater. Eng. Perform. 2016, 25, 443–450. [Google Scholar] [CrossRef]
- Zhou, X.; Fang, H.; Yuan, T.; Li, R. Effect of Slight Sn Modification on Mechanical Properties and Corrosion Behavior of Ti- (2–4 Wt%) Mn Alloys Fabricated via Powder Metallurgy. Mater. Charact. 2023, 203, 113068. [Google Scholar] [CrossRef]
- Zhang, F.; Burkel, E. Novel Titanium Manganese Alloys and Their Macroporous Foams for Biomedical Applications Prepared by Field Assisted Sintering. In Biomedical Engineering, Trends in Materials Science; InTech: London, UK, 2011. [Google Scholar]
- Zhang, F.; Weidmann, A.; Nebe, J.B.; Beck, U.; Burkel, E. Preparation, Microstructures, Mechanical Properties, and Cytocompatibility of TiMn Alloys for Biomedical Applications. J. Biomed. Mater. Res. Part B Appl. Biomater. 2010, 94B, 406–413. [Google Scholar] [CrossRef]
- Si, Y. Effect of Manganese Addition on the Microstructure and Mechanical Properties of Ti-Nb Biomedical Alloys. IOP Conf. Ser. Earth Environ. Sci. 2019, 252, 022137. [Google Scholar] [CrossRef]
- Geanta, V.; Voiculescu, I.; Tudoran, S. Effects of Fe and Mn on Microstructure and Microhardness of Titanium Alloys. Rev. Chim. 2020, 71, 87–94. [Google Scholar] [CrossRef]
- Lourenço, M.L.; Cardoso, G.C.; Sousa, K.d.S.J.; Donato, T.A.G.; Pontes, F.M.L.; Grandini, C.R. Development of Novel Ti-Mo-Mn Alloys for Biomedical Applications. Sci. Rep. 2020, 10, 6298. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Wang, X.; Xuan, A.; Li, Y.; Yu, H.; Zhang, E. Effect of Solid Solution and Aging Treatment on the Microstructure, Mechanical Properties, Corrosion Behavior and Antimicrobial Properties of Ti-5Mn Alloys. Mater. Res. Express 2024, 11, 065405. [Google Scholar] [CrossRef]
- Alshammari, Y.; Mendoza, S.; Yang, F.; Bolzoni, L. Effect of Mn on the Properties of Powder Metallurgy Ti-2.5Al-XMn Alloys. Materials 2023, 16, 4917. [Google Scholar] [CrossRef]
- Bolzoni, L.; Paul, M.; Yang, F.; Alshammari, Y. Titanium Alloys Developed on the Basis of the Addition of Cheap Strong Eutectoid β-Stabilisers. J. Mater. Sci. 2023, 58, 5037–5047. [Google Scholar] [CrossRef]
- Li, Y.T.; Ma, D.L.; Liu, H.Y.; Jing, P.P.; Gong, Y.L.; Ayaz, Z.; Jing, F.J.; Jiang, X.; Leng, Y.X. Biocompatibility of Ti-Mn-N Films with Different Manganese Contents. Surf. Coatings Technol. 2020, 403, 126354. [Google Scholar] [CrossRef]
- Alqattan, M.; Peters, L.; Alshammari, Y.; Yang, F.; Bolzoni, L. Antibacterial Ti-Mn-Cu Alloys for Biomedical Applications. Regen. Biomater. 2021, 8, rbaa050. [Google Scholar] [CrossRef]
- Paul, M.; Alshammari, Y.; Yang, F.; Bolzoni, L. New Ternary Powder Metallurgy Ti Alloys via Eutectoid and Isomorphous Beta Stabilisers Additions. Sci. Rep. 2023, 13, 1150. [Google Scholar] [CrossRef] [PubMed]
- ASTM E3-11(2017); Standard Guide for Preparation of Metallographic Specimens. American Society for Testing and Materials: West Conshohocken, PA, USA, 2017.
- ISO 6507/ISO 4545/ASTM E384; Standard Test Method for Knoop and Vickers Hardness of Materials. International Organiza-tion for Standardization: Geneva, Switzerland, 2022.
- ISO 10271:2020; Dentistry—Corrosion Test Methods for Metallic Materials. International Organization for Standardization: Geneva, Switzerland, 2020.
- ISO 16773-1-4:2016; Electrochemical Impedance Spectroscopy (EIS) on Coated and Uncoated Metallic Specimens. International Organization for Standardization: Geneva, Switzerland, 2016.
- Mabilleau, G.; Bourdon, S.; Joly-Guillou, M.L.; Filmon, R.; Baslé, M.F.; Chappard, D. Influence of Fluoride, Hydrogen Peroxide and Lactic Acid on the Corrosion Resistance of Commercially Pure Titanium. Acta Biomater. 2006, 2, 121–129. [Google Scholar] [CrossRef]
- Wen, X.; Hao, S.; Liu, S.; Cheng, J.; He, Y.; Chen, L.-Y. Microstructure and Corrosion Behavior of Ti–10Mo–6Zr–4Sn–3 Nb (Ti-B12) Alloys as Biomedical Material in Lactic Acid-Containing Hank’s Solution. Int. J. Electrochem. Sci. 2025, 20, 100974. [Google Scholar] [CrossRef]
- ASTM G102-23; Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements. American Society for Testing and Materials: West Conshohocken, PA, USA, 2023. [CrossRef]
- Kovacı, H.; Şenel, K.; Acar, M.T.; Bozkurt, Y.B.; Çelik, A. Comparative Investigation of Structural, Morphological, Mechanical, Tribological and Electrochemical Properties of TiO2 Films Formed on Cp-Ti, Ti6Al4V and Ti45Nb Alloys. Surf. Coat. Technol. 2024, 487, 131024. [Google Scholar] [CrossRef]
- Almeraya-Calderón, F.; Jáquez-Muñoz, J.M.; Lara-Banda, M.; Zambrano-Robledo, P.; Cabral-Miramontes, J.A.; Lira-Martínez, A.; Estupinán-López, F.; Gaona Tiburcio, C. Corrosion Behavior of Titanium and Titanium Alloys in Ringer’s Solution. Int. J. Electrochem. Sci. 2022, 17, 220751. [Google Scholar] [CrossRef]
Essay | HV (GPa) | Depth (m) | ||||
---|---|---|---|---|---|---|
Mean | Median | SD | Maximum | Minimum | ||
0.005 N | 2.85 | 2.94 | 0.14 | 2.96 | 2.58 | 1.14 × 10−6 |
0.025 N | 3.09 | 3.03 | 0.13 | 3.32 | 2.95 | 2.45 × 10−6 |
0.050 N | 3.23 | 3.24 | 0.10 | 3.35 | 3.09 | 3.3 × 10−6 |
Parameters | Room Temperature | 40 °C | pH 1.2 |
---|---|---|---|
Ecorr ± SD(V vs. SCE) | (6.16 ± 0.23) × 10−2 | (−9.08 ± 0.62) × 10−1 | (−4.91 ± 0.44) × 10−1 |
Icorr ± SD (A) | (5.12 ± 0.34) × 10−9 | (4.93 ± 0.23) × 10−7 | (1.84 ± 0.05) × 10−7 |
A (m2) | 5.00 × 10−5 | 5.00 × 10−5 | 5.00 × 10−5 |
EW (Kg/eq) | 1.22 × 10−2 | 1.22 × 10−2 | 1.22 × 10−2 |
ρ (Kg/m3) | 4.54 × 103 | 4.54 × 103 | 4.54 × 103 |
βc (V/dec) | 23.10 × 10−3 | 24.50 × 10−3 | 17.30 × 10−3 |
βa (V/dec) | 26.90 × 10−3 | 24.80 × 10−3 | 16.50 × 10−3 |
Rp ± SD (Ohm) | (1.06 ± 0.07) × 106 | (1.14 ± 0.10) × 104 | (2.00 ± 0.05) × 104 |
Correlation | 0.9989 | 0.9998 | 0.9959 |
CR ± SD (mm·year−1) | (9.00 ± 0.60) × 10−5 | (8.66 ± 0.40) × 10−3 | (3.23 ± 0.08) × 10−3 |
Potential (V) | Conditions | Y2 (S·secn/cm2) | n2 | R2 (Ω·cm2) | Y3 (S·secn/cm2) | n3 | R3 (Ω·cm2) | χ2 |
---|---|---|---|---|---|---|---|---|
−1.2 | Room Temp. | 3.93 × 10−5 | 0.81 | 6.92 × 102 | 1.08 × 10−4 | 0.57 | 1.49 × 104 | 7.57 × 10−4 |
−1.0 | 1.62 × 10−5 | 0.84 | 4.99 × 102 | 5.94 × 10−5 | 0.49 | 5.63 × 104 | 7.39 × 10−4 | |
−0.8 | 1.42 × 10−5 | 0.86 | 3.28 × 102 | 5.17 × 10−5 | 0.47 | 1.19 × 105 | 7.34 × 10−4 | |
−0.6 | 1.48 × 10−5 | 0.85 | 5.22 × 102 | 5.32 × 10−5 | 0.48 | 9.96 × 104 | 7.17 × 10−4 | |
−0.4 | 1.21 × 10−5 | 0.85 | 6.13 × 102 | 4.76 × 10−5 | 0.48 | 1.14 × 105 | 7.74 × 10−4 | |
−0.2 | 1.31 × 10−5 | 0.84 | 1.09 × 103 | 3.83 × 10−5 | 0.53 | 1.06 × 105 | 7.87 × 10−4 | |
0.0 | 9.95 × 10−6 | 0.86 | 1.05 × 103 | 2.68 × 10−5 | 0.57 | 2.52 × 105 | 7.88 × 10−4 | |
0.2 | 7.75 × 10−6 | 0.89 | 7.34 × 102 | 9.78 × 10−6 | 0.64 | 1.39 × 105 | 8.40 × 10−4 | |
0.4 | 7.18 × 10−5 | 0.90 | 8.28 × 102 | 8.86 × 10−6 | 0.65 | 1.28 × 105 | 8.38 × 10−4 | |
0.6 | 6.76 × 10−6 | 0.90 | 8.66 × 102 | 8.19 × 10−6 | 0.65 | 1.28 × 105 | 9.05 × 10−4 | |
0.8 | 5.84 × 10−6 | 0.88 | 1.55 × 103 | 1.50 × 10−5 | 0.63 | 1.49 × 104 | 7.84 × 10−4 | |
1.0 | 5.50 × 10−6 | 0.89 | 1.75 × 103 | 1.27 × 10−5 | 0.65 | 1.26 × 105 | 8.06 × 10−4 | |
1.2 | 5.30 × 10−6 | 0.89 | 2.01 × 103 | 1.03 × 10−5 | 0.68 | 4.70 × 104 | 8.50 × 10−4 | |
−1.2 | pH = 1.2 | 3.96 × 10−5 | 0.53 | 57.50 | 2.55 × 10−4 | 0.81 | 1.19 × 102 | 3.89 × 10−3 |
−1.0 | 3.48 × 10−5 | 0.54 | 55.90 | 2.61 × 10−4 | 0.88 | 1.03 × 102 | 3.35 × 10−3 | |
−0.8 | 2.50 × 10−5 | 0.57 | 56.10 | 2.90 × 10−4 | 0.91 | 1.63 × 102 | 3.39 × 10−3 | |
−0.6 | 5.07 × 10−6 | 0.71 | 2.93 × 103 | 3.50 × 10−5 | 0.62 | 1.17 × 104 | 5.83 × 10−4 | |
−0.4 | 5.71 × 10−6 | 0.70 | 3.40 × 103 | 2.52 × 10−5 | 0.71 | 1.03 × 104 | 6.89 × 10−3 | |
−0.2 | 6.24 × 10−6 | 0.70 | 3.30 × 103 | 2.09 × 10−5 | 0.72 | 1.19 × 104 | 5.01 × 10−3 | |
0.0 | 7.13 × 10−6 | 0.69 | 3.23 × 103 | 1.81 × 10−5 | 0.77 | 1.15 × 104 | 4.67 × 10−3 | |
0.2 | 8.01 × 10−6 | 0.69 | 3.05 × 103 | 1.57 × 10−5 | 0.80 | 1.12 × 104 | 4.74 × 10−3 | |
0.4 | 8.92 × 10−6 | 0.68 | 2.96 × 103 | 1.30 × 10−5 | 0.83 | 1.09 × 104 | 4.52 × 10−3 | |
0.6 | 9.61 × 10−6 | 0.68 | 2.90 × 103 | 1.06 × 10−5 | 0.86 | 1.06 × 104 | 4.42 × 10−3 | |
0.8 | 1.01 × 10−5 | 0.67 | 2.78 × 103 | 9.47 × 10−6 | 0.88 | 1.05 × 104 | 4.28 × 10−3 | |
1.0 | 1.03 × 10−5 | 0.67 | 2.70 × 103 | 8.24 × 10−6 | 0.89 | 1.03 × 104 | 4.30 × 10−3 | |
1.2 | 1.06 × 10−6 | 0.67 | 2.66 × 103 | 7.34 × 10−6 | 0.89 | 1.02 × 104 | 4.41 × 10−3 |
Potential (V) | C1 (F/cm2) | R1 (Ω·cm2) | Y2 (S·secn/cm2) | n2 | R2 (Ω·cm2) | χ2 |
---|---|---|---|---|---|---|
−1.2 | 2.99 × 10−8 | 10.80 | 3.66 × 10−4 | 0.66 | 2.23 × 103 | 9.48 × 10−3 |
−1.0 | 2.88 × 10−8 | 10.23 | 1.58 × 10−4 | 0.70 | 3.67 × 103 | 9.70 × 10−3 |
−0.8 | 2.83 × 10−8 | 10.30 | 8.45 × 10−5 | 0.74 | 4.32 × 103 | 7.17 × 10−3 |
−0.6 | 2.88 × 10−8 | 10.50 | 6.72 × 10−5 | 0.77 | 5.88 × 103 | 6.80 × 10−3 |
−0.4 | 2.93 × 10−8 | 10.70 | 6.07 × 10−5 | 0.79 | 6.77 × 103 | 7.38 × 10−3 |
−0.2 | 2.93 × 10−8 | 10.71 | 5.35 × 10−5 | 0.80 | 6.79 × 103 | 7.05 × 10−3 |
0.0 | 2.89 × 10−8 | 10.65 | 4.44 × 10−5 | 0.81 | 6.66 × 103 | 6.09 × 10−3 |
0.2 | 2.88 × 10−8 | 10.42 | 3.76 × 10−5 | 0.81 | 6.88 × 103 | 5.34 × 10−3 |
0.4 | 2.84 × 10−8 | 10.30 | 3.35 × 10−5 | 0.81 | 7.03 × 103 | 4.86 × 10−3 |
0.6 | 2.81 × 10−8 | 10.26 | 3.00 × 10−5 | 0.81 | 6.95 × 103 | 4.96 × 10−3 |
0.8 | 2.77 × 10−8 | 10.14 | 2.69 × 10−5 | 0.81 | 6.91 × 103 | 5.03 × 10−3 |
1.0 | 2.74 × 10−8 | 9.97 | 2.38 × 10−5 | 0.82 | 6.80 × 103 | 5.29 × 10−3 |
1.2 | 2.73 × 10−8 | 9.93 | 2.13 × 10−5 | 0.82 | 6.48 × 103 | 5.53 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soare, C.M.; Jimenez-Marcos, C.; Brito-Garcia, S.; Mirza-Rosca, J.C.; Voiculescu, I. Corrosion Behavior of Biocompatible Ti3Mn Alloy in Different Physiological Conditions for Biomedical Applications. Materials 2025, 18, 4346. https://doi.org/10.3390/ma18184346
Soare CM, Jimenez-Marcos C, Brito-Garcia S, Mirza-Rosca JC, Voiculescu I. Corrosion Behavior of Biocompatible Ti3Mn Alloy in Different Physiological Conditions for Biomedical Applications. Materials. 2025; 18(18):4346. https://doi.org/10.3390/ma18184346
Chicago/Turabian StyleSoare, Clara Mihaela, Cristina Jimenez-Marcos, Santiago Brito-Garcia, Julia Claudia Mirza-Rosca, and Ionelia Voiculescu. 2025. "Corrosion Behavior of Biocompatible Ti3Mn Alloy in Different Physiological Conditions for Biomedical Applications" Materials 18, no. 18: 4346. https://doi.org/10.3390/ma18184346
APA StyleSoare, C. M., Jimenez-Marcos, C., Brito-Garcia, S., Mirza-Rosca, J. C., & Voiculescu, I. (2025). Corrosion Behavior of Biocompatible Ti3Mn Alloy in Different Physiological Conditions for Biomedical Applications. Materials, 18(18), 4346. https://doi.org/10.3390/ma18184346