Emerging Electrolyte-Gated Transistors: Materials, Configuration and External Field Regulation
Abstract
1. Introduction
2. Materials of Electrolytes for EGTs
2.1. Liquid Electrolytes
2.2. Polymer Based Electrolytes
2.3. Inorganic Solid-State Electrolytes
3. Configuration of EGTs
3.1. Electrostatic Modulation
3.2. Electrochemical Modulation
4. External Field Regulation
4.1. Electric Field Regulation
4.2. Optical Field Regulation
4.3. Strain Field Regulation
5. Summary and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mariantoni, M.; Wang, H.; Yamamoto, T.; Neeley, M.; Bialczak, R.C.; Chen, Y.; Lenander, M.; Lucero, E.; O’Connell, A.D.; Sank, D. Implementing the quantum von Neumann architecture with superconducting circuits. Science 2011, 334, 61–65. [Google Scholar] [CrossRef]
- Kimovski, D.; Saurabh, N.; Jansen, M.; Aral, A.; Al-Dulaimy, A.; Bondi, A.B.; Galletta, A.; Papadopoulos, A.V.; Iosup, A.; Prodan, R. Beyond von neumann in the computing continuum: Architectures, applications, and future directions. IEEE Internet Comput. 2023, 28, 6–16. [Google Scholar] [CrossRef]
- Wong, H.-S.P.; Salahuddin, S. Memory leads the way to better computing. Nat. Nanotechnol. 2015, 10, 191–194. [Google Scholar] [CrossRef] [PubMed]
- Sebastian, A.; Le Gallo, M.; Khaddam-Aljameh, R.; Eleftheriou, E. Memory devices and applications for in-memory computing. Nat. Nanotechnol. 2020, 15, 529–544. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Chen, J.; Yan, X. The future of memristors: Materials engineering and neural networks. Adv. Funct. Mater. 2021, 31, 2006773. [Google Scholar] [CrossRef]
- Schranghamer, T.F.; Oberoi, A.; Das, S. Graphene memristive synapses for high precision neuromorphic computing. Nat. Commun. 2020, 11, 5474. [Google Scholar] [CrossRef]
- Reiss, G.; Hütten, A. Applications beyond data storage. Nat. Mater. 2005, 4, 725–726. [Google Scholar] [CrossRef]
- Jeong, D.S.; Kim, K.M.; Kim, S.; Choi, B.J.; Hwang, C.S. Memristors for energy-efficient new computing paradigms. Adv. Electron. Mater. 2016, 2, 1600090. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, T.; Yang, Y.; Huang, R. A comprehensive review on emerging artificial neuromorphic devices. Appl. Phys. Rev. 2020, 7, 011312. [Google Scholar] [CrossRef]
- Tang, J.; Yuan, F.; Shen, X.; Wang, Z.; Rao, M.; He, Y.; Sun, Y.; Li, X.; Zhang, W.; Li, Y. Bridging biological and artificial neural networks with emerging neuromorphic devices: Fundamentals, progress, and challenges. Adv. Mater. 2019, 31, 1902761. [Google Scholar] [CrossRef]
- Sangwan, V.K.; Hersam, M.C. Neuromorphic nanoelectronic materials. Nat. Nanotechnol. 2020, 15, 517–528. [Google Scholar] [CrossRef]
- van De Burgt, Y.; Melianas, A.; Keene, S.T.; Malliaras, G.; Salleo, A. Organic electronics for neuromorphic computing. Nat. Electron. 2018, 1, 386–397. [Google Scholar] [CrossRef]
- Ielmini, D.; Ambrogio, S. Emerging neuromorphic devices. Nanotechnology 2019, 31, 092001. [Google Scholar] [CrossRef] [PubMed]
- Bu, X.; Xu, H.; Shang, D.; Li, Y.; Lv, H.; Liu, Q. Ion-gated transistor: An enabler for sensing and computing integration. Adv. Intell. Syst. 2020, 2, 2000156. [Google Scholar] [CrossRef]
- He, Y.; Zhu, L.; Zhu, Y.; Chen, C.; Jiang, S.; Liu, R.; Shi, Y.; Wan, Q. Recent progress on emerging transistor-based neuromorphic devices. Adv. Intell. Syst. 2021, 3, 2000210. [Google Scholar] [CrossRef]
- Dai, S.; Zhao, Y.; Wang, Y.; Zhang, J.; Fang, L.; Jin, S.; Shao, Y.; Huang, J. Recent advances in transistor-based artificial synapses. Adv. Funct. Mater. 2019, 29, 1903700. [Google Scholar] [CrossRef]
- Ling, H.; Koutsouras, D.A.; Kazemzadeh, S.; Van De Burgt, Y.; Yan, F.; Gkoupidenis, P. Electrolyte-gated transistors for synaptic electronics, neuromorphic computing, and adaptable biointerfacing. Appl. Phys. Rev. 2020, 7, 011307. [Google Scholar] [CrossRef]
- Du, H.; Lin, X.; Xu, Z.; Chu, D. Electric double-layer transistors: A review of recent progress. J. Mater. Sci. 2015, 50, 5641–5673. [Google Scholar] [CrossRef]
- Fujimoto, T.; Awaga, K. Electric-double-layer field-effect transistors with ionic liquids. Phys. Chem. Chem. Phys. 2013, 15, 8983–9006. [Google Scholar] [CrossRef]
- Shi, W.; Ye, J.; Checkelsky, J.G.; Terakura, C.; Iwasa, Y. Transport properties of polymer semiconductor controlled by ionic liquid as a gate dielectric and a pressure medium. Adv. Funct. Mater. 2014, 24, 2005–2012. [Google Scholar] [CrossRef]
- Kim, S.H.; Hong, K.; Xie, W.; Lee, K.H.; Zhang, S.; Lodge, T.P.; Frisbie, C.D. Electrolyte-gated transistors for organic and printed electronics. Adv. Mater. 2013, 25, 1822–1846. [Google Scholar] [CrossRef]
- Yang, J.T.; Ge, C.; Du, J.Y.; Huang, H.Y.; He, M.; Wang, C.; Lu, H.B.; Yang, G.Z.; Jin, K.J. Artificial synapses emulated by an electrolyte-gated tungsten-oxide transistor. Adv. Mater. 2018, 30, 1801548. [Google Scholar] [CrossRef]
- Yu, F.; Zhu, L.Q.; Gao, W.T.; Fu, Y.M.; Xiao, H.; Tao, J.; Zhou, J.M. Chitosan-based polysaccharide-gated flexible indium tin oxide synaptic transistor with learning abilities. ACS Appl. Mater. Interfaces 2018, 10, 16881–16886. [Google Scholar] [CrossRef] [PubMed]
- Bian, H.; Goh, Y.Y.; Liu, Y.; Ling, H.; Xie, L.; Liu, X. Stimuli-responsive memristive materials for artificial synapses and neuromorphic computing. Adv. Mater. 2021, 33, 2006469. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.S.; Shang, D.S.; Liu, N.; Fuller, E.J.; Agrawal, S.; Talin, A.A.; Li, Y.Q.; Shen, B.G.; Sun, Y. All-solid-state synaptic transistor with ultralow conductance for neuromorphic computing. Adv. Funct. Mater. 2018, 28, 1804170. [Google Scholar] [CrossRef]
- Torricelli, F.; Adrahtas, D.Z.; Bao, Z.; Berggren, M.; Biscarini, F.; Bonfiglio, A.; Bortolotti, C.A.; Frisbie, C.D.; Macchia, E.; Malliaras, G.G. Electrolyte-gated transistors for enhanced performance bioelectronics. Nat. Rev. Methods Primers 2021, 1, 66. [Google Scholar] [CrossRef]
- Yao, B.W.; Li, J.; Chen, X.D.; Yu, M.X.; Zhang, Z.C.; Li, Y.; Lu, T.B.; Zhang, J. Non-volatile electrolyte-gated transistors based on graphdiyne/MoS2 with robust stability for low-power neuromorphic computing and logic-in-memory. Adv. Funct. Mater. 2021, 31, 2100069. [Google Scholar] [CrossRef]
- Guo, L.; Wan, Q.; Wan, C.; Zhu, L.; Shi, Y. Short-term memory to long-term memory transition mimicked in IZO homojunction synaptic transistors. IEEE Electron Device Lett. 2013, 34, 1581–1583. [Google Scholar] [CrossRef]
- Huang, Y.J.; Di, J.K.; Li, Y.; Huang, X.; Wang, W.S.; Chen, X.L.; Xiao, H.; Zhu, L.Q. Polyvinyl alcohol electrolyte-gated oxide transistors with tetanization activities for neuromorphic computing. J. Mater. Chem. C 2024, 12, 5166–5174. [Google Scholar] [CrossRef]
- Ren, Z.Y.; Zhu, L.Q.; Guo, Y.B.; Long, T.Y.; Yu, F.; Xiao, H.; Lu, H.L. Threshold-tunable, spike-rate-dependent plasticity originating from interfacial proton gating for pattern learning and memory. ACS Appl. Mater. Interfaces 2020, 12, 7833–7839. [Google Scholar] [CrossRef]
- Li, N.; He, C.; Wang, Q.; Tang, J.; Zhang, Q.; Shen, C.; Tang, J.; Huang, H.; Wang, S.; Li, J. Gate-tunable large-scale flexible monolayer MoS2 devices for photodetectors and optoelectronic synapses. Nano Res. 2022, 15, 5418–5424. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, D.; Zhang, Y.; Fan, L.; Ren, Q.; Ma, S.; Zhang, M. Stretchable temperature-responsive multimodal neuromorphic electronic skin with spontaneous synaptic plasticity recovery. ACS Nano 2022, 16, 8283–8293. [Google Scholar] [CrossRef]
- Liu, X.; Dai, S.; Zhao, W.; Zhang, J.; Guo, Z.; Wu, Y.; Xu, Y.; Sun, T.; Li, L.; Guo, P. All-Photolithography Fabrication of Ion-Gated Flexible Organic Transistor Array for Multimode Neuromorphic Computing. Adv. Mater. 2024, 36, 2312473. [Google Scholar] [CrossRef] [PubMed]
- Vashishtha, P.; Kofler, C.; Verma, A.K.; Giridhar, S.P.; Tollerud, J.O.; Dissanayake, N.S.; Gupta, T.; Sehrawat, M.; Aggarwal, V.; Mayes, E.L. Epitaxial Interface-Driven Photoresponse Enhancement in Monolayer WS2–MoS2 Lateral Heterostructures. Adv. Funct. Mater. 2025, e12962. [Google Scholar] [CrossRef]
- Li, P.; Zhang, M.; Zhou, Q.; Zhang, Q.; Xie, D.; Li, G.; Liu, Z.; Wang, Z.; Guo, E.; He, M. Reconfigurable optoelectronic transistors for multimodal recognition. Nat. Commun. 2024, 15, 3257. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Ge, C.; Liu, Z.; Zhong, H.; Guo, E.; He, M.; Wang, C.; Yang, G.; Jin, K. Electrolyte-gated transistors for neuromorphic applications. J. Semicond. 2021, 42, 013103. [Google Scholar] [CrossRef]
- He, Y.; Nie, S.; Liu, R.; Jiang, S.; Shi, Y.; Wan, Q. Spatiotemporal information processing emulated by multiterminal neuro-transistor networks. Adv. Mater. 2019, 31, 1900903. [Google Scholar] [CrossRef]
- Kim, H.; Bose, R.; Shen, T.C.; Solomon, G.S.; Waks, E. A quantum logic gate between a solid-state quantum bit and a photon. Nat. Photonics 2013, 7, 373–377. [Google Scholar] [CrossRef]
- Mas-Torrent, M.; Rovira, C. Role of molecular order and solid-state structure in organic field-effect transistors. Chem. Rev. 2011, 111, 4833–4856. [Google Scholar] [CrossRef]
- Kergoat, L.; Herlogsson, L.; Braga, D.; Piro, B.; Pham, M.C.; Crispin, X.; Berggren, M.; Horowitz, G. A water-gate organic field-effect transistor. Adv. Mater. 2010, 22, 2565–2569. [Google Scholar] [CrossRef]
- Rivnay, J.; Inal, S.; Salleo, A.; Owens, R.M.; Berggren, M.; Malliaras, G.G. Organic electrochemical transistors. Nat. Rev. Mater. 2018, 3, 17086. [Google Scholar] [CrossRef]
- Neuper, F.; Marques, G.C.; Singaraju, S.A.; Kruk, R.; Aghassi-Hagmann, J.; Hahn, H.; Breitung, B. ALD-derived, low-density alumina as solid electrolyte in printed low-voltage FETs. IEEE Trans. Electron Devices 2020, 67, 3828–3833. [Google Scholar] [CrossRef]
- Sundaram, M.M.; Appadoo, D. Traditional salt-in-water electrolyte vs. water-in-salt electrolyte with binary metal oxide for symmetric supercapacitors: Capacitive vs. faradaic. Dalton Trans. 2020, 49, 11743–11755. [Google Scholar] [CrossRef]
- Brattain, W.; Garrett, C. Experiments on the interface between germanium and an electrolyte. Bell Syst. Tech. J. 1955, 34, 129–176. [Google Scholar] [CrossRef]
- Bergveld, P. Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans. Biomed. Eng. 1970, BME-17, 70–71. [Google Scholar] [CrossRef] [PubMed]
- Bergveld, P.; De Rooij, N. The history of chemically sensitive semiconductor devices. Sens. Actuators 1981, 1, 5–15. [Google Scholar] [CrossRef][Green Version]
- Krüger, M.; Buitelaar, M.; Nussbaumer, T.; Schönenberger, C.; Forro, L. Electrochemical carbon nanotube field-effect transistor. Appl. Phys. Lett. 2001, 78, 1291–1293. [Google Scholar] [CrossRef]
- Rosenblatt, S.; Yaish, Y.; Park, J.; Gore, J.; Sazonova, V.; McEuen, P.L. High performance electrolyte gated carbon nanotube transistors. Nano Lett. 2002, 2, 869–872. [Google Scholar] [CrossRef]
- Giovannitti, A.; Rashid, R.B.; Thiburce, Q.; Paulsen, B.D.; Cendra, C.; Thorley, K.; Moia, D.; Mefford, J.T.; Hanifi, D.; Weiyuan, D. Energetic control of redox-active polymers toward safe organic bioelectronic materials. Adv. Mater. 2020, 32, 1908047. [Google Scholar] [CrossRef]
- Koutsouras, D.A.; Malliaras, G.G.; Gkoupidenis, P. Emulating homeoplasticity phenomena with organic electrochemical devices. MRS Commun. 2018, 8, 493–497. [Google Scholar] [CrossRef]
- Zeglio, E.; Inganäs, O. Active materials for organic electrochemical transistors. Adv. Mater. 2018, 30, 1800941. [Google Scholar] [CrossRef] [PubMed]
- Strakosas, X.; Bongo, M.; Owens, R.M. The organic electrochemical transistor for biological applications. J. Appl. Polym. Sci. 2015, 132, 41735. [Google Scholar] [CrossRef]
- Khodagholy, D.; Rivnay, J.; Sessolo, M.; Gurfinkel, M.; Leleux, P.; Jimison, L.H.; Stavrinidou, E.; Herve, T.; Sanaur, S.; Owens, R.M. High transconductance organic electrochemical transistors. Nat. Commun. 2013, 4, 2133. [Google Scholar] [CrossRef] [PubMed]
- Giovannitti, A.; Sbircea, D.-T.; Inal, S.; Nielsen, C.B.; Bandiello, E.; Hanifi, D.A.; Sessolo, M.; Malliaras, G.G.; McCulloch, I.; Rivnay, J. Controlling the mode of operation of organic transistors through side-chain engineering. Proc. Natl. Acad. Sci. USA 2016, 113, 12017–12022. [Google Scholar] [CrossRef]
- Moser, M.; Hidalgo, T.C.; Surgailis, J.; Gladisch, J.; Ghosh, S.; Sheelamanthula, R.; Thiburce, Q.; Giovannitti, A.; Salleo, A.; Gasparini, N. Side chain redistribution as a strategy to boost organic electrochemical transistor performance and stability. Adv. Mater. 2020, 32, 2002748. [Google Scholar] [CrossRef]
- Savva, A.; Hallani, R.; Cendra, C.; Surgailis, J.; Hidalgo, T.C.; Wustoni, S.; Sheelamanthula, R.; Chen, X.; Kirkus, M.; Giovannitti, A. Balancing ionic and electronic conduction for high-performance organic electrochemical transistors. Adv. Funct. Mater. 2020, 30, 1907657. [Google Scholar]
- Huang, W.; Chen, J.; Wang, G.; Yao, Y.; Zhuang, X.; Pankow, R.M.; Cheng, Y.; Marks, T.J.; Facchetti, A. Dielectric materials for electrolyte gated transistor applications. J. Mater. Chem. C 2021, 9, 9348–9376. [Google Scholar] [CrossRef]
- Flagg, L.Q.; Giridharagopal, R.; Guo, J.; Ginger, D.S. Anion-dependent doping and charge transport in organic electrochemical transistors. Chem. Mater. 2018, 30, 5380–5389. [Google Scholar] [CrossRef]
- Flagg, L.Q.; Bischak, C.G.; Onorato, J.W.; Rashid, R.B.; Luscombe, C.K.; Ginger, D.S. Polymer crystallinity controls water uptake in glycol side-chain polymer organic electrochemical transistors. J. Am. Chem. Soc. 2019, 141, 4345–4354. [Google Scholar] [CrossRef]
- Ono, S.; Miwa, K.; Seki, S.; Takeya, J. A comparative study of organic single-crystal transistors gated with various ionic-liquid electrolytes. Appl. Phys. Lett. 2009, 94, 063301. [Google Scholar]
- Okaue, D.; Tanabe, I.; Ono, S.; Sakamoto, K.; Sato, T.; Imanishi, A.; Morikawa, Y.; Takeya, J.; Fukui, K.-i. Ionic-liquid-originated carrier trapping dynamics at the interface in electric double-layer organic FET revealed by operando interfacial analyses. J. Phys. Chem. C 2020, 124, 2543–2552. [Google Scholar]
- Yuan, H.; Shimotani, H.; Tsukazaki, A.; Ohtomo, A.; Kawasaki, M.; Iwasa, Y. High-density carrier accumulation in ZnO field-effect transistors gated by electric double layers of ionic liquids. Adv. Funct. Mater. 2009, 19, 1046–1053. [Google Scholar] [CrossRef]
- Galiński, M.; Lewandowski, A.; Stępniak, I. Ionic liquids as electrolytes. Electrochim. Acta 2006, 51, 5567–5580. [Google Scholar] [CrossRef]
- Lewandowski, A.; Świderska-Mocek, A. Ionic liquids as electrolytes for Li-ion batteries—An overview of electrochemical studies. J. Power Sources 2009, 194, 601–609. [Google Scholar] [CrossRef]
- Kim, D.; Liu, X.; Yu, B.; Mateti, S.; O’Dell, L.A.; Rong, Q.; Chen, Y. Amine-functionalized boron nitride nanosheets: A new functional additive for robust, flexible ion gel electrolyte with high lithium-ion transference number. Adv. Funct. Mater. 2020, 30, 1910813. [Google Scholar] [CrossRef]
- Lu, W.; Fadeev, A.G.; Qi, B.; Smela, E.; Mattes, B.R.; Ding, J.; Spinks, G.M.; Mazurkiewicz, J.; Zhou, D.; Wallace, G.G. Use of ionic liquids for π-conjugated polymer electrochemical devices. Science 2002, 297, 983–987. [Google Scholar] [CrossRef] [PubMed]
- Misra, R.; McCarthy, M.; Hebard, A.F. Electric field gating with ionic liquids. Appl. Phys. Lett. 2007, 90, 052905. [Google Scholar] [CrossRef]
- Ono, S.; Seki, S.; Hirahara, R.; Tominari, Y.; Takeya, J. High-mobility, low-power, and fast-switching organic field-effect transistors with ionic liquids. Appl. Phys. Lett. 2008, 92, 103313. [Google Scholar] [CrossRef]
- Yoon, M.-H.; Kim, C.; Facchetti, A.; Marks, T.J. Gate dielectric chemical structure−organic field-effect transistor performance correlations for electron, hole, and ambipolar organic semiconductors. J. Am. Chem. Soc. 2006, 128, 12851–12869. [Google Scholar] [CrossRef]
- Ortiz, R.P.; Facchetti, A.; Marks, T.J. High-k organic, inorganic, and hybrid dielectrics for low-voltage organic field-effect transistors. Chem. Rev. 2010, 110, 205–239. [Google Scholar] [CrossRef]
- Kim, J.; Jang, J.; Kim, K.; Kim, H.; Kim, S.H.; Park, C.E. The origin of excellent gate-bias stress stability in organic field-effect transistors employing fluorinated-polymer gate dielectrics. Adv. Mater. (Deerfield Beach Fla.) 2014, 26, 7241–7246. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Kale, T.S.; Plunkett, E.; Shi, W.; Kirby, B.; Reich, D.H.; Katz, H.E. Highly contrasting static charging and Bias stress effects in Pentacene transistors with polystyrene Heterostructures incorporating Oxidizable N, N′-Bis (4-methoxyphenyl) aniline side chains as gate dielectrics. Macromolecules 2018, 51, 6011–6020. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Kim, S.H.; Choi, H.H.; Kang, B.; Cho, K. Recent advances in the bias stress stability of organic transistors. Adv. Funct. Mater. 2020, 30, 1904590. [Google Scholar] [CrossRef]
- Cao, Z.; Liu, H.; Jiang, L. Transparent, mechanically robust, and ultrastable ionogels enabled by hydrogen bonding between elastomers and ionic liquids. Mater. Horiz. 2020, 7, 912–918. [Google Scholar] [CrossRef]
- Lu, C.; Lee, W.-Y.; Shih, C.-C.; Wen, M.-Y.; Chen, W.-C. Stretchable polymer dielectrics for low-voltage-driven field-effect transistors. ACS Appl. Mater. Interfaces 2017, 9, 25522–25532. [Google Scholar] [CrossRef]
- Choi, J.; Kang, J.; Lee, C.; Jeong, K.; Im, S.G. Heavily crosslinked, high-k ultrathin polymer dielectrics for flexible, low-power organic thin-film transistors (OTFTs). Adv. Electron. Mater. 2020, 6, 2000314. [Google Scholar] [CrossRef]
- Stucchi, E.; Dell’Erba, G.; Colpani, P.; Kim, Y.H.; Caironi, M. Low-voltage, printed, all-polymer integrated circuits employing a low-leakage and high-yield polymer dielectric. Adv. Electron. Mater. 2018, 4, 1800340. [Google Scholar] [CrossRef]
- Panzer, M.J.; Frisbie, C.D. Polymer electrolyte gate dielectric reveals finite windows of high conductivity in organic thin film transistors at high charge carrier densities. J. Am. Chem. Soc. 2005, 127, 6960–6961. [Google Scholar] [CrossRef]
- Zou, C.; Sun, J.; Gou, G.; Kong, L.-A.; Qian, C.; Dai, G.; Yang, J.; Guo, G.-h. Polymer–electrolyte-gated nanowire synaptic transistors for neuromorphic applications. Appl. Phys. A 2017, 123, 597. [Google Scholar] [CrossRef]
- Lee, H.; Cho, J.; Jin, M.; Lee, J.H.; Lee, C.; Kim, J.; Lee, J.; Shin, J.C.; Yoo, J.; Lee, E. Electrochemical analysis of ion effects on electrolyte-gated synaptic transistor characteristics. ACS Nano 2024, 18, 5383–5395. [Google Scholar] [CrossRef]
- Garlapati, S.K.; Mishra, N.; Dehm, S.; Hahn, R.; Kruk, R.; Hahn, H.; Dasgupta, S. Electrolyte-gated, high mobility inorganic oxide transistors from printed metal halides. ACS Appl. Mater. Interfaces 2013, 5, 11498–11502. [Google Scholar] [CrossRef]
- Singaraju, S.A.; Baby, T.T.; Neuper, F.; Kruk, R.; Hagmann, J.A.; Hahn, H.; Breitung, B. Development of fully printed electrolyte-gated oxide transistors using graphene passive structures. ACS Appl. Electron. Mater. 2019, 1, 1538–1544. [Google Scholar] [CrossRef]
- Baby, T.T.; Garlapati, S.K.; Dehm, S.; Haming, M.; Kruk, R.; Hahn, H.; Dasgupta, S. A general route toward complete room temperature processing of printed and high performance oxide electronics. ACS Nano 2015, 9, 3075–3083. [Google Scholar] [CrossRef] [PubMed]
- Grey, P.; Pereira, L.; Pereira, S.; Barquinha, P.; Cunha, I.; Martins, R.; Fortunato, E. Solid state electrochemical WO3 transistors with high current modulation. Adv. Electron. Mater. 2016, 2, 1500414. [Google Scholar] [PubMed]
- Zhu, Y.; Liu, G.; Xin, Z.; Fu, C.; Wan, Q.; Shan, F. Solution-processed, electrolyte-gated In2O3 flexible synaptic transistors for brain-inspired neuromorphic applications. ACS Appl. Mater. Interfaces 2019, 12, 1061–1068. [Google Scholar]
- Sharma, B.K.; Stoesser, A.; Mondal, S.K.; Garlapati, S.K.; Fawey, M.H.; Chakravadhanula, V.S.K.; Kruk, R.; Hahn, H.; Dasgupta, S. High-performance all-printed amorphous oxide FETS and logics with electronically compatible electrode/channel interface. ACS Appl. Mater. Interfaces 2018, 10, 22408–22418. [Google Scholar]
- Lu, C.; Fu, Q.; Huang, S.; Liu, J. Polymer electrolyte-gated carbon nanotube field-effect transistor. Nano Lett. 2004, 4, 623–627. [Google Scholar]
- Siddons, G.P.; Merchin, D.; Back, J.H.; Jeong, J.K.; Shim, M. Highly efficient gating and doping of carbon nanotubes with polymer electrolytes. Nano Lett. 2004, 4, 927–931. [Google Scholar] [CrossRef]
- Chao, S.; Wrighton, M.S. Solid-state microelectrochemistry: Electrical characteristics of a solid-state microelectrochemical transistor based on poly (3-methylthiophene). J. Am. Chem. Soc. 1987, 109, 2197–2199. [Google Scholar]
- Chao, S.; Wrighton, M.S. Characterization of a solid-state polyaniline-based transistor: Water vapor dependent characteristics of a device employing a poly (vinyl alcohol)/phosphoric acid solid-state electrolyte. J. Am. Chem. Soc. 1987, 109, 6627–6631. [Google Scholar]
- Stoesser, A.; Von Seggern, F.; Purohit, S.; Nasr, B.; Kruk, R.; Dehm, S.; Wang, D.; Hahn, H.; Dasgupta, S. Facile fabrication of electrolyte-gated single-crystalline cuprous oxide nanowire field-effect transistors. Nanotechnology 2016, 27, 415205. [Google Scholar] [PubMed]
- Dasgupta, S.; Stoesser, G.; Schweikert, N.; Hahn, R.; Dehm, S.; Kruk, R.; Hahn, H. Printed and Electrochemically Gated, High-Mobility, Inorganic Oxide Nanoparticle FETs and Their Suitability for High-Frequency Applications. Adv. Funct. Mater. 2012, 22, 4909–4919. [Google Scholar] [CrossRef]
- Tao, X.; Koncar, V.; Dufour, C. Geometry pattern for the wire organic electrochemical textile transistor. J. Electrochem. Soc. 2011, 158, H572. [Google Scholar] [CrossRef]
- Nasr, B.; Wang, D.; Kruk, R.; Rösner, H.; Hahn, H.; Dasgupta, S. High-speed, low-voltage, and environmentally stable operation of electrochemically gated zinc oxide nanowire field-effect transistors. Adv. Funct. Mater. 2013, 23, 1750–1758. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Y.; He, Z.; Zhu, H.; Chen, L.; Sun, Q.; Zhang, D.W. Laterally coupled 2D MoS2 synaptic transistor with ion gating. IEEE Electron Device Lett. 2020, 41, 1424–1427. [Google Scholar] [CrossRef]
- Herlogsson, L.; Crispin, X.; Tierney, S.; Berggren, M. Polyelectrolyte-gated organic complementary circuits operating at low power and voltage. Adv. Mater. 2011, 23, 4684–4689. [Google Scholar] [CrossRef]
- Wang, S.; Chen, X.; Zhao, C.; Kong, Y.; Lin, B.; Wu, Y.; Bi, Z.; Xuan, Z.; Li, T.; Li, Y. An organic electrochemical transistor for multi-modal sensing, memory and processing. Nat. Electron. 2023, 6, 281–291. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, Q.; Yuan, J. Porous polyelectrolytes: The interplay of charge and pores for new functionalities. Angew. Chem. Int. Ed. 2018, 57, 6754–6773. [Google Scholar] [CrossRef]
- Kim, H.J.; Chen, B.; Suo, Z.; Hayward, R.C. Ionoelastomer junctions between polymer networks of fixed anions and cations. Science 2020, 367, 773–776. [Google Scholar] [CrossRef]
- Laiho, A.; Herlogsson, L.; Forchheimer, R.; Crispin, X.; Berggren, M. Controlling the dimensionality of charge transport in organic thin-film transistors. Proc. Natl. Acad. Sci. USA 2011, 108, 15069–15073. [Google Scholar]
- Friedlein, J.T.; McLeod, R.R.; Rivnay, J. Device physics of organic electrochemical transistors. Org. Electron. 2018, 63, 398–414. [Google Scholar] [CrossRef]
- Wu, G.; Feng, P.; Wan, X.; Zhu, L.; Shi, Y.; Wan, Q. Artificial synaptic devices based on natural chicken albumen coupled electric-double-layer transistors. Sci. Rep. 2016, 6, 23578. [Google Scholar] [CrossRef]
- Liu, Y.; Wan, X.; Zhu, L.Q.; Shi, Y.; Wan, Q. Laterally coupled dual-gate oxide-based transistors on sodium alginate electrolytes. IEEE Electron Device Lett. 2014, 35, 1257–1259. [Google Scholar] [CrossRef]
- Galliani, M.; Diacci, C.; Berto, M.; Sensi, M.; Beni, V.; Berggren, M.; Borsari, M.; Simon, D.T.; Biscarini, F.; Bortolotti, C.A. Flexible printed organic electrochemical transistors for the detection of uric acid in artificial wound exudate. Adv. Mater. Interfaces 2020, 7, 2001218. [Google Scholar] [CrossRef]
- Zhu, L.Q.; Xiao, H.; Liu, Y.H.; Wan, C.J.; Shi, Y.; Wan, Q. Multi-gate synergic modulation in laterally coupled synaptic transistors. Appl. Phys. Lett. 2015, 107, 143502. [Google Scholar] [CrossRef]
- Yang, Y.; Cui, H.; Ke, S.; Pei, M.; Shi, K.; Wan, C.; Wan, Q. Reservoir computing based on electric-double-layer coupled InGaZnO artificial synapse. Appl. Phys. Lett. 2023, 122, 043508. [Google Scholar] [CrossRef]
- Huang, Y.; Qiu, W.; Liu, W.; Jin, C.; Sun, J.; Yang, J. Non-volatile In-Ga-Zn-O transistors for neuromorphic computing. Appl. Phys. A 2021, 127, 356. [Google Scholar] [CrossRef]
- Li, Y.; Song, H.; Jiang, J. Vertical Ion-Coupling Ga2O3 TFT with Spatiotemporal Logic Encryption. IEEE Trans. Electron Devices 2023, 70, 3122–3125. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, Y.; Agarwal, S.; Yeh, M.-L.; Katz, H.E. Structure, sodium ion role, and practical issues for β-alumina as a high-k solution-processed gate layer for transparent and low-voltage electronics. ACS Appl. Mater. Interfaces 2011, 3, 4254–4261. [Google Scholar] [CrossRef]
- Pal, B.N.; Dhar, B.M.; See, K.C.; Katz, H.E. Solution-deposited sodium beta-alumina gate dielectrics for low-voltage and transparent field-effect transistors. Nat. Mater. 2009, 8, 898–903. [Google Scholar] [CrossRef]
- Wan, C.J.; Zhu, L.Q.; Zhou, J.M.; Shi, Y.; Wan, Q. Inorganic proton conducting electrolyte coupled oxide-based dendritic transistors for synaptic electronics. Nanoscale 2014, 6, 4491–4497. [Google Scholar] [CrossRef]
- Zhu, L.Q.; Wan, C.J.; Guo, L.Q.; Shi, Y.; Wan, Q. Artificial synapse network on inorganic proton conductor for neuromorphic systems. Nat. Commun. 2014, 5, 3158. [Google Scholar] [CrossRef]
- Xu, H.; Shang, D.; Luo, Q.; An, J.; Li, Y.; Wu, S.; Yao, Z.; Zhang, W.; Xu, X.; Dou, C. A low-power vertical dual-gate neurotransistor with short-term memory for high energy-efficient neuromorphic computing. Nat. Commun. 2023, 14, 6385. [Google Scholar]
- Fuller, E.J.; Gabaly, F.E.; Léonard, F.; Agarwal, S.; Plimpton, S.J.; Jacobs-Gedrim, R.B.; James, C.D.; Marinella, M.J.; Talin, A.A. Li-ion synaptic transistor for low power analog computing. Adv. Mater. 2016, 29, 1604310. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Tang, Q.; Zhang, K.; Wen, Y.; Billings, A.; Huang, K. A focused review on structures and ionic conduction mechanisms in inorganic solid-state proton and hydride anion conductors. Mater. Adv. 2023, 4, 389–407. [Google Scholar] [CrossRef]
- Subashini, C.; Sivasubramanian, R.; Sundaram, M.M.; Priyadharsini, N. The evolution of allotropic forms of Na2CoP2O7 electrode and its role in future hybrid energy storage. J. Energy Storage 2025, 130, 117390. [Google Scholar] [CrossRef]
- Fuller, E.J.; Li, Y.; Bennet, C.; Keene, S.T.; Melianas, A.; Agarwal, S.; Marinella, M.J.; Salleo, A.; Talin, A.A. Redox transistors for neuromorphic computing. IBM J. Res. Dev. 2019, 63, 9:1–9:9. [Google Scholar] [CrossRef]
- Nikam, R.D.; Kwak, M.; Lee, J.; Rajput, K.G.; Banerjee, W.; Hwang, H. Near ideal synaptic functionalities in Li ion synaptic transistor using Li3POxSex electrolyte with high ionic conductivity. Sci. Rep. 2019, 9, 18883. [Google Scholar] [CrossRef]
- Kim, N.; Kang, H.; Kim, H.W.; Hong, E.; Woo, J. Understanding synaptic characteristics of nonvolatile analog redox transistor based on mobile ion-modulated-electrolyte thickness model for neuromorphic applications. Appl. Phys. Lett. 2022, 121, 072105. [Google Scholar]
- Kim, T.W.; Choi, H.; Oh, S.H.; Wang, G.; Kim, D.Y.; Hwang, H.; Lee, T. One Transistor–One Resistor Devices for Polymer Non-Volatile Memory Applications. Adv. Mater. 2009, 21, 2497–2500. [Google Scholar]
- Li, J.; Jiang, D.; Yang, Y.; Zhou, Y.; Chen, Q.; Zhang, J. Li-ion doping as a strategy to modulate the electrical-double-layer for improved memory and learning behavior of synapse transistor based on fully aqueous-solution-processed In2O3/AlLiO film. Adv. Electron. Mater. 2020, 6, 1901363. [Google Scholar] [CrossRef]
- Khan, A.I.; Keshavarzi, A.; Datta, S. The future of ferroelectric field-effect transistor technology. Nat. Electron. 2020, 3, 588–597. [Google Scholar] [CrossRef]
- Si, M.; Saha, A.K.; Gao, S.; Qiu, G.; Qin, J.; Duan, Y.; Jian, J.; Niu, C.; Wang, H.; Wu, W. A ferroelectric semiconductor field-effect transistor. Nat. Electron. 2019, 2, 580–586. [Google Scholar] [CrossRef]
- Adinolfi, V.; Sargent, E.H. Photovoltage field-effect transistors. Nature 2017, 542, 324–327. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, G. Organic field-effect transistors. Adv. Mater. 1998, 10, 365–377. [Google Scholar] [CrossRef]
- Panzer, M.J.; Frisbie, C.D. Exploiting ionic coupling in electronic devices: Electrolyte-gated organic field-effect transistors. Adv. Mater. 2008, 20, 3177–3180. [Google Scholar] [CrossRef]
- Wang, B.; Huang, W.; Chi, L.; Al-Hashimi, M.; Marks, T.J.; Facchetti, A. High-k gate dielectrics for emerging flexible and stretchable electronics. Chem. Rev. 2018, 118, 5690–5754. [Google Scholar] [CrossRef]
- Yu, Z.; Ong, Z.Y.; Li, S.; Xu, J.B.; Zhang, G.; Zhang, Y.W.; Shi, Y.; Wang, X. Analyzing the carrier mobility in transition-metal dichalcogenide MoS2 field-effect transistors. Adv. Funct. Mater. 2017, 27, 1604093. [Google Scholar] [CrossRef]
- Podzorov, V.; Gershenson, M.; Kloc, C.; Zeis, R.; Bucher, E. High-mobility field-effect transistors based on transition metal dichalcogenides. Appl. Phys. Lett. 2004, 84, 3301–3303. [Google Scholar] [CrossRef]
- Babel, A.; Jenekhe, S.A. High electron mobility in ladder polymer field-effect transistors. J. Am. Chem. Soc. 2003, 125, 13656–13657. [Google Scholar] [CrossRef]
- Wang, C.; Lee, W.-Y.; Kong, D.; Pfattner, R.; Schweicher, G.; Nakajima, R.; Lu, C.; Mei, J.; Lee, T.H.; Wu, H.-C. Significance of the double-layer capacitor effect in polar rubbery dielectrics and exceptionally stable low-voltage high transconductance organic transistors. Sci. Rep. 2015, 5, 17849. [Google Scholar] [CrossRef]
- Lenz, J.; Del Giudice, F.; Geisenhof, F.R.; Winterer, F.; Weitz, R.T. Vertical, electrolyte-gated organic transistors show continuous operation in the MA cm−2 regime and artificial synaptic behaviour. Nat. Nanotechnol. 2019, 14, 579–585. [Google Scholar] [CrossRef]
- Ohayon, D.; Druet, V.; Inal, S. A guide for the characterization of organic electrochemical transistors and channel materials. Chem. Soc. Rev. 2023, 52, 1001–1023. [Google Scholar] [CrossRef] [PubMed]
- Cadilha Marques, G.; Weller, D.; Erozan, A.T.; Feng, X.; Tahoori, M.; Aghassi-Hagmann, J. Progress report on “from printed electrolyte-gated metal-oxide devices to circuits”. Adv. Mater. 2019, 31, 1806483. [Google Scholar] [CrossRef] [PubMed]
- Giovannitti, A.; Thorley, K.J.; Nielsen, C.B.; Li, J.; Donahue, M.J.; Malliaras, G.G.; Rivnay, J.; McCulloch, I. Redox-Stability of Alkoxy-BDT Copolymers and their Use for Organic Bioelectronic Devices. Adv. Funct. Mater. 2018, 28, 1706325. [Google Scholar] [CrossRef]
- Donahue, M.J.; Williamson, A.; Strakosas, X.; Friedlein, J.T.; McLeod, R.R.; Gleskova, H.; Malliaras, G.G. High-performance vertical organic electrochemical transistors. Adv. Mater. 2018, 30, 1705031. [Google Scholar] [CrossRef]
- Inal, S.; Malliaras, G.G.; Rivnay, J. Benchmarking organic mixed conductors for transistors. Nat. Commun. 2017, 8, 1767. [Google Scholar] [CrossRef]
- Hamedi, M.; Herlogsson, L.; Crispin, X.; Marcilla, R.; Berggren, M.; Inganäs, O. Fiber-embedded electrolyte-gated field-effect transistors for e-textiles. Adv. Mater. 2009, 21, 573–577. [Google Scholar] [CrossRef]
- Lee, W.; Kim, D.; Matsuhisa, N.; Nagase, M.; Sekino, M.; Malliaras, G.G.; Yokota, T.; Someya, T. Transparent, conformable, active multielectrode array using organic electrochemical transistors. Proc. Natl. Acad. Sci. USA 2017, 114, 10554–10559. [Google Scholar] [CrossRef]
- McCarty, M.J. Determining the Optimum Operating Parameters of a Unipolar Pwm Inverter; California Polytechnic State University: San Luis Obispo, CA, USA, 2010. [Google Scholar]
- Xiao, H.F.; Lan, K.; Zhang, L. A quasi-unipolar SPWM full-bridge transformerless PV grid-connected inverter with constant common-mode voltage. IEEE Trans. Power Electron. 2014, 30, 3122–3132. [Google Scholar] [CrossRef]
- Meijer, E.; De Leeuw, D.; Setayesh, S.; Van Veenendaal, E.; Huisman, B.-H.; Blom, P.; Hummelen, J.; Scherf, U.; Klapwijk, T. Solution-processed ambipolar organic field-effect transistors and inverters. Nat. Mater. 2003, 2, 678–682. [Google Scholar] [CrossRef]
- Yao, Y.; Huang, W.; Chen, J.; Wang, G.; Chen, H.; Zhuang, X.; Ying, Y.; Ping, J.; Marks, T.J.; Facchetti, A. Flexible complementary circuits operating at sub-0.5 V via hybrid organic–inorganic electrolyte-gated transistors. Proc. Natl. Acad. Sci. USA 2021, 118, e2111790118. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Ai, Z.; Guo, Q.; Wang, X.; Dai, C.; Wang, H.; Sun, J.; Tang, Y.; Jiang, D.; Pei, X. Photo-enhanced chemo-transistor platform for ultrasensitive assay of small molecules. J. Am. Chem. Soc. 2023, 145, 10035–10044. [Google Scholar] [CrossRef] [PubMed]
- Qin, M.; Han, X.; Ding, D.; Niu, R.; Qu, Z.; Wang, Z.; Liao, Z.-M.; Gan, Z.; Huang, Y.; Han, C. Light controllable electronic phase transition in ionic liquid gated monolayer transition metal dichalcogenides. Nano Lett. 2021, 21, 6800–6806. [Google Scholar] [CrossRef]
- Sun, Q.; Seung, W.; Kim, B.J.; Seo, S.; Kim, S.-W.; Cho, J.H. Active matrix electronic skin strain sensor based on piezopotential-powered graphene transistors. Adv. Mater. 2015, 27, 3411–3417. [Google Scholar] [CrossRef]
- Chen, Y.; Gao, G.; Zhao, J.; Zhang, H.; Yu, J.; Yang, X.; Zhang, Q.; Zhang, W.; Xu, S.; Sun, J. Piezotronic graphene artificial sensory synapse. Adv. Funct. Mater. 2019, 29, 1900959. [Google Scholar] [CrossRef]
- Liu, Y.; Su, X.; Fan, P.; Liu, X.; Pan, Y.; Ping, J. Computationally-assisted wearable system for continuous cortisol monitoring. Sci. Bull. 2025, 70, 2004–2013. [Google Scholar] [CrossRef]
- Nagamine, K.; Tokito, S. Organic-transistor-based biosensors interfaced with human skin for non-invasive perspiration analysis. Sens. Actuators B Chem. 2021, 349, 130778. [Google Scholar] [CrossRef]
- Ye, X.; Chen, K.; Hu, C.; Zhu, X.; Li, R.-W. Nanoionics driven reconfigurable heterojunctions for advanced information devices. Appl. Phys. Lett. 2025, 126, 240501. [Google Scholar] [CrossRef]
- Lin, X.; Feng, Z.; Xiong, Y.; Sun, W.; Yao, W.; Wei, Y.; Wang, Z.L.; Sun, Q. Piezotronic neuromorphic devices: Principle, manufacture, and applications. Int. J. Extrem. Manuf. 2024, 6, 032011. [Google Scholar] [CrossRef]
- Sun, Q.; Ho, D.H.; Choi, Y.; Pan, C.; Kim, D.H.; Wang, Z.L.; Cho, J.H. Piezopotential-programmed multilevel nonvolatile memory as triggered by mechanical stimuli. ACS Nano 2016, 10, 11037–11043. [Google Scholar] [CrossRef]
- Kim, S.; Choi, Y.J.; Woo, H.J.; Sun, Q.; Lee, S.; Kang, M.S.; Song, Y.J.; Wang, Z.L.; Cho, J.H. Piezotronic graphene barristor: Efficient and interactive modulation of Schottky barrier. Nano Energy 2018, 50, 598–605. [Google Scholar] [CrossRef]
- Zhou, K.; Jia, Z.; Ma, X.-Q.; Niu, W.; Zhou, Y.; Huang, N.; Ding, G.; Yan, Y.; Han, S.-T.; Roy, V.A. Manufacturing of graphene based synaptic devices for optoelectronic applications. Int. J. Extrem. Manuf. 2023, 5, 042006. [Google Scholar] [CrossRef]
- Zhao, M.; Chen, Y.; Wang, K.; Zhang, Z.; Streit, J.K.; Fagan, J.A.; Tang, J.; Zheng, M.; Yang, C.; Zhu, Z. DNA-directed nanofabrication of high-performance carbon nanotube field-effect transistors. Science 2020, 368, 878–881. [Google Scholar] [CrossRef]
- Liu, W.; Mei, T.; Cao, Z.; Li, C.; Wu, Y.; Wang, L.; Xu, G.; Chen, Y.; Zhou, Y.; Wang, S. Bioinspired carbon nanotube–based nanofluidic ionic transistor with ultrahigh switching capabilities for logic circuits. Sci. Adv. 2024, 10, eadj7867. [Google Scholar] [CrossRef]
- Luan, X.; Liu, J.; Pei, Q.; Bazan, G.C.; Li, H. Electrolyte Gated Polymer Light-Emitting Transistor. Adv. Mater. Technol. 2016, 1, 1600103. [Google Scholar] [CrossRef]
- Yang, C.S.; Shang, D.S.; Liu, N.; Shi, G.; Shen, X.; Yu, R.C.; Li, Y.Q.; Sun, Y. A synaptic transistor based on quasi-2D molybdenum oxide. Adv. Mater. 2017, 29, 1700906. [Google Scholar] [CrossRef]
- Tibaldi, A.; Fillaud, L.; Anquetin, G.; Woytasik, M.; Zrig, S.; Piro, B.; Mattana, G.; Noël, V. Electrolyte-gated organic field-effect transistors (EGOFETs) as complementary tools to electrochemistry for the study of surface processes. Electrochem. Commun. 2019, 98, 43–46. [Google Scholar] [CrossRef]
- Oh, J.; Park, S.; Lee, S.H.; Kim, S.; Lee, H.; Lee, C.; Hong, W.; Cha, J.H.; Kang, M.; Jin, J.H. Ultrathin All-Solid-State MoS2-Based Electrolyte Gated Synaptic Transistor with Tunable Organic–Inorganic Hybrid Film. Adv. Sci. 2024, 11, 2308847. [Google Scholar] [CrossRef]
- Babic, J.; Ballesio, A.; Frascella, F.; Napione, L.; Pagani, M.; Parmeggiani, M.; Marasso, S.L. A contamination-free Electrolyte-Gated Organic Transistors platform for high-accuracy tumor biomarker detection. Sens. Actuators Rep. 2025, 9, 100341. [Google Scholar] [CrossRef]
- Bidinger, S.L.; Han, S.; Malliaras, G.G.; Hasan, T. Highly stable PEDOT: PSS electrochemical transistors. Appl. Phys. Lett. 2022, 120, 073302. [Google Scholar] [CrossRef]
- Liu, G.; Li, Q.; Shi, W.; Liu, Y.; Liu, K.; Yang, X.; Shao, M.; Guo, A.; Huang, X.; Zhang, F. Ultralow-power and multisensory artificial synapse based on electrolyte-gated vertical organic transistors. Adv. Funct. Mater. 2022, 32, 2200959. [Google Scholar] [CrossRef]
- Jin, M.; Lee, H.; Im, C.; Na, H.J.; Lee, J.H.; Lee, W.H.; Han, J.; Lee, E.; Park, J.; Kim, Y.S. Interfacial ion-trapping electrolyte-gated transistors for high-fidelity neuromorphic computing. Adv. Funct. Mater. 2022, 32, 2201048. [Google Scholar] [CrossRef]
- Li, Y.; Lu, J.; Shang, D.; Liu, Q.; Wu, S.; Wu, Z.; Zhang, X.; Yang, J.; Wang, Z.; Lv, H. Oxide-based electrolyte-gated transistors for spatiotemporal information processing. Adv. Mater. 2020, 32, 2003018. [Google Scholar] [CrossRef] [PubMed]
- Kazazis, D.; Santaclara, J.G.; van Schoot, J.; Mochi, I.; Ekinci, Y. Extreme ultraviolet lithography. Nat. Rev. Methods Primers 2024, 4, 84. [Google Scholar] [CrossRef]
- Li, X.; Chen, F.R.; Lu, Y. Ductile inorganic semiconductors for deformable electronics. Interdiscip. Mater. 2024, 3, 835–846. [Google Scholar] [CrossRef]
Electrolyte Dielectric | Thickness (μm) | C (μF cm−2) | Cut-off Frequency (Hz) | Operating Voltage (V) | Working Temperature (°C) |
---|---|---|---|---|---|
Aqueous Salt Electrolytes | – | 2–2000 | <104 | ~3 | ~100 |
Ionic liquids | – | 1–10,000 | <103 | ~1 | ~400 |
Ion gels | 0.05–400 | 1–200 | <106 | ~3 | ~300 |
Polymer electrolytes | 0.1–500 | 1–100 | <103 | ~3 | ~300 |
Polyelectrolytes | 0.05–100 | 0.2–3000 | <104 | ~3 | ~300 |
Inorganic Solid-State Electrolytes | 0.02–1 | 0.5–1.6 | <104 | >5 | ~700 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, D.; Deng, W.; Yan, X.; Gaumet, J.-J.; Luo, W. Emerging Electrolyte-Gated Transistors: Materials, Configuration and External Field Regulation. Materials 2025, 18, 4320. https://doi.org/10.3390/ma18184320
Tang D, Deng W, Yan X, Gaumet J-J, Luo W. Emerging Electrolyte-Gated Transistors: Materials, Configuration and External Field Regulation. Materials. 2025; 18(18):4320. https://doi.org/10.3390/ma18184320
Chicago/Turabian StyleTang, Dihua, Wen Deng, Xin Yan, Jean-Jacques Gaumet, and Wen Luo. 2025. "Emerging Electrolyte-Gated Transistors: Materials, Configuration and External Field Regulation" Materials 18, no. 18: 4320. https://doi.org/10.3390/ma18184320
APA StyleTang, D., Deng, W., Yan, X., Gaumet, J.-J., & Luo, W. (2025). Emerging Electrolyte-Gated Transistors: Materials, Configuration and External Field Regulation. Materials, 18(18), 4320. https://doi.org/10.3390/ma18184320