Multi-Response Optimization of Drilling Parameters in Direct Hot-Pressed Al/B4C/SiC Hybrid Composites Using Taguchi-Based Entropy–CoCoSo Method
Abstract
1. Introduction
2. Materials and Methods
2.1. Manufacturing of AMHC
2.2. Microstructure and Mechanical Properties
2.3. Drilling Process
2.4. Measurement of Hole Quality Indicators
2.5. Taguchi Method
2.6. Entropy Method
2.7. Taguchi-Based Combined Compromise Solution (CoCoSo) Method
3. Results and Discussion
3.1. Properties of Powders
3.2. Density, Microstructure and Mechanical Properties
3.3. Drilling of AMHCs
3.3.1. S/N Analyses
3.3.2. Evaluation of Main Effect Graphs for Responses
3.3.3. ANOVA Results
3.3.4. Regression Analysis
3.3.5. Calculation of Criterion Weights Using the Entropy Method
3.3.6. Taguchi-Based Entropy–CoCoSo Method
3.3.7. Validation Experiments and Calculation of Confidence Intervals
Level | Vc (m/min) | f (mm/rev) | PA (°) | RR (%) |
---|---|---|---|---|
1 | 2.664 | 3.673 * | 2.379 | 2.209 |
2 | 2.715 * | 2.678 | 2.743 | 2.715 |
3 | 1.717 | 2.947 * | 3.145 * | |
Delta | 0.051 | 1.956 | 0.568 | 0.936 |
Total average value of the = 2.690 |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rao, J.K.; Madhusudhan, R.; Rao, T.B. Recent Progress in Stir Cast Aluminum Matrix Hybrid Composites: Overview on Processing, Mechanical and Tribological Characteristics, and Strengthening Mechanisms. J. Bio-Tribo-Corros. 2022, 8, 74. [Google Scholar] [CrossRef]
- Oyewo, A.T.; Oluwole, O.O.; Ajide, O.O.; Omoniyi, T.E.; Hussain, M. A Summary of Current Advancements in Hybrid Composites Based on Aluminium Matrix in Aerospace Applications. Hybrid Adv. 2024, 5, 100117. [Google Scholar]
- Chandel, R.; Sharma, N.; Bansal, S.A. A Review on Recent Developments of Aluminum-Based Hybrid Composites for Automotive Applications. Emergent Mater. 2021, 4, 1243–1257. [Google Scholar] [CrossRef]
- Fanani, E.W.A.; Surojo, E.; Prabowo, A.R.; Akbar, H.I. Recent Progress in Hybrid Aluminum Composite: Manufacturing and Application. Metals 2021, 11, 1919. [Google Scholar] [CrossRef]
- Vijayakumar, K.; Prabhu, L.; Subin, B.S.; Satheen, S.; Vaishnav, K. Development of Hybrid Aluminium Metal Matrix Composites for Marine Applications. IOP Conf. Ser. Mater. Sci. Eng. 2020, 993, 012016. [Google Scholar]
- Reddy, B.R.; Srinivas, C. Fabrication and Characterization of Silicon Carbide and Fly Ash Reinforced Aluminium Metal Matrix Hybrid Composites. Mater. Today Proc. 2018, 5, 8374–8381. [Google Scholar]
- Sharifi, E.M.; Karimzadeh, F. Wear Behavior of Aluminum Matrix Hybrid Nanocomposites Fabricated by Powder Metallurgy. Wear 2011, 271, 1072–1079. [Google Scholar] [CrossRef]
- Tunç, B.; Somunkiran, İ.; Balci, E. Characterization of Cr3C2/Ni Ceramic–Metal Composites Produced by Direct Resistance Rapid Hot Pressing Method. Eur. Phys. J. Plus 2025, 140, 569. [Google Scholar]
- Guo, Y.; Genelot, P.; Singh, A.P.; Bolzoni, L.; Qu, Y.; Kou, H.; Lin, J.; Yang, F. High-Strength Near-Beta Titanium Alloy Fabricated by Direct Hot Pressing of the Machining Swarf. J. Mater. Eng. Perform. 2022, 31, 8619–8629. [Google Scholar]
- Montealegre-Melendez, I.; Arévalo, C.; Ariza, E.; Pérez-Soriano, E.; Rubio-Escudero, C.; Kitzmantel, M.; Neubauer, E. Analysis of the Microstructure and Mechanical Properties of Titanium-Based Composites Reinforced by Secondary Phases and B4C Particles Produced via Direct Hot Pressing. Materials 2017, 10, 1240. [Google Scholar]
- Basavarajappa, S.; Chandramohan, G.; Davim, J.P.; Prabu, M.; Mukund, K.; Ashwin, M.; PrasannaKumar, M. Drilling of Hybrid Aluminium Matrix Composites. Int. J. Adv. Manuf. Technol. 2008, 35, 1244–1250. [Google Scholar] [CrossRef]
- Yalçın, B.; Bolat, Ç.; Ergene, B.; Karakılınç, U.; Yavaş, Ç.; Öz, Y.; Ercetin, A.; Maraş, S.; Der, O. Effect of Drilling Parameters and Tool Diameter on Delamination and Thrust Force in the Drilling of High-Performance Glass/Epoxy Composites for Aerospace Structures with a New Design Drill. Polymers 2024, 16, 3011. [Google Scholar]
- Yalçın, B.; Yüksel, A.; Aslantaş, K.; Der, O.; Ercetin, A. Optimization of Micro-Drilling of Laminated Aluminum Composite Panel (Al–PE) Using Taguchi Orthogonal Array Design. Materials 2023, 16, 4528. [Google Scholar]
- Okay, F.; Islak, S.; Turgut, Y. Investigation of Machinability Properties of Aluminium Matrix Hybrid Composites. J. Manuf. Process. 2021, 68, 85–94. [Google Scholar] [CrossRef]
- Jadhav, S.S.; Kakde, A.S.; Patil, N.G.; Sankpal, J.B. Effect of Cutting Parameters, Point Angle and Reinforcement Percentage on Surface Finish, in Drilling of AL6061/Al2O3p MMC. Procedia Manuf. 2018, 20, 2–11. [Google Scholar]
- Yavuz, M.; Gökçe, H.; Çiftçi, İ.; Gökçe, H.; Yavaş, Ç.; Şeker, U. Investigation of the Effects of Drill Geometry on Drilling Performance and Hole Quality. Int. J. Adv. Manuf. Technol. 2020, 106, 4623–4633. [Google Scholar] [CrossRef]
- Babu, S.S.; Dhanasekaran, C.; Anbuchezhiyan, G.; Palani, K. Parametric Analysis on Drilling of Aluminium Alloy Hybrid Composites Reinforced with SIC/WC. Eng. Res. Express 2022, 4, 025036. [Google Scholar] [CrossRef]
- Sapkota, G.; Ghadai, R.K.; Das, S.; Das, P.P.; Chakraborty, S. A Comparative Study on Multi-Objective Optimization of Drilling of Hybrid Aluminium Metal Matrix Composite. Int. J. Interact. Des. Manuf. 2023, 17, 3177–3187. [Google Scholar] [CrossRef]
- Kayaroganam, P.; Krishnan, V.; Natarajan, E.; Natarajan, S.; Muthusamy, K. Drilling Parameters Analysis on In-Situ Al/B4C/Mica Hybrid Composite and an Integrated Optimization Approach Using Fuzzy Model and Non-Dominated Sorting Genetic Algorithm. Metals 2021, 11, 2060. [Google Scholar]
- Franz, G.; Vantomme, P.; Hassan, M.H. A Review on Drilling of Multilayer Fiber-Reinforced Polymer Composites and Aluminum Stacks: Optimization of Strategies for Improving the Drilling Performance of Aerospace Assemblies. Fibers 2022, 10, 78. [Google Scholar] [CrossRef]
- Yıldız, T.; Sur, G. Investigation of Drilling Properties of AA7075/Al2O3 Functionally Graded Materials Using Gray Relational Analysis. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2021, 235, 1384–1398. [Google Scholar] [CrossRef]
- ASTM B962-17; Standard Test Methods for Density of Compacted or Sintered Powder Metallurgy Products Using Archimedes’ Principle. ASTM International: West Conshohocken, PA, USA, 2017.
- Diler, E.A.; Ghiami, A.; Ipek, R. Effect of High Ratio of Reinforcement Particle Size to Matrix Powder Size and Volume Fraction on Microstructure, Densification and Tribological Properties of SiCp Reinforced Metal Matrix Composites Manufactured via Hot Pressing Method. Int. J. Refract. Met. Hard Mater. 2015, 52, 183–194. [Google Scholar] [CrossRef]
- ASTM E10-17; Standard Test Method for Brinell Hardness of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2017.
- ASTM B528-83a; Standard Test Method for Transverse Rupture Strength of Sintered Metal Powder Specimens. ASTM International: West Conshohocken, PA, USA, 1983.
- Küçük, Ö.; Elfarah, T.; Islak, S.; Özorak, C. Optimization by Using Taguchi Method of the Production of Magnesium-Matrix Carbide Reinforced Composites by Powder Metallurgy Method. Metals 2017, 7, 352. [Google Scholar] [CrossRef]
- ISO 4288:1996; Geometrical Product Specifications (GPS)—Surface Texture: Profile Method—Rules and Procedures for the Assessment of Surface Texture. Edition DIN EN ISO 4288. European Committee for Standardization: Brussels, Belgium, 1998.
- Kıvak, T. Optimization of Surface Roughness and Flank Wear Using the Taguchi Method in Milling of Hadfield Steel with PVD and CVD Coated Inserts. Measurement 2014, 50, 19–28. [Google Scholar] [CrossRef]
- Tosun, G. Statistical Analysis of Process Parameters in Drilling of AL/SICP Metal Matrix Composite. Int. J. Adv. Manuf. Technol. 2011, 55, 477–485. [Google Scholar] [CrossRef]
- Kıvak, T.; Samtaş, G.; Çiçek, A. Taguchi Method Based Optimisation of Drilling Parameters in Drilling of AISI 316 Steel with PVD Monolayer and Multilayer Coated HSS Drills. Measurement 2012, 45, 1547–1557. [Google Scholar] [CrossRef]
- Fedai, Y. Exploring the Impact of the Turning of AISI 4340 Steel on Tool Wear, Surface Roughness, Sound Intensity, and Power Consumption under Dry, MQL, and Nano-MQL Conditions. Lubricants 2023, 11, 442. [Google Scholar] [CrossRef]
- Ordu, M.; Der, O. Polymeric Materials Selection for Flexible Pulsating Heat Pipe Manufacturing Using a Comparative Hybrid MCDM Approach. Polymers 2023, 15, 2933. [Google Scholar] [CrossRef]
- Chen, P. Effects of the Entropy Weight on TOPSIS. Expert Syst. Appl. 2021, 168, 114186. [Google Scholar] [CrossRef]
- Şahin, M. A Comprehensive Analysis of Weighting and Multicriteria Methods in the Context of Sustainable Energy. Int. J. Environ. Sci. Technol. 2021, 18, 1591–1616. [Google Scholar] [CrossRef]
- Gabriel Rasoanaivo, R.; Yazdani, M.; Zaraté, P.; Fateh, A. Combined Compromise for Ideal Solution (CoCoFISo): A Multi-Criteria Decision-Making Based on the CoCoSo Method Algorithm. Expert Syst. Appl. 2024, 251, 124079. [Google Scholar] [CrossRef]
- Ecer, F.; Pamucar, D. Sustainable Supplier Selection: A Novel Integrated Fuzzy Best Worst Method (F-BWM) and Fuzzy CoCoSo with Bonferroni (CoCoSo’B) Multi-Criteria Model. J. Clean. Prod. 2020, 266, 121981. [Google Scholar] [CrossRef]
- Gonfa, B.K.; Sinha, D.; Vates, U.K.; Badruddin, I.A.; Hussien, M.; Kamangar, S.; Singh, G.K.; Ahmed, G.M.S.; Kanu, N.J.; Hossain, N. Investigation of Mechanical and Tribological Behaviors of Aluminum Based Hybrid Metal Matrix Composite and Multi-Objective Optimization. Materials 2022, 15, 5607. [Google Scholar] [CrossRef] [PubMed]
- Amirthan, G.; Udaya kumar, A.; Balasubramanian, M. Thermal Conductivity Studies on Si/SiC Ceramic Composites. Ceram. Int. 2011, 37, 423–426. [Google Scholar] [CrossRef]
- Alem, S.A.A.; Sabzvand, M.H.; Govahi, P.; Poormehrabi, P.; Hasanzadeh Azar, M.; Salehi Siouki, S.; Rashidi, R.; Angizi, S.; Bagherifard, S. Advancing the next Generation of High-Performance Metal Matrix Composites through Metal Particle Reinforcement. Adv. Compos. Hybrid Mater. 2025, 8, 3. [Google Scholar] [CrossRef]
- He, P.; He, Y.; Liang, W.; Long, H.; Ran, L.; Yang, P.; Peng, F. Sintering Polycrystalline Silicon Carbide Composite Ceramics with Ultra-High Hardness under High Pressure. Int. J. Refract. Met. Hard Mater. 2024, 125, 106918. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, S.; Li, X. Inferring the Size Distribution of 3D Particle Clusters in Metal Matrix Nanocomposites. J. Manuf. Sci. Eng. 2013, 135, 011013. [Google Scholar] [CrossRef]
- Zhu, X.; Zhao, Y.G.; Wu, M.; Wang, H.Y.; Jiang, Q.C. Effect of Initial Aluminum Alloy Particle Size on the Damage of Carbon Nanotubes During Ball Milling. Materials 2016, 9, 173. [Google Scholar] [CrossRef]
- Nazik, C.; Tarakcioglu, N.; Ozkaya, S.; Erdemir, F.; Canakci, A. Determination of Effect of B4C Content on Density and Tensile Strength of AA7075/B4C Composite Produced via Powder Technology. Int. J. Mater. Mech. Manuf. 2016, 4, 251–261. [Google Scholar] [CrossRef]
- Suarsana, K.; Soenoko, R. Hardness, Density and Porosity of Al/(SiCw+ Al2O3p) Composite by Powder Metallurgy Process Without and With Sintering. Appl. Mech. Mater. 2015, 776, 246–252. [Google Scholar] [CrossRef]
- Eskandari, H.; Hokamoto, K.; Ghasemi, H.M.; Emamy, M.; Borji, S.; Lee, J.S. Comparative Study of Al/SiCp Composites Manufactured by Direct and Underwater Explosive Compaction. In Explosion, Shock Wave and Hypervelocity Phenomena in Materials; Trans Tech Publications Ltd.: Durnten-Zurich, Switzerland, 2004; Volume 465–466, pp. 433–438. [Google Scholar]
- Arif, S.; Alam, M.T.; Ansari, A.H.; Siddiqui, M.A.; Mohsin, M. Investigation of Mechanical and Morphology of Al-SiC Composites Processed by PM Route. IOP Conf. Ser. Mater. Sci. Eng. 2017, 225, 012277. [Google Scholar] [CrossRef]
- Çelik, Y.H.; Kilickap, E. Hardness and Wear Behaviours of Al Matrix Composites and Hybrid Composites Reinforced with B4C and SiC. Powder Metall. Met. Ceram. 2019, 57, 613–622. [Google Scholar] [CrossRef]
- Jafari, F.; Sharifi, H.; Saeri, M.R.; Tayebi, M. Effect of Reinforcement Volume Fraction on the Wear Behavior of Al-SiCp Composites Prepared by Spark Plasma Sintering. Silicon 2018, 10, 2473–2481. [Google Scholar] [CrossRef]
- Sharma, S.K.; Saxena, K.K.; Kumar, N. Correction to: Effect of SiC on Mechanical Properties of Al-Based Metal Matrix Composites Produced by Stir Casting. Met. Sci. Heat Treat. 2022, 64, 482. [Google Scholar] [CrossRef]
- Hareesha, G.; Chikkanna, N.; Doddamani, S.; Kallimani, A.S. Effect of Addition of SiC Particles on the Microstructure and Hardness of Al-SiC Composite. Met. Mater. Eng. 2021, 27, 49–56. [Google Scholar]
- Okay, F.; Islak, S. Microstructure and Mechanical Properties of Aluminium Matrix Boron Carbide and Carbon Nanofiber Reinforced Hybrid Composites. Sci. Sinter. 2022, 54, 125–138. [Google Scholar] [CrossRef]
- Islak, S. Mechanical and Corrosion Properties of AlCu Matrix Hybrid Composite Materials. Sci. Sinter. 2019, 51, 81–92. [Google Scholar] [CrossRef]
- Arık, H. Investigation of Wear Properties of Al-SiC Composite Materials Produced by Powder Metallurgy Method. GU J. Sci. Part C 2019, 7, 741–754. [Google Scholar] [CrossRef]
- Pul, M. The Effect on Mechanical Properties of Reinforcement Amount at B4C + TiB2 Reinforced Al 2024 Based Composites Produced by Powder Metallurgy. Int. J. Eng. Res. Dev. 2019, 11, 87–99. [Google Scholar]
- Zare, R.; Sharifi, H.; Saeri, M.R.; Tayebi, M. Investigating the Effect of SiC Particles on the Physical and Thermal Properties of Al6061/SiCp Composite. J. Alloys Compd. 2019, 801, 520–528. [Google Scholar] [CrossRef]
- Clauß, B.; Nestler, A.; Schubert, A.; Dietrich, D.; Lampke, T. Influencing the Properties of the Generated Surface by Adjusted Rake and Clearance Angles in Side Milling of Aluminum Matrix Composites with MCD-Tipped Tools. J. Manuf. Mater. Process. 2019, 3, 59. [Google Scholar] [CrossRef]
- Saini, P.; Singh, P.K. Investigation on Characterization and Machinability of Al-4032/SiC Metal Matrix Composite. Surf. Topogr. Metrol. Prop. 2022, 10, 025007. [Google Scholar] [CrossRef]
- Kenanoğlu, R.; Mert, İ.; Baydar, C.; Köse, Ö.; Yağlı, H. A Comparative Study on Ensemble Soft-Computing Methods for Geothermal Power Production Potential Forecasting. Energy 2024, 303, 131901. [Google Scholar] [CrossRef]
- Başar, G.; Mıstıkoğlu, S. Determination of the Optimum Welding Parameters for Ultimate Tensile Strength and Hardness in Friction Stir Welding of Cu/Al Plates Using Taguchi Method. J. Fac. Eng. Archit. Gazi Univ. 2019, 34, 1595–1608. [Google Scholar]
- Fedai, Y.; Basar, G.; Kirli Akin, H. Multi-Response Optimization in Drilling of MWCNTs Reinforced GFRP Using Grey Relational Analysis. Tech. Gaz. 2022, 29, 742–751. [Google Scholar]
Control Factors | Symbol | Levels | ||
---|---|---|---|---|
1 | 2 | 3 | ||
Cutting speed (m/min) | Vc | 25 | 50 | – |
Feed rate (mm/rev) | f | 0.08 | 0.16 | 0.24 |
Point angle (°) | PA | 100 | 118 | 136 |
SiC reinforcement ratio (%) | RR | 0 | 5 | 10 |
Composite Material | Theoretical Density (g/cm3) | Experimental Density (g/cm3) | Relative Density (%) |
---|---|---|---|
Al/5B4C | 2.691 | 2.638 | 98.02 |
Al/5B4C/5SiC | 2.717 | 2.633 | 96.92 |
Al/5B4C/10SiC | 2.742 | 2.580 | 94.10 |
Trial No | Vc (m/min) | f (mm/rev) | PA (°) | RR (%) | Fz (N) | Fz-S/N (dB) | Mz (Ncm) | Mz-S/N (dB) | Ra (µm) | Ra-S/N (dB) | Rz (µm) | Rz-S/N (dB) | DD (mm) | DD-S/N (dB) | CD (mm) | CD-S/N (dB) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 25 | 0.08 | 100 | 0 | 400 | −52.041 | 67 | −36.521 | 5.463 | −14.749 | 29.188 | −29.304 | 0.072 | 22.853 | 0.030 | 30.458 |
2 | 25 | 0.08 | 118 | 5 | 260 | −48.299 | 48 | −33.625 | 4.128 | −12.315 | 22.646 | −27.100 | 0.053 | 25.514 | 0.021 | 33.556 |
3 | 25 | 0.08 | 136 | 10 | 150 | −43.522 | 40 | −32.041 | 3.366 | −10.542 | 18.046 | −25.128 | 0.043 | 27.331 | 0.013 | 37.721 |
4 | 25 | 0.16 | 100 | 0 | 685 | −56.714 | 115 | −41.214 | 6.222 | −15.879 | 33.745 | −30.564 | 0.082 | 21.724 | 0.033 | 29.630 |
5 | 25 | 0.16 | 118 | 5 | 520 | −54.320 | 89 | −38.988 | 5.186 | −14.297 | 26.709 | −28.533 | 0.063 | 24.013 | 0.025 | 32.041 |
6 | 25 | 0.16 | 136 | 10 | 385 | −51.709 | 71 | −37.025 | 4.094 | −12.243 | 22.446 | −27.023 | 0.056 | 25.036 | 0.018 | 34.895 |
7 | 25 | 0.24 | 100 | 5 | 837 | −58.455 | 145 | −43.227 | 5.594 | −14.954 | 30.104 | −29.572 | 0.085 | 21.412 | 0.032 | 29.897 |
8 | 25 | 0.24 | 118 | 10 | 653 | −56.298 | 110 | −40.828 | 5.034 | −14.038 | 27.229 | −28.701 | 0.076 | 22.384 | 0.025 | 32.041 |
9 | 25 | 0.24 | 136 | 0 | 683 | −56.688 | 127 | −42.076 | 6.494 | −16.250 | 34.333 | −30.714 | 0.097 | 20.265 | 0.030 | 30.458 |
10 | 50 | 0.08 | 100 | 10 | 237 | −47.495 | 48 | −33.625 | 2.822 | −9.011 | 17.154 | −24.687 | 0.061 | 24.293 | 0.023 | 32.765 |
11 | 50 | 0.08 | 118 | 0 | 295 | −49.396 | 52 | −34.320 | 4.566 | −13.191 | 25.854 | −28.251 | 0.078 | 22.158 | 0.032 | 29.897 |
12 | 50 | 0.08 | 136 | 5 | 185 | −45.343 | 45 | −33.064 | 3.218 | −10.152 | 17.946 | −25.079 | 0.066 | 23.609 | 0.023 | 32.765 |
13 | 50 | 0.16 | 100 | 5 | 646 | −56.205 | 109 | −40.749 | 4.494 | −13.053 | 24.819 | −27.896 | 0.080 | 21.938 | 0.033 | 29.630 |
14 | 50 | 0.16 | 118 | 10 | 464 | −53.330 | 79 | −37.953 | 3.446 | −10.746 | 20.383 | −26.185 | 0.073 | 22.734 | 0.027 | 31.373 |
15 | 50 | 0.16 | 136 | 0 | 490 | −53.804 | 98 | −39.825 | 5.126 | −14.196 | 26.709 | −28.533 | 0.087 | 21.210 | 0.032 | 29.897 |
16 | 50 | 0.24 | 100 | 10 | 683 | −56.688 | 132 | −42.411 | 4.153 | −12.367 | 22.646 | −27.100 | 0.099 | 20.087 | 0.039 | 28.179 |
17 | 50 | 0.24 | 118 | 0 | 699 | −56.890 | 127 | −42.076 | 5.582 | −14.936 | 30.786 | −29.767 | 0.118 | 18.562 | 0.045 | 26.936 |
18 | 50 | 0.24 | 136 | 5 | 568 | −55.087 | 113 | −41.062 | 4.358 | −12.786 | 24.819 | −27.896 | 0.103 | 19.743 | 0.037 | 28.636 |
Average: | 491.111 | −52.905 | 89.722 | −38.368 | 4.630 | −13.095 | 25.309 | −27.891 | 0.0773 | 22.493 | 0.0288 | 31.154 | ||||
The greatest value: | 837 | −43.522 | 145 | −32.041 | 6.494 | −9.011 | 34.333 | −24.687 | 0.118 | 27.331 | 0.045 | 37.721 | ||||
The smallest value: | 150 | −58.455 | 40 | −43.227 | 2.822 | −16.25 | 17.154 | −30.714 | 0.043 | 18.562 | 0.013 | 26.936 |
Factors | DF | Seq SS | Adj MS | F-Value | p-Value | PCR % |
---|---|---|---|---|---|---|
Fz (N) | ||||||
Vc (m/min) | 1 | 5202 | 5202 | 6.64 | 0.028 | 0.72 |
f (mm/rev) | 2 | 576,404 | 288,202 | 368.08 | p < 0.001 | 80.30 |
PA (°) | 2 | 88,669 | 44,334 | 56.62 | p < 0.001 | 12.35 |
RR (%) | 2 | 39,735 | 19,868 | 25.37 | p < 0.001 | 5.54 |
Error | 10 | 7830 | 783 | 1.09 | ||
Total | 17 | 717,840 | 100 | |||
R2: 98.91%, R2 (adj): 98.15%, R2 (pred): 96.47% | ||||||
Mz (Ncm) | ||||||
Vc (m/min) | 1 | 4.5 | 4.50 | 0.20 | 0.662 | 0.02 |
f (mm/rev) | 2 | 17,304.8 | 8652.39 | 390.73 | p < 0.001 | 86.47 |
PA (°) | 2 | 1518.1 | 759.06 | 34.28 | p < 0.001 | 7.59 |
RR (%) | 2 | 964.8 | 482.39 | 21.78 | p < 0.001 | 4.82 |
Error | 10 | 221.4 | 22.14 | 1.11 | ||
Total | 17 | 20,013.6 | 100 | |||
R2: 98.89%, R2 (adj): 98.12%, R2 (pred): 96.42% | ||||||
Ra (µm) | ||||||
Vc (m/min) | 1 | 3.3939 | 3.39388 | 202.26 | p < 0.001 | 18.46 |
f (mm/rev) | 2 | 5.0339 | 2.51694 | 150.00 | p < 0.001 | 27.38 |
PA (°) | 2 | 0.3711 | 0.18555 | 11.06 | 0.003 | 2.02 |
RR (%) | 2 | 9.4157 | 4.70786 | 280.57 | p < 0.001 | 51.22 |
Error | 10 | 0.1678 | 0.01678 | 0.91 | ||
Total | 17 | 18.3824 | 100 | |||
R2: 99.09%, R2 (adj): 98.45%, R2 (pred): 97.04% | ||||||
Rz (µm) | ||||||
Vc (m/min) | 1 | 61.716 | 61.716 | 123.90 | p < 0.001 | 13.74 |
f (mm/rev) | 2 | 129.476 | 64.738 | 129.97 | p < 0.001 | 28.83 |
PA (°) | 2 | 15.636 | 7.818 | 15.69 | 0.001 | 3.48 |
RR (%) | 2 | 237.324 | 118.662 | 238.22 | p < 0.001 | 52.84 |
Error | 10 | 4.981 | 0.498 | 1.11 | ||
Total | 17 | 449.133 | 100 | |||
R2: 98.89%, R2 (adj): 98.11%, R2 (pred): 96.41% | ||||||
DD (mm) | ||||||
Vc (m/min) | 1 | 0.001058 | 0.001058 | 107.23 | p < 0.001 | 16.99 |
f (mm/rev) | 2 | 0.003634 | 0.001817 | 184.17 | p < 0.001 | 58.37 |
PA (°) | 2 | 0.000063 | 0.000032 | 3.19 | 0.085 | 1.01 |
RR (%) | 2 | 0.001372 | 0.000686 | 69.53 | p < 0.001 | 22.04 |
Error | 10 | 0.000099 | 0.000010 | 1.58 | ||
Total | 17 | 0.006226 | 100 | |||
R2: 98.42%, R2 (adj): 97.31%, R2 (pred): 94.87% | ||||||
CD (mm) | ||||||
Vc (m/min) | 1 | 0.000228 | 0.000228 | 49.23 | p < 0.001 | 22.11 |
f (mm/rev) | 2 | 0.000368 | 0.000184 | 39.86 | p < 0.001 | 35.80 |
PA (°) | 2 | 0.000115 | 0.000058 | 12.49 | 0.002 | 11.22 |
RR (%) | 2 | 0.000271 | 0.000136 | 29.36 | p < 0.001 | 26.38 |
Error | 10 | 0.000046 | 0.000005 | 4.49 | ||
Total | 17 | 0.001029 | 100 | |||
R2: 95.51%, R2 (adj): 92.36%, R2 (pred): 85.45% |
Trial No | Fz | Mz | Ra | Rz | DD | CD |
---|---|---|---|---|---|---|
1 | −0.1401 | −0.1320 | −0.1786 | −0.1761 | −0.1532 | −0.1650 |
2 | −0.1037 | −0.1045 | −0.1488 | −0.1492 | −0.1244 | −0.1300 |
3 | −0.0692 | −0.0916 | −0.1296 | −0.1279 | −0.1074 | −0.0925 |
4 | −0.1982 | −0.1881 | −0.1937 | −0.1928 | −0.1668 | −0.1754 |
5 | −0.1667 | −0.1597 | −0.1728 | −0.1663 | −0.1401 | −0.1463 |
6 | −0.1365 | −0.1374 | −0.1480 | −0.1483 | −0.1293 | −0.1167 |
7 | −0.2232 | −0.2164 | −0.1813 | −0.1795 | −0.1707 | −0.1720 |
8 | −0.1925 | −0.1830 | −0.1695 | −0.1684 | −0.1588 | −0.1463 |
9 | −0.1978 | −0.2000 | −0.1989 | −0.1948 | −0.1856 | −0.1650 |
10 | −0.0970 | −0.1045 | −0.1146 | −0.1235 | −0.1371 | −0.1383 |
11 | −0.1135 | −0.1106 | −0.1591 | −0.1628 | −0.1615 | −0.1720 |
12 | −0.0809 | −0.0998 | −0.1256 | −0.1274 | −0.1446 | −0.1383 |
13 | −0.1912 | −0.1819 | −0.1575 | −0.1585 | −0.1642 | −0.1754 |
14 | −0.1547 | −0.1476 | −0.1317 | −0.1390 | −0.1546 | −0.1540 |
15 | −0.1603 | −0.1700 | −0.1715 | −0.1663 | −0.1733 | −0.1720 |
16 | −0.1978 | −0.2047 | −0.1494 | −0.1492 | −0.1880 | −0.1947 |
17 | −0.2006 | −0.2000 | −0.1811 | −0.1821 | −0.2092 | −0.2123 |
18 | −0.1764 | −0.1861 | −0.1543 | −0.1585 | −0.1927 | −0.1885 |
0.9688 | 0.9749 | 0.9916 | 0.9932 | 0.9900 | 0.9876 | |
0.0312 | 0.0251 | 0.0084 | 0.0068 | 0.0100 | 0.0124 | |
0.3323 | 0.2670 | 0.0892 | 0.0725 | 0.1071 | 0.1319 | |
Weight values % | 33.23 | 26.70 | 8.92 | 7.25 | 10.71 | 13.19 |
Trial No | Ranking | -S/N | ||||
---|---|---|---|---|---|---|
1 | 0.0603 | 5.9837 | 0.8659 | 2.982 | 8 | 9.490 |
2 | 0.0662 | 7.8149 | 0.9517 | 3.734 | 4 | 11.443 |
3 | 0.0696 | 9.0049 | 1.0000 | 4.214 | 1 | 12.494 |
4 | 0.0496 | 3.4242 | 0.7121 | 1.890 | 15 | 5.529 |
5 | 0.0590 | 5.5103 | 0.8473 | 2.789 | 9 | 8.909 |
6 | 0.0639 | 6.9937 | 0.9175 | 3.401 | 5 | 10.632 |
7 | 0.0373 | 2.2020 | 0.5355 | 1.278 | 17 | 2.131 |
8 | 0.0551 | 4.4662 | 0.7919 | 2.351 | 11 | 7.425 |
9 | 0.0322 | 2.5186 | 0.4627 | 1.339 | 16 | 2.536 |
10 | 0.0672 | 8.1630 | 0.9661 | 3.875 | 3 | 11.765 |
11 | 0.0630 | 6.8073 | 0.9047 | 3.321 | 6 | 10.425 |
12 | 0.0675 | 8.2573 | 0.9696 | 3.913 | 2 | 11.850 |
13 | 0.0549 | 4.3950 | 0.7890 | 2.322 | 12 | 7.317 |
14 | 0.0616 | 6.2692 | 0.8847 | 3.104 | 7 | 9.838 |
15 | 0.0571 | 4.9710 | 0.8199 | 2.564 | 10 | 8.178 |
16 | 0.0504 | 3.4921 | 0.7243 | 1.926 | 14 | 5.693 |
17 | 0.0313 | 2.0659 | 0.4502 | 1.157 | 18 | 1.267 |
18 | 0.0540 | 4.2391 | 0.7759 | 2.252 | 13 | 7.051 |
Factors | DF | Seq SS | Adj MS | F-Value | p-Value | PCR % |
---|---|---|---|---|---|---|
Vc (m/min) | 1 | 0.0116 | 0.01155 | 0.54 | 0.478 | 0.08 |
f (mm/rev) | 2 | 11.4789 | 5.73947 | 269.87 | p < 0.001 | 74.85 |
PA (°) | 2 | 0.9944 | 0.49720 | 23.38 | p < 0.001 | 6.49 |
RR (%) | 2 | 2.6358 | 1.31792 | 61.97 | p < 0.001 | 17.19 |
Error | 10 | 0.2127 | 0.02127 | 1.39 | ||
Total | 17 | 15.3334 | 100 | |||
R2: 98.61%, R2 (adj): 97.64%, R2 (pred): 95.51% |
Taguchi-Based Entropy–CoCoSo Optimization | Initial Parameter | Optimal Control Factors and Levels | |
---|---|---|---|
Predicted | Experimental | ||
Experimental condition | |||
Fz (N) | 400 | 104 | |
Mz (Ncm) | 67 | 34 | |
Ra (µm) | 5.463 | 2.674 | |
Rz (µm) | 29.188 | 15.446 | |
DD (mm) | 0.072 | 0.054 | |
CD (mm) | 0.030 | 0.017 | |
2.982 | 4.41 | 4.206 | |
Improvement in = 1.224 | |||
Percentage improvement in = 41.05% |
Order | Symbol | Description | Values |
---|---|---|---|
1 | F ratio 95% (from F table) | 4.9646 | |
2 | Significant level | 0.05 | |
3 | Degrees of freedom of error | 10 | |
4 | Error variance | 0.02127 | |
5 | Number of replications for confirmation experiment | 3 | |
6 | Effective number of replications | 2.25 | |
7 | Total number of experiments | 18 | |
8 | Total main factor degrees of freedom | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basar, G.; Kahraman, F.; Der, O. Multi-Response Optimization of Drilling Parameters in Direct Hot-Pressed Al/B4C/SiC Hybrid Composites Using Taguchi-Based Entropy–CoCoSo Method. Materials 2025, 18, 4319. https://doi.org/10.3390/ma18184319
Basar G, Kahraman F, Der O. Multi-Response Optimization of Drilling Parameters in Direct Hot-Pressed Al/B4C/SiC Hybrid Composites Using Taguchi-Based Entropy–CoCoSo Method. Materials. 2025; 18(18):4319. https://doi.org/10.3390/ma18184319
Chicago/Turabian StyleBasar, Gokhan, Funda Kahraman, and Oguzhan Der. 2025. "Multi-Response Optimization of Drilling Parameters in Direct Hot-Pressed Al/B4C/SiC Hybrid Composites Using Taguchi-Based Entropy–CoCoSo Method" Materials 18, no. 18: 4319. https://doi.org/10.3390/ma18184319
APA StyleBasar, G., Kahraman, F., & Der, O. (2025). Multi-Response Optimization of Drilling Parameters in Direct Hot-Pressed Al/B4C/SiC Hybrid Composites Using Taguchi-Based Entropy–CoCoSo Method. Materials, 18(18), 4319. https://doi.org/10.3390/ma18184319