Materials, Processing, and Post-Treatment for Metal-Based Additive Manufacturing
Conflicts of Interest
References
- Gupta, A.; Sahu, S.; Ukey, P.; Kumar, A.; Gupta, V.K.; Sachdeva, A.; Kumar, N. Additive manufacturing for space applications: A review of processes, properties, and prospects. Acta Astronaut. 2025, 236, 1037–1062. [Google Scholar] [CrossRef]
- Archaryagie, K.C.S.; Tang, Y. Enhancing powder bed quality in laser powder bed fusion: A review of monitoring, data processing, and adaptive control strategies. J. Manuf. Process. 2025, 149, 276–304. [Google Scholar] [CrossRef]
- Li, Z.; Sui, S.; Ma, X.; Tan, H.; Zhong, C.; Bi, G.; Clare, A.T.; Gasser, A.; Chen, J. High deposition rate powder- and wire-based laser directed energy deposition of metallic materials: A review. Int. J. Mach. Tool Manu. 2022, 181, 103942. [Google Scholar] [CrossRef]
- Brenken, B.; Barocio, E.; Favaloro, A.; Kunc, V.; Pipes, R.B. Fused filament fabrication of fiber-reinforced polymers: A review. Addit. Manuf. 2018, 21, 1–16. [Google Scholar] [CrossRef]
- Romani, A.; Suriano, R.; Levi, M. Biomass waste materials through extrusion-based additive manufacturing: A systematic literature review. J. Clean. Prod. 2023, 386, 135779. [Google Scholar] [CrossRef]
- Zhu, B.; Li, R.; Yuan, T.; Li, W.; Cai, D.; Kang, N. Metal binder jetting additive manufacturing: An overview of the process, materials and reinforcement methods. J. Alloy Compd. 2025, 1037, 182196. [Google Scholar] [CrossRef]
- Afridi, A.; Rashid, A.A.; Koç, M. Recent advances in the development of stereolithography-based additive manufacturing processes: A review of applications and challenges. Bioprinting 2024, 43, e00360. [Google Scholar] [CrossRef]
- Garbatov, Y.; Marchese, S.S.; Epasto, G.; Crupi, V. Flexural response of additive-manufactured honeycomb sandwiches for marine structural applications. Ocean Eng. 2024, 302, 117732. [Google Scholar] [CrossRef]
- Cai, Y.; Chang, C.; Huang, J.; Sheng, L.; Cox, S.C.; Chen, H.; Chu, Q.; Lu, B.; Chen, Y.; Yin, S.; et al. SLM Ti12Mo6Zr2Fe-xCu implants: In-situ precipitating nanoscale Ti-Cu phase induced bio-functional properties. Virtual Phys. Prototy. 2025, 20, e2525989. [Google Scholar] [CrossRef]
- Liang, Z.; Wu, J.; Liu, C.; Cui, Y. Microcracking in additively manufactured tungsten: Experiment and a nano-micro-macro multiscale model. Int. J. Plast. 2025, 186, 104264. [Google Scholar] [CrossRef]
- Tardelli, J.D.C.; Firmino, A.C.D.; Ferreira, I.; Reis, A.C.D. Influence of the roughness of dental implants obtained by additive manufacturing on osteoblastic adhesion and proliferation: A systematic review. Heliyon 2022, 8, e12505. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Huang, W.; Wang, S.; Liu, Z.; Chen, X.; Su, S. Ductile fracture prediction of additively manufactured Ti-6Al-4V alloy based on void growth and coalescence of a unit-cell model. Theor. Appl. Fract. Mec. 2024, 131, 104365. [Google Scholar] [CrossRef]
- Zhang, Y.; Jia, Y.; Zhang, Y.; Li, X.; Zhang, K.; Tian, H.; Yang, J.; Zhang, C.; Xuan, F. Incorporating erosion and manufacturing defects in unified fatigue life models for additively manufactured TiB2/Al-Si composites. Int. J. Fatigue 2025, 198, 108999. [Google Scholar] [CrossRef]
- Chang, C.; Yao, G.; Cox, S.C.; Zhang, X.; Sheng, L.; Liu, M.; Cheng, W.; Lu, Y.; Yan, X. From macro-, through meso- to micro-scale: Densification behavior, deformation response and microstructural evolution of selective laser melted Mg-RE alloy. J. Magnes. Alloy 2025, in press. [Google Scholar] [CrossRef]
- Motallebi, R.; Savaedi, Z.; Mirzadeh, H. Post-processing heat treatment of lightweight magnesium alloys fabricated by additive manufacturing: A review. J. Mater. Res. Technol. 2022, 20, 1873–1892. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheng, L.; Jiao, J.; Zhao, H. Materials, Processing, and Post-Treatment for Metal-Based Additive Manufacturing. Materials 2025, 18, 4311. https://doi.org/10.3390/ma18184311
Sheng L, Jiao J, Zhao H. Materials, Processing, and Post-Treatment for Metal-Based Additive Manufacturing. Materials. 2025; 18(18):4311. https://doi.org/10.3390/ma18184311
Chicago/Turabian StyleSheng, Liyuan, Junke Jiao, and Hui Zhao. 2025. "Materials, Processing, and Post-Treatment for Metal-Based Additive Manufacturing" Materials 18, no. 18: 4311. https://doi.org/10.3390/ma18184311
APA StyleSheng, L., Jiao, J., & Zhao, H. (2025). Materials, Processing, and Post-Treatment for Metal-Based Additive Manufacturing. Materials, 18(18), 4311. https://doi.org/10.3390/ma18184311