Research on Energy Localization and Vibration Suppression of Axially Functionally Graded Porous Beams
Abstract
1. Introduction
2. Mathematical Model of AFGPB
2.1. Model Description
2.2. Derivation of Control Equations
2.3. AFGPB Semi-Analytical Model
3. Numerical Results
3.1. Model Validation
3.1.1. Free Vibration Mode Validation
3.1.2. Forced Response Validation
3.2. Parameter Analysis
3.2.1. Influence of Porosity Index N and Truncation Coefficient δ on Vibration Energy Localization
3.2.2. Analysis of Vibration Suppression Effect of Double-AFGPBs Under Different Porosity Indices N and Truncation Coefficients δ
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Banhart, J. Manufacture, characterisation and application of cellular metals and metal foams. Prog. Mater. Sci. 2001, 46, 559–632. [Google Scholar] [CrossRef]
- Lefebvre, L.P.; Banhart, J.; Dunand, D.C. Porous metals and metallic foams: Current status and recent developments. Adv. Eng. Mater. 2008, 10, 775–787. [Google Scholar] [CrossRef]
- Smith, B.H.; Szyniszewski, S.; Hajjar, J.F.; Schafer, B.W.; Arwade, S.R. Steel foam for structures: A review of applications, manufacturing and material properties. J. Constr. Steel Res. 2012, 71, 1–10. [Google Scholar] [CrossRef]
- Babaei, M.; Kiarasi, F.; Asemi, K.; Hosseini, M. Functionally graded saturated porous structures: A review. J. Comput. Appl. Mech. 2022, 53, 297–308. [Google Scholar]
- Xing, Y.; Zhong, Q.; Chen, H. Radiative energy transfer model for high-frequency vibration analysis of functionally graded saturated porous beams. Thin-Walled Struct. 2025, 213, 113227. [Google Scholar] [CrossRef]
- Zhao, X.; Zheng, S.; Li, Z. Effects of porosity and flexoelectricity on static bending and free vibration of AFG piezoelectric nanobeams. Thin-Walled Struct. 2020, 151, 106754. [Google Scholar] [CrossRef]
- Reddy, G.; Kumar, N.V. Free vibration analysis of 2d functionally graded porous beams using novel higher-order theory. Mech. Adv. Compos. Struct. 2023, 10, 69–84. [Google Scholar] [CrossRef]
- Yee, K.; Kankanamalage, U.M.; Ghayesh, M.H.; Jiao, Y.; Hussain, S.; Amabili, M. Coupled dynamics of axially functionally graded graphene nanoplatelets-reinforced viscoelastic shear deformable beams with material and geometric imperfections. Eng. Anal. Bound. Elem. 2022, 136, 4–36. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, Q.; Liu, H. Dynamic response of double-FG porous beam system subjected to moving load. Eng. Comput. 2022, 38 (Suppl. 3), 2309–2328. [Google Scholar] [CrossRef]
- Mutlak, D.A.; Muhsen, S.; Waleed, I.; Hadrawi, S.K.; Khaddour, M.H.; Ahmadi, S. Forced and free dynamic responses of functionally graded porous Rayleigh small-scale beams on Kerr foundation under moving force. Mater. Today Commun. 2022, 33, 104919. [Google Scholar] [CrossRef]
- Kiran, M.C.; Kattimani, S.C.; Vinyas, M. Porosity influence on structural behaviour of skew functionally graded magneto-electro-elastic plate. Compos. Struct. 2018, 191, 36–77. [Google Scholar] [CrossRef]
- Ghayesh, M.H. Dynamics of functionally graded viscoelastic microbeams. Int. J. Eng. Sci. 2018, 124, 115–131. [Google Scholar] [CrossRef]
- Hosseini, S.A.; Hamidi, B.A.; Behrouzinia, A. A new model for non-linear vibration of functionally graded porous nano-Beam based on non-local curvature and strain gradient tensors. J. Vib. Control. 2023, 29, 4290–4301. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Zia, M. Large amplitude nonlinear vibration analysis of functionally graded Timoshenko beams with porosities. Acta Astronaut. 2015, 116, 117–125. [Google Scholar] [CrossRef]
- Li, S.; Zheng, S.; Chen, D. Porosity-dependent isogeometric analysis of bi-directional functionally graded plates. Thin-Walled Struct. 2020, 156, 106999. [Google Scholar] [CrossRef]
- Lieu, Q.X.; Lee, S.; Kang, J.; Lee, J. Bending and free vibration analyses of in-plane bi-directional functionally graded plates with variable thickness using isogeometric analysis. Compos. Struct. 2018, 192, 434–451. [Google Scholar] [CrossRef]
- Lieu, Q.X.; Lee, D.; Kang, J.; Lee, J. NURBS-based modeling and analysis for free vibration and buckling problems of in-plane bi-directional functionally graded plates. Mech. Adv. Mater. Struct. 2019, 26, 1064–1080. [Google Scholar] [CrossRef]
- Chen, D.; Kitipornchai, S.; Yang, J. Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core. Thin-Walled Struct. 2016, 107, 39–48. [Google Scholar] [CrossRef]
- Qin, B.; Zhong, R.; Wang, Q.; Zhao, X. A Jacobi-Ritz approach for FGP beams with arbitrary boundary conditions based on a higher-order shear deformation theory. Compos. Struct. 2020, 247, 112435. [Google Scholar] [CrossRef]
- Lakhdar, Z.; Chorfi, S.M.; Belalia, S.A.; Khedher, K.M.; Alluqmani, A.E.; Tounsi, A.; Yaylacı, M. Free vibration and bending analysis of porous bi-directional FGM sandwich shell using a TSDT p-version finite element method. Acta Mech. 2024, 235, 3657–3686. [Google Scholar] [CrossRef]
- Denis, V.; Pelat, A.; Gautier, F. Scattering effects induced by imperfections on an acoustic black hole placed at a structural waveguide termination. J. Sound Vib. 2016, 362, 56–71. [Google Scholar] [CrossRef]
- Vemula, C.; Norris, A.N.; Cody, G.D. Attenuation of waves in plates and bars using a graded impedance interface at edges. J. Sound Vib. 1996, 196, 107–127. [Google Scholar] [CrossRef]
- Conlon, S.C.; Fahnline, J.B.; Semperlotti, F. Numerical analysis of the vibroacoustic properties of plates with embedded grids of acoustic black holes. J. Acoust. Soc. Am. 2015, 137, 447–457. [Google Scholar] [CrossRef] [PubMed]
- Feurtado, P.A.; Conlon, S.C. Transmission loss of plates with embedded acoustic black holes. J. Acoust. Soc. Am. 2017, 142, 1390–1398. [Google Scholar] [CrossRef]
- Feurtado, P.A.; Conlon, S.C.; Semperlotti, F. A normalized wave number variation parameter for acoustic black hole design. J. Acoust. Soc. Am. 2014, 136, EL148–EL152. [Google Scholar] [CrossRef] [PubMed]
- Mironov, M.A. Propagation of a flexural wave in a plate whose thickness decreases smoothly to zero in a finite interval. Sov. Phys. Acoust 1988, 34, 318–319. [Google Scholar]
- Krylov, V.V. Conditions for validity of the geometrical-acoustics approximation in application to waves in an acute-angle solid wedge. Sov. Phys. -Acoust. 1989, 35, 176–180. [Google Scholar]
- Krylov, V.V.; Shuvalov, A.L. Propagation of localised flexural vibrations along plate edges described by a power law. Proc. IOA 2000, 22, 263–270. [Google Scholar]
- Krylov, V.V.; Winward, R.E.T.B. Experimental investigation of the acoustic black hole effect for flexural waves in tapered plates. J. Sound Vib. 2007, 300, 43–49. [Google Scholar] [CrossRef]
- Lyu, X.; Ding, Q.; Yang, T. Merging phononic crystals and acoustic black holes. Appl. Math. Mech. 2020, 41, 279–288. [Google Scholar] [CrossRef]
- Krylov, V.V. New type of vibration dampers utilising the effect of acoustic ‘black holes’. Acta Acust. United Acust. 2004, 90, 830–837. [Google Scholar]
- Ji, H.; Luo, J.; Qiu, J.; Cheng, L. Investigations on flexural wave propagation and attenuation in a modified one-dimensional acoustic black hole using a laser excitation technique. Mech. Syst. Signal Process. 2018, 104, 19–35. [Google Scholar] [CrossRef]
- Tang, L.; Cheng, L.; Ji, H.; Qiu, J. Characterization of acoustic black hole effect using a one-dimensional fully-coupled and wavelet-decomposed semi-analytical model. J. Sound Vib. 2016, 374, 172–184. [Google Scholar] [CrossRef]
- Krylov, V.V.; Tilman, F.J.B.S. Acoustic ‘black holes’ for flexural waves as effective vibration dampers. J. Sound Vib. 2004, 274, 605–619. [Google Scholar] [CrossRef]
- Denis, V.; Pelat, A.; Gautier, F.; Elie, B. Modal overlap factor of a beam with an acoustic black hole termination. J. Sound Vib. 2014, 333, 2475–2488. [Google Scholar] [CrossRef]
- Deng, J.; Guasch, O.; Zheng, L. Ring-shaped acoustic black holes for broadband vibration isolation in plates. J. Sound Vib. 2019, 458, 109–122. [Google Scholar] [CrossRef]
- Lu, T.; Zheng, W.; Tang, R.; Li, L. Beam-type acoustic black holes incorporating the microstructure-dependent nonlocal effect. Thin-Walled Struct. 2024, 197, 111662. [Google Scholar] [CrossRef]
- Deng, J.; Zheng, L.; Zeng, P.; Zuo, Y.; Guasch, O. Passive constrained viscoelastic layers to improve the efficiency of truncated acoustic black holes in beams. Mech. Syst. Signal Process. 2019, 118, 461–476. [Google Scholar] [CrossRef]
- Zheng, W.; He, S.; Tang, R.; He, S. Damping enhancement using axially functionally graded porous structure based on acoustic black hole effect. Materials 2019, 12, 2480. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Jing, Y.; Zhao, J.; Deng, J.; Cao, X.; Pu, H.; Luo, J. Tunable shunting periodic acoustic black holes for low-frequency and broadband vibration suppression. J. Sound Vib. 2024, 580, 118384. [Google Scholar] [CrossRef]
- Deng, J.; Zheng, L.; Guasch, O.; Wu, H.; Zeng, P.; Zuo, Y. Gaussian expansion for the vibration analysis of plates with multiple acoustic black holes indentations. Mech. Syst. Signal Process. 2019, 131, 317–334. [Google Scholar] [CrossRef]
Mesh Element Count | 10th (Hz) | Relative Error ε (%) | 20th (Hz) | Relative Error ε (%) | 30th (Hz) | Relative Error ε (%) | 40th (Hz) | Relative Error ε (%) |
---|---|---|---|---|---|---|---|---|
240 | 9809.3 | 0 | 44,320 | 0.0045 | 104,390 | 0.077 | 199,940 | 7.11 |
480 | 9809.3 | 0 | 44,318 | 0 | 104,380 | 0.067 | 190,000 | 1.79 |
960 | 9809.3 | 0 | 44,318 | 0 | 104,380 | 0.067 | 188,040 | 0.74 |
1440 | 9809.3 | 0 | 44,318 | 0 | 104,380 | 0.067 | 187,020 | 0.19 |
1920 | 9809.3 | 0 | 44,318 | 0 | 104,310 | 0 | 186,660 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Tang, R.; Zhang, S.; Cai, K.; Wang, W.; Zhang, X. Research on Energy Localization and Vibration Suppression of Axially Functionally Graded Porous Beams. Materials 2025, 18, 4306. https://doi.org/10.3390/ma18184306
Wang Q, Tang R, Zhang S, Cai K, Wang W, Zhang X. Research on Energy Localization and Vibration Suppression of Axially Functionally Graded Porous Beams. Materials. 2025; 18(18):4306. https://doi.org/10.3390/ma18184306
Chicago/Turabian StyleWang, Qiuhua, Rongjiang Tang, Sai Zhang, Kefang Cai, Wenwen Wang, and Xuekang Zhang. 2025. "Research on Energy Localization and Vibration Suppression of Axially Functionally Graded Porous Beams" Materials 18, no. 18: 4306. https://doi.org/10.3390/ma18184306
APA StyleWang, Q., Tang, R., Zhang, S., Cai, K., Wang, W., & Zhang, X. (2025). Research on Energy Localization and Vibration Suppression of Axially Functionally Graded Porous Beams. Materials, 18(18), 4306. https://doi.org/10.3390/ma18184306