Experimental Investigation of Reaction-Induced Pressure Perturbations in PTFE/Al Composites During Shock Compression
Abstract
1. Introduction
2. Methods
2.1. Preparation of Specimen
2.2. Plane-Wave Explosive Experiments
3. Results and Analysis
3.1. Experimental Results and Comparison
3.2. Validation by Hugoniot Data
3.3. Effect of Particle Size and Pressure on Pressure Impulse
4. Discussion
5. Conclusions
- (1)
- Under high shock pressure, PTFE/LiF remains inert and exhibits similar compression characteristic to PTFE/Al. The reaction-induced pressure perturbations in reactive materials were identified by comparing pressure profiles with those of inert counterparts.
- (2)
- The pressure rebounded to a range of 10.2–16.9 GPa under an incident shock pressure range of 11.5–22.6 GPa. The pressure perturbation amplitude induced by reaction gradually attenuated with increasing propagation distance.
- (3)
- The delay time between the observed pressure perturbations and the incident shock front arrival ranged from 0.84 to 1.71 μs, and showed a decreasing trend with increasing incident shock pressure and decreasing aluminum particle size.
- (4)
- The reaction ignition and energy release of PTFE/Al materials change from closely following the shock front to being delayed by hundreds of microseconds behind the shock front when shock compression intensity decreases from GPa to MPa levels.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cai, J.; Walley, S.M.; Hunt, R.J.A.; Proud, W.G.; Nesterenko, V.F.; Meyers, M.A. High-strain, high-strain-rate flow and failure in PTFE/Al/W granular composites. Mater. Sci. Eng. A 2008, 472, 308–315. [Google Scholar] [CrossRef]
- Herbold, E.B.; Nesterenko, V.F.; Benson, D.J.; Cai, J.; Vecchio, K.S.; Jiang, F.; Addiss, J.W.; Walley, S.M.; Proud, W.G. Particle size effect on strength, failure, and shock behavior in polytetrafluoroethylene-Al-W granular composite materials. J. Appl. Phys. 2008, 104, 103903. [Google Scholar] [CrossRef]
- Wu, J.; Fang, X.; Gao, Z.; Wang, H.; Huang, J.; Wu, S.; Li, Y. Investigation on Mechanical Properties and Reaction Characteristics of Al-PTFE Composites with Different Al Particle Size. Adv. Mater. Sci. Eng. 2018, 2018, 2767563. [Google Scholar] [CrossRef]
- Zhou, J.; He, Y.; He, Y.; Wang, C.T. Investigation on Impact Initiation Characteristics of Fluoropolymer-matrix Reactive Materials. Propellants Explos. Pyrotech. 2017, 42, 603–615. [Google Scholar] [CrossRef]
- Zhang, X.F.; Shi, A.S.; Zhang, J.; Qiao, L.; He, Y.; Guan, Z.W. Thermochemical modeling of temperature controlled shock-induced chemical reactions in multifunctional energetic structural materials under shock compression. J. Appl. Phys. 2012, 111, 123501. [Google Scholar] [CrossRef]
- Jiang, C.; Hu, R.; Zhang, J.; Wang, Z.; Mao, L. Shock-induced chemical reaction characteristics of PTFE-Al-Bi2O3 reactive materials. Def. Technol. 2024, 36, 1–12. [Google Scholar] [CrossRef]
- Feng, B.; Li, Y.; Wu, S.; Wang, H.; Tao, Z.; Fang, X. A crack-induced initiation mechanism of Al-PTFE under quasi-static compression and the investigation of influencing factors. Mater. Des. 2016, 108, 411–417. [Google Scholar] [CrossRef]
- Feng, B.; Fang, X.; Li, Y.; Wu, S.; Mao, Y.; Wang, H. Reactions of Al-PTFE under Impact and Quasi-Static Compression. Adv. Mater. Sci. Eng. 2015, 2015, 582320. [Google Scholar] [CrossRef]
- Tang, L.; Ge, C.; Guo, H.; Yu, Q.; Wang, H. Force chains based mesoscale simulation on the dynamic response of Al-PTFE granular composites. Def. Technol. 2021, 17, 56–63. [Google Scholar] [CrossRef]
- Tang, L.; Wang, H.; Lu, G.; Zhang, H.; Ge, C. Mesoscale study on the shock response and initiation behavior of Al-PTFE granular composites. Mater. Des. 2021, 200, 109446. [Google Scholar] [CrossRef]
- Yang, X.; He, Y.; He, Y.; Wang, C.; Zhou, J. Investigation of the shock compression behaviors of Al/PTFE composites with experimental and a 3D mesoscale-model. Def. Technol. 2022, 18, 62–71. [Google Scholar] [CrossRef]
- Osborne, D.T.; Pantoya, M.L. Effect of Al Particle Size on the Thermal Degradation of Al/Teflon Mixtures. Combust. Sci. Technol. 2007, 179, 1467–1480. [Google Scholar] [CrossRef]
- Guo, M.; Li, X.; Chen, Y.; Wang, H. Microscopic Chemical Reaction Mechanism and Kinetic Model of Al/PTFE. Polymers 2024, 16, 1467. [Google Scholar] [CrossRef]
- Raftenberg, M.N.; Mock, W.; Kirby, G.C. Modeling the impact deformation of rods of a pressed PTFE/Al composite mixture. Int. J. Impact Eng. 2008, 35, 1735–1744. [Google Scholar] [CrossRef]
- Lee, R.J.; Mock, W.; Carney, J.R. Reactive Materials Studies. AIP Conf. Proc. 2006, 845, 169–174. [Google Scholar] [CrossRef]
- Mao, L.; Wei, C.; Hu, R.; Hu, W.; Luo, P.; Qi, Y.; Jiang, C. Effects of Al Particle Size on the Impact Energy Release of Al-Rich PTFE/Al Composites under Different Strain Rates. Materials 2021, 14, 1911. [Google Scholar] [CrossRef]
- Zhang, Z.; Tian, W.; Wang, T.; Liu, Z.; Yang, Y.; Ge, C.; Guo, L.; He, Y.; Wang, C.; He, Y. Impact-induced energy release of typical HCP metal/PTFE/W reactive materials: Experimental study and predictive modeling via machine learning. Def. Technol. 2025, 47, 124–138. [Google Scholar] [CrossRef]
- Xu, X.; Fang, H.; Zhang, Q.; Song, J.; Li, Z.; Bao, J.; Zeng, D.; Liu, G.; Wang, X.; Yu, K. Investigation on the microstructures, mechanical properties and impact initiation characteristics of Al/PTFE reactive materials reinforced by TiH2 particles. J. Mater. Res. Technol. 2023, 27, 3741–3750. [Google Scholar] [CrossRef]
- Jiang, C.; Hu, R.; Mao, L.; Wang, Z.; Xu, W.; Hu, W. Energy Release Characteristics and Reaction Mechanism of PTFE/Al/Bi2O3 Reactive Materials under Drop-Hammer Test. Polymers 2022, 14, 1415. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Zhang, Q.M.; Zhang, L.S.; Guo, X.G.; Long, R.R.; Xue, Y.J.; Wu, Q.; Ju, Y.Y.; Liang, H.Z.; Zheng, K.Q. Reaction Behavior of Polytetrafluoroethylene/Al Granular Composites Subjected to Planar Shock Wave. Propellants Explos. Pyrotech. 2017, 42, 300–307. [Google Scholar] [CrossRef]
- Ames, R. Energy Release Characteristics of Impact-Initiated Energetic Materials. MRS Proc. 2005, 896, 308. [Google Scholar] [CrossRef]
- Ge, C.; Yu, Q.; Zhang, H.; Qu, Z.; Wang, H.; Zheng, Y. On dynamic response and fracture-induced initiation characteristics of aluminum particle filled PTFE reactive material using hat-shaped specimens. Mater. Des. 2020, 188, 108472. [Google Scholar] [CrossRef]
- Duan, Z.; Liu, Y.; Pi, A.; Huang, F. Foil-like manganin gauges for dynamic high pressure measurements. Meas. Sci. Technol. 2011, 22, 075206. [Google Scholar] [CrossRef]
- Bai, Z.; Duan, Z.; Wen, L.; Zhang, Z.; Ou, Z.; Huang, F. Shock initiation of multi-component insensitive PBX explosives: Experiments and MC-DZK mesoscopic reaction rate model. J. Hazard. Mater. 2019, 369, 62–69. [Google Scholar] [CrossRef]
- Li, S.; Duan, Z.; Wen, L.; Bai, Z.; Ou, Z.; Huang, F. Mesoscopic effects on shock initiation of multi-component plastic bonded explosives. J. Appl. Phys. 2018, 124, 045903. [Google Scholar] [CrossRef]
- Liu, D.; Chen, L.; Wang, C.; Wu, J. Aluminum Acceleration and Reaction Characteristics for Aluminized CL-20-Based Mixed Explosives. Propellants Explos. Pyrotech. 2018, 43, 543–551. [Google Scholar] [CrossRef]
- Bai, F.; Liu, Y.; Yan, J.; Wang, H.; He, C.; Huang, F. Effects of aluminum particle size on metal acceleration for CL-20-based aluminized explosives. Mater. Des. 2024, 244, 113204. [Google Scholar] [CrossRef]
- Zhou, J.; Zhao, X.; Wang, S.; Yang, H.; Pi, A. An approach to distinguish chemical and kinetic energy of reactive materials: PTFE/LiF as an inert substitute to PTFE/Al. Propellants Explos. Pyrotech. 2024, 49, e202300307. [Google Scholar] [CrossRef]
- Ruoff, A.L. Linear Shock-Velocity-Particle-Velocity Relationship. J. Appl. Phys. 1967, 38, 4976–4980. [Google Scholar] [CrossRef]
- Artero-Guerrero, J.; Pernas-Sánchez, J.; Teixeira-Dias, F. Blast wave dynamics: The influence of the shape of the explosive. J. Hazard. Mater. 2017, 331, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Gelfand, B.; Silnikov, A.M. Blast Effects Caused by Explosions; European Research Office of the US Army: Washington, DC, USA, 2004. [Google Scholar]
- Dolgoborodov, A.Y.; Makhov, M.N.; Kolbanev, I.V.; Streletskii, A.N.; Fortov, V.E. Detonation in an aluminum-Teflon mixture. JETP Lett. 2005, 81, 311–314. [Google Scholar] [CrossRef]
- Thadhani, N.N. Shock-induced chemical reactions and synthesis of materials. Prog. Mater. Sci. 1993, 37, 117–226. [Google Scholar] [CrossRef]
- Sun, Y.; Sun, R.; Zhu, B.; Mao, K.; Wu, Y. Thermal reaction mechanisms of nano- and micro-scale aluminum powders in carbon dioxide at low heating rate. J. Therm. Anal. Calorim. 2016, 124, 1727–1734. [Google Scholar] [CrossRef]
- Trunov, M.A.; Schoenitz, M.; Dreizin, E.L. Ignition of Aluminum Powders Under Different Experimental Conditions. Propellants Explos. Pyrotech. 2005, 30, 36–43. [Google Scholar] [CrossRef]
- Qiao, L.; Zhang, X.F.; He, Y.; Shi, A.S.; Guan, Z.W. Mesoscale simulation on the shock compression behaviour of Al–W-Binder granular metal mixtures. Mater. Des. 2013, 47, 341–349. [Google Scholar] [CrossRef]
No. | Formula | Mass Ratio/(wt%) | Theoretical Density /(g·cm−3) | Actual Density /(g·cm−3) | Relative Density | Particle Size /(μm) |
---|---|---|---|---|---|---|
PA-1 | PTFE/Al | 73.5/26.5 | 2.27 | 2.23 | 98% | 25/25 |
PA-2 | PTFE/Al | 73.5/26.5 | 2.27 | 2.23 | 98% | 25/75 |
PF | PTFE/LiF | 73.5/26.5 | 2.26 | 2.21 | 98% | 25/25 |
(a). The experiment parameters and related results. | |||||||||||||||
Exp. No. | Specimen | sAl /(mm) | Pi/(GPa) | ||||||||||||
P1 | P2 | P3 | P4 | ||||||||||||
1# | PA-1 | 10 | 22.6 ± 1.05 | 18.7 ± 0.86 | 16.1 ± 0.74 | 13.7 ± 0.64 | |||||||||
2# | 16 | 17.2 ± 0.79 | 13.2 ± 0.62 | 11.5 ± 0.55 | 10.2 ± 0.49 | ||||||||||
3# | 25 | 12.1 ± 0.57 | 10.3 ± 0.51 | 9.1 ± 0.45 | 12.6 ± 0.59 | ||||||||||
4# | PA-2 | 10 | 21.3 ± 0.99 | 17.3 ± 0.80 | 13.2 ± 0.62 | 11.2 ± 0.53 | |||||||||
5# | 16 | 16.5 ± 0.76 | 12.2 ± 0.57 | 10.7 ± 0.51 | 9.9 ± 0.48 | ||||||||||
6# | 25 | 11.5 ± 0.54 | 9.2 ± 0.45 | 9.3 ± 0.46 | 9.1 ± 0.44 | ||||||||||
7# | PF | 10 | 21.8 ± 1.01 | 17.0 ± 0.78 | 12.8 ± 0.60 | 10.7 ± 0.52 | |||||||||
8# | 16 | 16.7 ± 0.77 | 13.1 ± 0.61 | 11.2 ± 0.53 | 9.2 ± 0.45 | ||||||||||
9# | 25 | 12.4 ± 0.58 | 10.6 ± 0.51 | 10.0 ± 0.49 | 8.0 ± 0.41 | ||||||||||
(b). The experiment parameters and related results. | |||||||||||||||
Exp. No. | usj/(m·s−1) | upj/(m·s−1) | Relative Volume v1/v0 | ||||||||||||
us1 | us2 | us3 | up1 | up2 | up3 | LP1 | LP2 | LP3 | |||||||
1# | 4611 | 4500 | 4230 | 2222 | 1880 | 1724 | 0.5181 | 0.5821 | 0.5925 | ||||||
2# | 4283 | 3945 | 3832 | 1819 | 1524 | 1364 | 0.5753 | 0.6136 | 0.6439 | ||||||
3# | 3870 | 3785 | 3869 | 1424 | 1237 | 1070 | 0.6321 | 0.6731 | 0.7234 | ||||||
4# | 4389 | 4353 | 4014 | 2185 | 1805 | 1495 | 0.5023 | 0.5853 | 0.6275 | ||||||
5# | 4325 | 3942 | 3812 | 1729 | 1403 | 1273 | 0.6002 | 0.6440 | 0.6660 | ||||||
6# | 3662 | 3546 | 3509 | 1430 | 1177 | 1205 | 0.6094 | 0.6681 | 0.6564 | ||||||
7# | 4340 | 4156 | 4010 | 2256 | 1840 | 1431 | 0.4801 | 0.5571 | 0.6429 | ||||||
8# | 4185 | 3850 | 3661 | 1808 | 1542 | 1393 | 0.5678 | 0.5993 | 0.6194 | ||||||
9# | 3665 | 3563 | 3456 | 1527 | 1344 | 1299 | 0.5834 | 0.6226 | 0.6240 |
Exp. No. | PIx/(103 Pa·s) | |||
---|---|---|---|---|
PI1 | PI2 | PI3 | PI4 | |
1# | 15.95 | 14.20 | 13.19 | 12.86 |
2# | 12.44 | 11.52 | 10.49 | 8.83 |
3# | 11.01 | 9.88 | 9.77 | 9.78 |
4# | 14.62 | 13.12 | 10.84 | 9.75 |
5# | 12.52 | 9.84 | 8.94 | 9.17 |
6# | 10.19 | 8.57 | 7.98 | 7.27 |
7# | 15.95 | 12.42 | 10.06 | 9.45 |
8# | 13.15 | 10.56 | 9.44 | 8.94 |
9# | 10.93 | 9.66 | 8.83 | 7.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, W.; Du, W.; Zhang, Z.; Pan, J.; Pang, C.; Wang, C.; Guo, L.; He, Y.; He, Y. Experimental Investigation of Reaction-Induced Pressure Perturbations in PTFE/Al Composites During Shock Compression. Materials 2025, 18, 4267. https://doi.org/10.3390/ma18184267
Tian W, Du W, Zhang Z, Pan J, Pang C, Wang C, Guo L, He Y, He Y. Experimental Investigation of Reaction-Induced Pressure Perturbations in PTFE/Al Composites During Shock Compression. Materials. 2025; 18(18):4267. https://doi.org/10.3390/ma18184267
Chicago/Turabian StyleTian, Weixi, Wei Du, Zhenwei Zhang, Jian Pan, Chunxu Pang, Chuanting Wang, Lei Guo, Yuan He, and Yong He. 2025. "Experimental Investigation of Reaction-Induced Pressure Perturbations in PTFE/Al Composites During Shock Compression" Materials 18, no. 18: 4267. https://doi.org/10.3390/ma18184267
APA StyleTian, W., Du, W., Zhang, Z., Pan, J., Pang, C., Wang, C., Guo, L., He, Y., & He, Y. (2025). Experimental Investigation of Reaction-Induced Pressure Perturbations in PTFE/Al Composites During Shock Compression. Materials, 18(18), 4267. https://doi.org/10.3390/ma18184267