Endodontic Sealers and Innovations to Enhance Their Properties: A Current Review
Abstract
1. Introduction
2. Classification of Endodontic Sealers
- Exhibit suitable viscosity upon mixing to ensure effective adhesion to the canal walls after setting;
- Form a hermetic seal;
- Be radiopaque to allow visualization on radiographic images;
- Be prepared as a very fine powder for ease of mixing with a liquid;
- Maintain dimensional stability and not shrink during setting;
- Avoid discoloration of the tooth structure;
- Be bacteriostatic or, at the very least, not support bacterial proliferation;
- Have a sufficiently slow setting time to allow for clinical manipulation;
- Be insoluble in tissue fluids;
- Be non-irritating to periapical tissues;
- Be soluble in a commonly available solvent to facilitate removal if necessary.
- Zinc oxide eugenol-based sealers;
- Zinc oxide-based sealers without eugenol;
- Glass ionomer-based sealers;
- Silicone-based sealers;
- Resin-based sealers (including methacrylate and epoxy resin formulations);
- Calcium hydroxide-based sealers;
- Bioceramic sealers.
2.1. Zinc Oxide Eugenol-Based Sealers
2.2. Glass Ionomer-Based Sealers
2.3. Silicone-Based Sealers
2.4. Methacrylate Resin-Based Sealers
2.5. Epoxy Resin-Based Sealers
2.6. Calcium Hydroxide-Based Sealers
2.7. Bioceramic Sealers
3. Study Results on Modified Sealers
3.1. Modification of the Sealers with Silver Compounds
3.2. Modification of the Sealers with Chlorhexidine
3.3. Modification of the Sealers with Essential Oils
3.4. Modification of the Sealers with Biopolymers
3.4.1. Alginate
3.4.2. Cellulose Derivatives
3.4.3. Chitosan
4. Discussion
5. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
4-META | 4-Methacryloxyethyl Trimellitate Anhydride |
α-TCP | α-Tricalcium Phosphate |
AgNPs | Silver Nanoparticles |
Bis-GMA | Bisphenol A Diglycidyl Ether Methacrylate |
CHX | Chlorhexidine |
CHX-HMP NPs | Chlorhexidine Nanoparticles Complexed with Hexametaphosphate |
CS | Chitosan |
CS-CHX | Chitosan–Chlorhexidine Complex |
CS-NPs | Chitosan Nanoparticles |
DMSO | Dimethyl Sulfoxide |
EDTA | Ethylenediaminetetraacetic Acid |
ERB | Epoxy Resin-Based Sealer |
MMA | Methyl Methacrylate |
MTA | Mineral Trioxide Aggregate |
PMMA | Polymethyl Methacrylate |
TCS-C | Tricalcium Silicate and Chitosan-Based Sealer |
TEGDMA | Triethylene Glycol Dimethacrylate |
UDMA | Urethane Dimethacrylate |
ZOE | Zinc Oxide and Eugenol |
References
- Walsh, L.J. Serious Complications of Endodontic Infections: Some Caustionary Tales. Aust. Dent. J. 1997, 42, 156–159. [Google Scholar] [CrossRef]
- Raducka, M.; Piszko, A.; Piszko, P.J.; Jawor, N.; Dobrzyński, M.; Grzebieluch, W.; Mikulewicz, M.; Skośkiewicz-Malinowska, K. Narrative Review on Methods of Activating Irrigation Liquids for Root Canal Treatment. Appl. Sci. 2023, 13, 7733. [Google Scholar] [CrossRef]
- Neal, T.W.; Schlieve, T. Complications of Severe Odontogenic Infections: A Review. Biology 2022, 11, 1784. [Google Scholar] [CrossRef]
- Yu, C.; Abbott, P.V. An Overview of the Dental Pulp: Its Functions and Responses to Injury. Aust. Dent. J. 2007, 52, S4–S6. [Google Scholar] [CrossRef] [PubMed]
- Hatami, A.; Dreyer, C. The Extraction of First, Second or Third Permanent Molar Teeth and Its Effect on the Dentofacial Complex. Aust. Dent. J. 2019, 64, 302–311. [Google Scholar] [CrossRef]
- Gasner, N.S.; Brizuela, M. Endodontic Materials Used To Fill Root Canals. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Darcey, J.; Roudsari, R.V.; Jawad, S.; Taylor, C.; Hunter, M. Modern Endodontic Principles Part 5: Obturation. Dent. Update 2016, 43, 114–129. [Google Scholar] [CrossRef] [PubMed]
- Hammad, M.; Qualtrough, A.; Silikas, N. Evaluation of Root Canal Obturation: A Three-Dimensional In Vitro Study. J. Endod. 2009, 35, 541–544. [Google Scholar] [CrossRef]
- Tyagi, S.; Mishra, P.; Tyagi, P. Evolution of Root Canal Sealers: An Insight Story. Eur. J. Gen. Dent. 2013, 2, 199–218. [Google Scholar] [CrossRef]
- Vishwanath, V.; Rao, H.M. Gutta-Percha in Endodontics—A Comprehensive Review of Material Science. J. Conserv. Dent. 2019, 22, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, J.; Rygas, J.; Homa, K.; Dobrzyński, W.; Wiglusz, R.J.; Matys, J.; Dobrzyński, M. Antibacterial Activity of Endodontic Gutta-Percha—A Systematic Review. Appl. Sci. 2024, 14, 388. [Google Scholar] [CrossRef]
- Tomson, R.M.E.; Polycarpou, N.; Tomson, P.L. Contemporary Obturation of the Root Canal System. Br. Dent. J. 2014, 216, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Komabayashi, T.; Colmenar, D.; Cvach, N.; Bhat, A.; Primus, C.; Imai, Y. Comprehensive Review of Current Endodontic Sealers. Dent. Mater. J. 2020, 39, 703–720. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, K.V.; Da Silva, B.M.; Leonardi, D.P.; Crozeta, B.M.; de Sousa-Neto, M.D.; Baratto-Filho, F.; Leão Gabardo, M.C. Effectiveness of Different Final Irrigation Techniques and Placement of Endodontic Sealer into Dentinal Tubules. Braz. Oral Res. 2017, 31, e114. [Google Scholar] [CrossRef] [PubMed]
- Kahn, F.H.; Rosenberg, P.A.; Schertzer, L.; Korthals, G.; Nguyen, P.N.T. An In-Vitro Evaluation of Sealer Placement Methods. Int. Endod. J. 1997, 30, 181–186. [Google Scholar] [CrossRef]
- Tan, J.M.E.; Parolia, A.; Pau, A.K.H. Intracanal Placement of Calcium Hydroxide: A Comparison of Specially Designed Paste Carrier Technique with Other Techniques. BMC Oral Health 2013, 13, 52. [Google Scholar] [CrossRef]
- Lin, L.M.; Skribner, J.E.; Gaengler, P. Factors Associated with Endodontic Treatment Failures. J. Endod. 1992, 18, 625–627. [Google Scholar] [CrossRef]
- Akhtar, H.; Naz, F.; Hasan, A.; Tanwir, A.; Shahnawaz, D.; Wahid, U.; Irfan, F.; Ahmed, M.A.; Almadi, K.H.; Alkahtany, M.F.; et al. Exploring the Most Effective Apical Seal for Contemporary Bioceramic and Conventional Endodontic Sealers Using Three Obturation Techniques. Medicina 2023, 59, 567. [Google Scholar] [CrossRef]
- Seltzer, S.; Turkenkopf, S.; Vito, A.; Green, D.; Bender, I.B. A Histologic Evaluation of Periapical Repair Following Positive and Negative Root Canal Cultures. Oral Surg. Oral Med. Oral Pathol. 1964, 17, 507–532. [Google Scholar] [CrossRef]
- Martins, J.F.B.; Scheeren, B.; van der Waal, S.V. The Effect of Unintentional AH-Plus Sealer Extrusion on Resolution of Apical Periodontitis After Root Canal Treatment and Retreatment—A Retrospective Case-Control Study. J. Endod. 2023, 49, 1262–1268. [Google Scholar] [CrossRef]
- Suresh Chandra, B.; Gopikrishna, V. Grossman’s Endodontic Practice, 13th ed.; Wolters Kluwer Health: Mumbai, India, 2014. [Google Scholar]
- Fristad, I.; Haug, S.; Bårdsen, A. Biological properties versus solubility of endodontic sealers and cements. Biomater Investig Dent. 2024, 11, 40863. [Google Scholar] [CrossRef]
- Rathi, C.; Chandak, M.; Nikhade, P.; Mankar, N.; Chandak, M.; Khatod, S.; Motwani, N.; Jaiswal, A. Functions of Root Canal Sealers- A Review. J. Evol. Med. Dent. Sci. 2020, 9, 1454–1458. [Google Scholar] [CrossRef]
- Vo, K.; Daniel, J.; Ahn, C.; Primus, C.; Komabayashi, T. Coronal and apical leakage among five endodontic sealers. J. Oral Sci. 2022, 64, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Product Manual Endomethasone N Root Canal Sealer. Available online: https://www.septodont.com.pl/wp-content/uploads/sites/15/2023/03/IFU-Endomethasone-N-UK.pdf?x50443 (accessed on 7 September 2025).
- Product Manual Endoseal Root Canal Sealer. Available online: https://www.prevestdenpro.com/wp-content/uploads/2021/08/Endoseal.pdf (accessed on 7 September 2025).
- Product Manual EssenSeal Root Canal Sealer. Available online: https://pd-dental.com/fichiers/EssenSeal_10246_IFU-A4_EUROPE_201022.pdf (accessed on 7 September 2025).
- Product Manual Root Canal Sealer. Available online: https://www.pulpdent.com/wp-content/uploads/2022/04/XP-PSS-IN-02w_REV-04.2022_4.26.22.pdf (accessed on 7 September 2025).
- Saygili, G.; Saygili, S.; Tuglu, I.; Davut Capar, I. In Vitro Cytotoxicity of GuttaFlow Bioseal, GuttaFlow 2, AH-Plus and MTA Fillapex. Iran. Endod. J. 2017, 12, 354–359. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- SDS EndoREZ Base. Available online: https://www.ultradent.eu/Resources/GetSds?key=20-001-10.81914198-en-gb (accessed on 7 September 2025).
- SDS Endo-Eze MTAFlow Grey Powder. Available online: https://www.ultradent.eu/Resources/GetSds?key=488-001-01.93377633-en-gb (accessed on 7 September 2025).
- Product Manual AH Plus Root Canal Sealer. Available online: https://www.dentsplysirona.com/content/dentsply-sirona-dt/hr/en/customer-support/download-center/download-details.html?assetPath=/content/dam/master/product-procedure-brand-categories/endodontics/product-categories/obturation-materials/sealers-root-repair/ah-plus/ifu/END-IFU-AH-Plus-Jet-multilingual-2023-04-25.pdf (accessed on 7 September 2025).
- Product Website Adseal Plus Root Canal Sealer. Available online: https://metabiomedshop.com/collections/endodontics/products/adseal-plus (accessed on 7 September 2025).
- Álvarez-Vásquez, J.L.; Erazo-Guijarro, M.J.; Domínguez-Ordoñez, G.S.; Ortiz-Garay, É.M. Epoxy resin-based root canal sealers: An integrative literature review. Dent. Med. Probl. 2024, 61, 279–291. [Google Scholar] [CrossRef] [PubMed]
- Product Website Sealapex Root Canal Sealer. Available online: https://www.kerrdental.com/ca/kerr-endodontics/sealapex-polymeric-calcium-hydroxide-root-canal-sealer#docs (accessed on 7 September 2025).
- Product Manual Apexit Plus Root Canal Sealer. Available online: https://www.ivoclar.com/pl_pl/eifu?document-id=20531&show-detail=1 (accessed on 7 September 2025).
- Product Manual Calapex Root Canal Sealer. Available online: https://www.prevestdenpro.com/wp-content/uploads/2021/08/CalApex.pdf (accessed on 7 September 2025).
- Product Manual EndoSequence BC Root Canal Sealer. Available online: https://brasselerusadental.com/wp-content/files/B-3114D-EndoSequence-BC-Sealer-DFU.pdf (accessed on 7 September 2025).
- Raman, V.; Camilleri, J. Characterization and assessment of physical properties of 3 single syringe hydraulic cement–based sealers. J. Endod. 2024, 50, 381–388. [Google Scholar] [CrossRef]
- Product Manual BioRoot Root Canal Sealer. Available online: https://www.septodontcorp.com/app/uploads/2024/12/BioRoot-RCS.pdf (accessed on 7 September 2025).
- Product Manual Fillapex Root Canal Sealer. Available online: https://www.angelusdental.com/img/arquivos/mta_fillapex_technical_profile_download.pdf (accessed on 7 September 2025).
- Ortiz-Blanco, B.; Sanz, J.L.; Llena, C.; Lozano, A.; Forner, L. Dentin Sealing of Calcium Silicate-Based Sealers in Root Canal Retreatment: A Confocal Laser Microscopy Study. J. Funct. Biomater. 2022, 13, 114. [Google Scholar] [CrossRef]
- Kohsar, A.H.; Hasani, M.; Karami, M.; Moosazadeh, M.; Dashti, A.; Shiva, A. Subcutaneous Tissue Response to Adseal and Sure-Seal Root Sealers in Rats: A Histopathological Study. Maedica 2022, 17, 654–661. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Grossman, L.I. Physical Properties of Root Canal Cements. J. Endod. 1976, 2, 166–175. [Google Scholar] [CrossRef]
- Araki, K.; Suda, H.; Spångberg, L.S.W. Indirect Longitudinal Cytotoxicity of Root Canal Sealers on L929 Cells and Human Periodontal Ligament Fibroblasts. J. Endod. 1994, 20, 67–70. [Google Scholar] [CrossRef]
- Gatewood, R.S. Endodontic Materials. Dent. Clin. N. Am. 2007, 51, 695–712. [Google Scholar] [CrossRef] [PubMed]
- Ortega, M.A.; Rios, L.; Fraile-Martinez, O.; Boaru, D.L.; Leon-Oliva, D.D.; Barrena-Blázquez, S.; Pereda-Cerquella, C.; Garrido-Gil, M.J.; Manteca, L.; Buján, J.; et al. Bioceramic versus Traditional Biomaterials for Endodontic Sealers According to the Ideal Properties. Histol. Histopathol. 2024, 39, 279–292. [Google Scholar] [CrossRef]
- Mutoh, N.; Tani-Ishii, N. A Biocompatible Model for Evaluation of the Responses of Rat Periapical Tissue to a New Zinc Oxide-Eugenol Sealer. Dent. Mater. J. 2011, 30, 176–182. [Google Scholar] [CrossRef]
- Al-Khatib, Z.Z.; Baum, R.H.; Morse, D.R.; Yesilsoy, C.; Bhambhani, S.; Furst, M.L. The Antimicrobial Effect of Various Endodontic Sealers. Oral Surg. Oral Med. Oral Pathol. 1990, 70, 784–790. [Google Scholar] [CrossRef]
- Shid-Moosavi, T.S.; Mohammadi, N.; Gharamani, Y.; Motamedifar, M.; Alizadeh, A.A. Evaluating Antimicrobial Activity and Cytotoxicity of Silver Nanoparticles Incorporated into Reinforced Zinc Oxide Eugenol: An in Vitro Study. Eur. Arch. Paediatr. Dent. 2024, 25, 443–450. [Google Scholar] [CrossRef]
- Mohd Bakhori, S.K.; Mahmud, S.; Mohamad, D.; Masudi, S.M.; Seeni, A. Cytotoxicity Determination of Nano-Zinc Oxide Eugenol on Human Gingival Fibroblast Cells. Mater. Chem. Phys. 2021, 268, 124649. [Google Scholar] [CrossRef]
- Augsburger, R.A.; Peters, D.D. Radiographic Evaluation of Extruded Obturation Materials. J. Endod. 1990, 16, 492–497. [Google Scholar] [CrossRef]
- Ricucci, D.; Rôças, I.N.; Alves, F.R.F.; Loghin, S.; Siqueira, J.F. Apically Extruded Sealers: Fate and Influence on Treatment Outcome. J. Endod. 2016, 42, 243–249. [Google Scholar] [CrossRef]
- DUNCAN, H.F.; CHONG, B.S. Removal of Root Filling Materials. Endod. Top. 2008, 19, 33–57. [Google Scholar] [CrossRef]
- Whitworth, J.M.; Boursin, E.M. Dissolution of Root Canal Sealer Cements in Volatile Solvents. Int. Endod. J. 2000, 33, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Mokeem-Saleh, A.; Hammad, M.; Silikas, N.; Qualtrough, A.; Watts, D.C. A Laboratory Evaluation of the Physical and Mechanical Properties of Selected Root Canal Sealers. Int. Endod. J. 2010, 43, 882–888. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, R.B.; Safavi, K.E.; Spångberg, L.S.W. Dimensional Changes of Endodontic Sealers. Oral Surg. Oral Med. Oral Pathol. 1993, 76, 766–771. [Google Scholar] [CrossRef]
- Kwak, S.W.; Koo, J.; Song, M.; Jang, I.H.; Gambarini, G.; Kim, H.C. Physicochemical Properties and Biocompatibility of Various Bioceramic Root Canal Sealers: In Vitro Study. J. Endod. 2023, 49, 871–879. [Google Scholar] [CrossRef]
- Okamoto, M.; Matsumoto, S.; Moriyama, K.; Huang, H.; Watanabe, M.; Miura, J.; Sugiyama, K.; Hirose, Y.; Mizuhira, M.; Kuriki, N.; et al. Biological Evaluation of the Effect of Root Canal Sealers Using a Rat Model. Pharmaceutics 2022, 14, 2038. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.Q.; Harandi, L.; Cobb, C.M. Evaluation of Glass Ionomer as an Endodontic Sealant: An in Vitro Study. J. Endod. 1997, 23, 209–212. [Google Scholar] [CrossRef]
- Kocll, K.; Min, P.S.; Stewart, G.G. Comparison of Apical Leakage between Ketac Endo Sealer and Grossman Sealer. Oral Surg. Oral Med. Oral Pathol. 1994, 78, 784–787. [Google Scholar] [CrossRef] [PubMed]
- Garg, N.; Garg, A.; Kang, R.; Mann, J.; Manchanda, S.; Ahuja, B. A Comparison of Apical Seal Produced by Zinc Oxide Eugenol, Metapex, Ketac Endo and AH Plus Root Canal Sealers. Endodontology 2014, 26, 252. [Google Scholar] [CrossRef]
- Mohammadi, Z.; Shalavi, S. Clinical Applications of Glass Ionomers in Endodontics: A Review. Int. Dent. J. 2012, 62, 244–250. [Google Scholar] [CrossRef] [PubMed]
- De Bruyne, M.A.A.; De Moor, R.J.G. The Use of Glass Ionomer Cements in Both Conventional and Surgical Endodontics. Int. Endod. J. 2004, 37, 91–104. [Google Scholar] [CrossRef]
- Ogasawara, T.; Yoshimine, Y.; Yamamoto, M.; Akamine, A. Biocompatibility of an Experimental Glass-Ionomer Cement Sealer in Rat Mandibular Bone. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2003, 96, 458–465. [Google Scholar] [CrossRef]
- Shalhav, M.; Fuss, Z.; Weiss, E.I. In Vitro Antibacterial Activity of a Glass Ionomer Endodontic Sealer. J. Endod. 1997, 23, 616–619. [Google Scholar] [CrossRef]
- Rodríguez-Lozano, F.J.; Collado-González, M.; Tomás-Catalá, C.J.; García-Bernal, D.; López, S.; Oñate-Sánchez, R.E.; Moraleda, J.M.; Murcia, L. GuttaFlow Bioseal Promotes Spontaneous Differentiation of Human Periodontal Ligament Stem Cells into Cementoblast-like Cells. Dent. Mater. 2019, 35, 114–124. [Google Scholar] [CrossRef] [PubMed]
- De-Deus, G.; Brandão, M.C.; Fidel, R.A.S.; Fidel, S.R. The Sealing Ability of GuttaFlowTM in Oval-Shaped Canals: An Ex Vivo Study Using a Polymicrobial Leakage Model. Int. Endod. J. 2007, 40, 794–799. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-H.; Oh, S.; Al-Ghamdi, A.S.; Mandorah, A.O.; Kum, K.-Y.; Chang, S.W. Sealing Ability of AH Plus and GuttaFlow Bioseal. Bioinorg. Chem. Appl. 2020, 2020, 8892561. [Google Scholar] [CrossRef]
- Kontakiotis, E.G.; Tzanetakis, G.N.; Loizides, A.L. A L2-Month Longitudinal in Vitro Leakage Study on a New Silicon-Based Root Canal Filling Material (Gutta-Flow). Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2007, 103, 854–859. [Google Scholar] [CrossRef]
- Upadhyay, V.; Upadhyay, M.; Panday, R.K.; Chturvedi, T.P.; Bajpai, U. A SEM Evaluation of Dentinal Adaptation of Root Canal Obturation with GuttaFlow and Conventional Obturating Material. Indian J. Dent. Res. 2011, 22, 881. [Google Scholar] [CrossRef]
- Kapralos, V.; Koutroulis, A.; Ørstavik, D.; Sunde, P.T.; Rukke, H.V. Antibacterial Activity of Endodontic Sealers against Planktonic Bacteria and Bacteria in Biofilms. J. Endod. 2018, 44, 149–154. [Google Scholar] [CrossRef]
- Ruiz-Linares, M.; Baca, P.; Arias-Moliz, M.T.; Ternero, F.J.; Rodríguez, J.; Ferrer-Luque, C.M. Antibacterial and Antibiofilm Activity over Time of GuttaFlow Bioseal and AH Plus. Dent. Mater. J. 2019, 38, 701–706. [Google Scholar] [CrossRef]
- Hseen, A.B.; Nassif, Q.K.; Maarawi, K.; Haffaf, R.A.; Khaddam, M. A Comparison of the Apical Sealing Efficacy Between Guttaflow Bioseal and Mineral Trioxide Aggregate as Root-End Filling Materials: An In Vitro Study. Cureus 2024, 16, e73498. [Google Scholar] [CrossRef]
- Benkel, B.H.; Rising, D.W.; Goldman, L.B.; Rosen, H.; Goldman, M.; Kronman, J.H. Use of a Hydrophilic Plastic as a Root Canal Filling Material. J. Endod. 1976, 2, 196–202. [Google Scholar] [CrossRef]
- Mai, S.; Kim, Y.K.; Hiraishi, N.; Ling, J.; Pashley, D.H.; Tay, F.R. Evaluation of the True Self-Etching Potential of a Fourth Generation Self-Adhesive Methacrylate Resin–Based Sealer. J. Endod. 2009, 35, 870–874. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.K.; Grandini, S.; Ames, J.M.; Gu, L.S.; Kim, S.K.; Pashley, D.H.; Gutmann, J.L.; Tay, F.R. Critical Review on Methacrylate Resin–Based Root Canal Sealers. J. Endod. 2010, 36, 383–399. [Google Scholar] [CrossRef] [PubMed]
- Langeland, K.; Olsson, B.; Pascon, E.A. Biological Evaluation of Hydron. J. Endod. 1981, 7, 196–204. [Google Scholar] [CrossRef]
- Hammad, M.; Qualtrough, A.; Silikas, N. Extended Setting Shrinkage Behavior of Endodontic Sealers. J. Endod. 2008, 34, 90–93. [Google Scholar] [CrossRef] [PubMed]
- Tay, F.R.; Loushine, R.J.; Monticelli, F.; Weller, R.N.; Breschi, L.; Ferrari, M.; Pashley, D.H. Effectiveness of Resin-Coated Gutta-Percha Cones and a Dual-Cured, Hydrophilic Methacrylate Resin-Based Sealer in Obturating Root Canals. J. Endod. 2005, 31, 659–664. [Google Scholar] [CrossRef]
- Watanabe, I.; Nakabayashi, N.; Pashley, D.H. Bonding to Ground Dentin by a Phenyl-P Self -Etching Primer. J. Dent. Res. 1994, 73, 1212–1220. [Google Scholar] [CrossRef]
- Kokkas, A.B.; Boutsioukis, A.C.; Vassiliadis, L.P.; Stavrianos, C.K. The Influence of the Smear Layer on Dentinal Tubule Penetration Depth by Three Different Root Canal Sealers: An In Vitro Study. J. Endod. 2004, 30, 100–102. [Google Scholar] [CrossRef]
- Economides, N.; Kokorikos, I.; Kolokouris, I.; Panagiotis, B.; Gogos, C. Comparative Study of Apical Sealing Ability of a New Resin-Based Root Canal Sealer. J. Endod. 2004, 30, 403–405. [Google Scholar] [CrossRef]
- Shipper, G.; Trope, M. In Vitro Microbial Leakage of Endodontically Treated Teeth Using New and Standard Obturation Techniques. J. Endod. 2004, 30, 154–158. [Google Scholar] [CrossRef]
- Gogos, C.; Economides, N.; Stavrianos, C.; Kolokouris, I.; Kokorikos, I. Adhesion of a New Methacrylate Resin-Based Sealer to Human Dentin. J. Endod. 2004, 30, 238–240. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, D.; Wei, X.; Wu, W.C.; Ling, J.Q. Resilon: A Methacrylate Resin-Based Obturation System. J. Dent. Sci. 2010, 5, 47–52. [Google Scholar] [CrossRef]
- Lotfi, M.; Ghasemi, N.; Rahimi, S.; Vosoughhosseini, S.; Saghiri, M.A.; Shahidi, A. Resilon: A Comprehensive Literature Review. J. Dent. Res. Dent. Clin. Dent. Prospect. 2013, 7, 119–130. [Google Scholar] [CrossRef]
- Teixeira, F.B.; Teixeira, E.C.N.; Thompson, J.Y.; Trope, M. Fracture Resistance of Roots Endodontically Treated with a New Resin Filling Material. J. Am. Dent. Assoc. 2004, 135, 646–652. [Google Scholar] [CrossRef]
- Radovic, I.; Monticelli, F.; Goracci, C.; Vulicevic, Z.R.; Ferrari, M. Self-Adhesive Resin Cements: A Literature Review. J. Adhes. Dent. 2008, 10, 251–258. [Google Scholar]
- Hammad, M.; Qualtrough, A.; Silikas, N. Effect of New Obturating Materials on Vertical Root Fracture Resistance of Endodontically Treated Teeth. J. Endod. 2007, 33, 732–736. [Google Scholar] [CrossRef] [PubMed]
- Bouillaguet, S.; Wataha, J.C.; Tay, F.R.; Brackett, M.G.; Lockwood, P.E. Initial In Vitro Biological Response to Contemporary Endodontic Sealers. J. Endod. 2006, 32, 989–992. [Google Scholar] [CrossRef]
- Heitman, E.P.; Joyce, A.P.; McPherson, J.C.; Roberts, S.; Chuang, A. An In Vitro Evaluation of the Growth of Human Periodontal Ligament Fibroblasts after Exposure to a Methacrylate-Based Endodontic Sealer. J. Endod. 2008, 34, 186–189. [Google Scholar] [CrossRef] [PubMed]
- Filipov, I.A.; Vladimirov, S.B.; Filipov, I.A.; Vladimirov, S.B. Residual Monomer in a Composite Resin after Light-Curing with Different Sources, Light Intensities and Spectra of Radiation. Braz. Dent. J. 2006, 17, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Romo-Huerta, M.J.; Cervantes-Urenda, A.d.R.; Velasco-Neri, J.; Torres-Bugarín, O.; Valdivia, A.D.C.M. Genotoxicity Associated with Residual Monomers in Restorative Dentistry: A Systematic Review. Oral Health Prev. Dent. 2021, 19, b2081469. [Google Scholar] [CrossRef]
- Ørstavik, D. Materials Used for Root Canal Obturation: Technical, Biological and Clinical Testing. Endod. Top. 2005, 12, 25–38. [Google Scholar] [CrossRef]
- Schilder, H. Filling Root Canals in Three Dimensions. Dent. Clin. N. Am. 1967, 11, 723–744. [Google Scholar] [CrossRef]
- Ørstavik, D.; Nordahl, I.; Tibballs, J.E. Dimensional Change Following Setting of Root Canal Sealer Materials. Dent. Mater. 2001, 17, 512–519. [Google Scholar] [CrossRef]
- Eldeniz, A.U.; Erdemir, A.; Belli, S. Effect of EDTA and Citric Acid Solutions on the Microhardness and the Roughness of Human Root Canal Dentin. J. Endod. 2005, 31, 107–110. [Google Scholar] [CrossRef]
- Marciano, M.A.; Guimaraes, B.M.; Ordinola-Zapata, R.; Bramante, C.M.; Cavenago, B.C.; Garcia, R.B.; Bernardineli, N.; Andrade, F.B.; Moraes, I.G.; Duarte, M.A.H. Physical Properties and Interfacial Adaptation of Three Epoxy Resin–Based Sealers. J. Endod. 2011, 37, 1417–1421. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.K.; Kwak, S.W.; Ha, J.H.; Lee, W.C.; Kim, H.C. Physicochemical Properties of Epoxy Resin-Based and Bioceramic-Based Root Canal Sealers. Bioinorg. Chem. Appl. 2017, 2017, 2582849. [Google Scholar] [CrossRef] [PubMed]
- Camilleri, J. Sealers and Warm Gutta-Percha Obturation Techniques. J. Endod. 2015, 41, 72–78. [Google Scholar] [CrossRef]
- Atmeh, A.R.; AlShwaimi, E. The Effect of Heating Time and Temperature on Epoxy Resin and Calcium Silicate–Based Endodontic Sealers. J. Endod. 2017, 43, 2112–2118. [Google Scholar] [CrossRef]
- Tanomaru-Filho, M.; Prado, M.C.; Torres, F.F.E.; Viapiana, R.; Pivoto-João, M.M.B.; Guerreiro-Tanomaru, J.M. Physicochemical Properties and Bioactive Potential of a New Epoxy Resin-Based Root Canal Sealer. Braz. Dent. J. 2019, 30, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Malyk, Y.; Kaaden, C.; Hickel, R.; Ilie, N. Analysis of Resin Tags Formation in Root Canal Dentine: A Cross Sectional Study. Int. Endod. J. 2010, 43, 47–56. [Google Scholar] [CrossRef]
- Viapiana, R.; Guerreiro-Tanomaru, J.; Tanomaru-Filho, M.; Camilleri, J. Interface of Dentine to Root Canal Sealers. J. Dent. 2014, 42, 336–350. [Google Scholar] [CrossRef]
- Schäfer, E.; Zandbiglari, T. Solubility of Root-Canal Sealers in Water and Artificial Saliva. Int. Endod. J. 2003, 36, 660–669. [Google Scholar] [CrossRef]
- Guo, J.; Peters, O.A.; Hosseinpour, S. Immunomodulatory Effects of Endodontic Sealers: A Systematic Review. Dent. J. 2023, 11, 54. [Google Scholar] [CrossRef]
- Eldeniz, A.U.; Mustafa, K.; Ørstavik, D.; Dahl, J.E. Cytotoxicity of New Resin-, Calcium Hydrooxide- and Silicone-Based Root Canal Sealers on Fibroblasts Derived from Human Gingiva and L929 Cell Lines. Int. Endod. J. 2007, 40, 329–337. [Google Scholar] [CrossRef]
- Candeiro, G.T.D.M.; Correia, F.C.; Duarte, M.A.H.; Ribeiro-Siqueira, D.C.; Gavini, G. Evaluation of Radiopacity, PH, Release of Calcium Ions, and Flow of a Bioceramic Root Canal Sealer. J. Endod. 2012, 38, 842–845. [Google Scholar] [CrossRef]
- Tanomaru-Filho, M.; Da Silva, G.F.; Duarte, M.A.H.; Gonçalves, M.; Tanomaru, J.M.G. Radiopacity Evaluation of Root-End Filling Materials by Digitization of Images. J. Appl. Oral Sci. 2008, 16, 376–379. [Google Scholar] [CrossRef]
- Cardona Hidalgo, J.C.; González Carreño, J.M.; Avendaño Rueda, J.C.; Cardona Hidalgo, J.C.; González Carreño, J.M.; Avendaño Rueda, J.C. Physicochemical Properties of Two Epoxy Resin-Based Sealants: Topseal® and AdSealTM. A Comparative Study. Rev. Fac. Odontol. Univ. Antioq. 2019, 31, 68–76. [Google Scholar] [CrossRef]
- Mohammadi, Z.; Dummer, P.M.H. Properties and Applications of Calcium Hydroxide in Endodontics and Dental Traumatology. Int. Endod. J. 2011, 44, 697–730. [Google Scholar] [CrossRef]
- Kim, H.; Kim, E.; Lee, S.J.; Shin, S.J. Comparisons of the Retreatment Efficacy of Calcium Silicate and Epoxy Resin–Based Sealers and Residual Sealer in Dentinal Tubules. J. Endod. 2015, 41, 2025–2030. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.W.; Lee, S.Y.; Kang, S.K.; Kum, K.Y.; Kim, E.C. In Vitro Biocompatibility, Inflammatory Response, and Osteogenic Potential of 4 Root Canal Sealers: Sealapex, Sankin Apatite Root Sealer, MTA Fillapex, and IRoot SP Root Canal Sealer. J. Endod. 2014, 40, 1642–1648. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, N.; Wadachi, R.; Suda, H.; Yeng, T.; Parashos, P. Root Canal Medicaments. Int. Dent. J. 2009, 59, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Ba-Hattab, R.; Al-Jamie, M.; Aldreib, H.; Alessa, L.; Alonazi, M.; Ba-Hattab, R.; Al-Jamie, M.; Aldreib, H.; Alessa, L.; Alonazi, M. Calcium Hydroxide in Endodontics: An Overview. Open J. Stomatol. 2016, 6, 274–289. [Google Scholar] [CrossRef]
- Zbańska, J.; Herman, K.; Kuropka, P.; Dobrzyński, M. Regenerative Endodontics as the Future Treatment of Immature Permanent Teeth. Appl. Sci. 2021, 11, 6211. [Google Scholar] [CrossRef]
- Zhang, W.; Li, Z.; Peng, B. Ex Vivo Cytotoxicity of a New Calcium Silicate–Based Canal Filling Material. Int. Endod. J. 2010, 43, 769–774. [Google Scholar] [CrossRef]
- Camilleri, J. Hydration Mechanisms of Mineral Trioxide Aggregate. Int. Endod. J. 2007, 40, 462–470. [Google Scholar] [CrossRef]
- Bogen, G.; Kuttler, S. Mineral Trioxide Aggregate Obturation: A Review and Case Series. J. Endod. 2009, 35, 777–790. [Google Scholar] [CrossRef]
- Zhou, H.M.; Shen, Y.; Zheng, W.; Li, L.; Zheng, Y.F.; Haapasalo, M. Physical Properties of 5 Root Canal Sealers. J. Endod. 2013, 39, 1281–1286. [Google Scholar] [CrossRef]
- Abu Zeid, S.T.; Alamoudi, R.A.; Mokeem Saleh, A.A. Impact of Water Solubility on Chemical Composition and Surface Structure of Two Generations of Bioceramic Root Canal Sealers. Appl. Sci. 2022, 12, 873. [Google Scholar] [CrossRef]
- Koch, K.A.; Brave, G.D.; Nasseh, A.A. Bioceramic Technology: Closing the Endo-Restorative Circle, Part 2. Dent. Today 2010, 29, 98, 100, 102–105. [Google Scholar] [PubMed]
- Camilleri, J.; Gandolfi, M.G.; Siboni, F.; Prati, C. Dynamic Sealing Ability of MTA Root Canal Sealer. Int. Endod. J. 2011, 44, 9–20. [Google Scholar] [CrossRef]
- Jassim, M.; Dawood, A. The Effect of Bioceramic-Based Root Canal Sealers on the Cell Viability and Cytotoxicity of Human Periodontal Ligament Fibroblast Cell Line (An in Vitro Study). Al-Rafidain Dent. J. 2025, 25, 1–15. [Google Scholar] [CrossRef]
- Vitti, R.P.; Prati, C.; Silva, E.J.N.L.; Sinhoreti, M.A.C.; Zanchi, C.H.; De Souza E Silva, M.G.; Ogliari, F.A.; Piva, E.; Gandolfi, M.G. Physical Properties of MTA Fillapex Sealer. J. Endod. 2013, 39, 915–918. [Google Scholar] [CrossRef] [PubMed]
- Sfeir, G.; Zogheib, C.; Patel, S.; Giraud, T.; Nagendrababu, V.; Bukiet, F. Calcium Silicate-Based Root Canal Sealers: A Narrative Review and Clinical Perspectives. Materials 2021, 14, 3965. [Google Scholar] [CrossRef]
- Camps, J.; Jeanneau, C.; El Ayachi, I.; Laurent, P.; About, I. Bioactivity of a Calcium Silicate–Based Endodontic Cement (BioRoot RCS): Interactions with Human Periodontal Ligament Cells In Vitro. J. Endod. 2015, 41, 1469–1473. [Google Scholar] [CrossRef]
- Han, L.; Okiji, T. Uptake of Calcium and Silicon Released from Calcium Silicate–Based Endodontic Materials into Root Canal Dentine. Int. Endod. J. 2011, 44, 1081–1087. [Google Scholar] [CrossRef]
- Lin, L.M.; Rosenberg, P.A.; Lin, J. Do Procedural Errors Cause Endodontic Treatment Failure? J. Am. Dent. Assoc. 2005, 136, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Alves, F.R.F.; Dias, M.C.C.; Mansa, M.G.C.B.; Machado, M.D. Permanent Labiomandibular Paresthesia after Bioceramic Sealer Extrusion: A Case Report. J. Endod. 2020, 46, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Pogrel, M.A.; Thamby, S. Permanent nerve involvement resulting: From inferior alveolar nerve blocks. J. Am. Dent. Assoc. 2000, 131, 901–907. [Google Scholar] [CrossRef]
- Camilleri, J. Characterization and Hydration Kinetics of Tricalcium Silicate Cement for Use as a Dental Biomaterial. Dent. Mater. 2011, 27, 836–844. [Google Scholar] [CrossRef]
- Zhang, H.; Shen, Y.; Ruse, N.D.; Haapasalo, M. Antibacterial Activity of Endodontic Sealers by Modified Direct Contact Test Against Enterococcus Faecalis. J. Endod. 2009, 35, 1051–1055. [Google Scholar] [CrossRef]
- Deniz-Sungur, D.; Onur, M.A.; Akbay, E.; Tan, G.; Daglı-Comert, F.; Sayın, T.C. Effects of Calcium Silicate Cements on Neuronal Conductivity. Restor. Dent. Endod. 2022, 47, e18. [Google Scholar] [CrossRef]
- Jang, Y.; Kim, Y.; Kim, S.; Kim, B. Predicting early endodontic treatment failure following primary root canal treatment. BMC Oral Health 2024, 24, 327. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Hassan, S.; Gajdhar, S.; Alhazmi, L.; Khalifah, R.; Alrifai, J.; Aljhdali, S.; Maqbul, M. Prevalence of Enterococcus faecalis and Candida albicans in endodontic retreatment Cases: A comprehensive study. Saudi Dent. J. 2024, 36, 539–545. [Google Scholar] [CrossRef]
- Rôças, I.N.; Siqueira, J.F.; Santos, K.R.N. Association of Enterococcus Faecalis with Different Forms of Periradicular Diseases. J. Endod. 2004, 30, 315–320. [Google Scholar] [CrossRef]
- Love, R.M. Enterococcus Faecalis—A Mechanism for Its Role in Endodontic Failure. Int. Endod. J. 2001, 34, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Elashiry, M.M.; Bergeron, B.E.; Tay, F.R. Enterococcus Faecalis in Secondary Apical Periodontitis: Mechanisms of Bacterial Survival and Disease Persistence. Microb. Pathog. 2023, 183, 106337. [Google Scholar] [CrossRef] [PubMed]
- Alberti, A.; Corbella, S.; Taschieri, S.; Francetti, L.; Fakhruddin, K.S.; Samaranayake, L.P. Fungal Species in Endodontic Infections: A Systematic Review and Meta-Analysis. PLoS ONE 2021, 16, e0255003. [Google Scholar] [CrossRef]
- Borges-Grisi, M.H.d.S.; Brito, A.C.M.; Bezerra, I.M.; Martorano-Fernandes, L.; Cavalcanti, Y.W.; Almeida, L.d.F.D.d. Antimicrobial Effect of Cinnamaldehyde and α-Terpineol on Endodontic Biofilms of Candida Albicans and Enterococcus Faecalis. Int. J. Microbiol. 2025, 2025, 4769807. [Google Scholar] [CrossRef]
- Vilela Teixeira, A.B.; De Carvalho Honorato Silva, C.; Alves, O.L.; Candido Dos Reis, A. Endodontic Sealers Modified with Silver Vanadate: Antibacterial, Compositional, and Setting Time Evaluation. Biomed. Res. Int. 2019, 2019, 4676354. [Google Scholar] [CrossRef]
- Teixeira, A.B.V.; Moreira, N.C.S.; Takahashi, C.S.; Schiavon, M.A.; Alves, O.L.; Reis, A.C. Cytotoxic and Genotoxic Effects in Human Gingival Fibroblast and Ions Release of Endodontic Sealers Incorporated with Nanostructured Silver Vanadate. J. Biomed. Mater. Res. B Appl. Biomater. 2021, 109, 1380–1388. [Google Scholar] [CrossRef]
- Vilela Teixeira, A.B.; Larissa Vidal, C.; Albiasetti, T.; Tornavoi De Castro, D.; Cândido Dos Reis, A. Influence of Adding Nanoparticles of Silver Vanadate on Antibacterial Effect and Physicochemical Properties of Endodontic Sealers. Iran. Endod. J. 2019, 14, 7. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, A.B.V.; de Castro, D.T.; Schiavon, M.A.; dos Reis, A.C. Cytotoxicity and Release Ions of Endodontic Sealers Incorporated with a Silver and Vanadium Base Nanomaterial. Odontology 2020, 108, 661–668. [Google Scholar] [CrossRef]
- Vilela Teixeira, A.; Vidal, C.; De Castro, D.; Da Costa Valente, M.; Oliveira-Santos, C.; Alves, O.; Dos Reis, A. Effect of Incorporation of a New Antimicrobial Nanomaterial on the Physical-Chemical Properties of Endodontic Sealers. J. Conserv. Dent. 2017, 20, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Łukomska-Szymańska, M.; Sokołowski, J.; Łapińska, B. Chlorhexidine–mechanism of action and its application to dentistry. Czas. Stomatol. 2017, 70, 405–417. [Google Scholar] [CrossRef]
- Collares, F.M.; Leitune, V.C.B.; Portella, F.F.; Santos, P.D.; Balbinot, G.d.S.; dos Santos, L.A.; Parolo, C.C.F.; Samuel, S.M.W. Methacrylate-Based Root Canal Sealer Containing Chlorexidine and α-Tricalcium Phosphate. J. Biomed. Mater. Res. B Appl. Biomater. 2018, 106, 1439–1443. [Google Scholar] [CrossRef]
- Carvalho, N.K.; Barbosa, A.F.A.; Coelho, B.d.P.; Gonçalves, L.d.S.; Sassone, L.M.; Silva, E.J.N.L. Antibacterial, Biological, and Physicochemical Properties of Root Canal Sealers Containing Chlorhexidine-Hexametaphosphate Nanoparticles. Dent. Mater. 2021, 37, 863–874. [Google Scholar] [CrossRef]
- Raddi, S.; El Karmy, B.; Martinache, O.; Richert, R.; Colnot, C.; Grosgogeat, B. Development of Chlorhexidine-Loaded Lipid Nanoparticles Incorporated in a Bioceramic Endodontic Sealer. J. Endod. 2024, 50, 1134–1142. [Google Scholar] [CrossRef] [PubMed]
- Reiznautt, C.M.; Ribeiro, J.S.; Kreps, E.; da Rosa, W.L.O.; de Lacerda, H.; Peralta, S.L.; Bottino, M.C.; Lund, R.G. Development and Properties of Endodontic Resin Sealers with Natural Oils. J. Dent. 2021, 104, 103538. [Google Scholar] [CrossRef] [PubMed]
- Peralta, S.L.; Carvalho, P.H.A.; van de Sande, F.H.; Pereira, C.M.P.; Piva, E.; Lund, R.G. Self-Etching Dental Adhesive Containing a Natural Essential Oil: Anti-Biofouling Performance and Mechanical Properties. Biofouling 2013, 29, 345–355. [Google Scholar] [CrossRef]
- Garrido, A.D.B.; De Cara, S.P.H.M.; Marques, M.M.; Sponchiado, E.C.; Garcia, L.D.F.R.; De Sousa-Neto, M.D. Cytotoxicity Evaluation of a Copaiba Oil-Based Root Canal Sealer Compared to Three Commonly Used Sealers in Endodontics. Dent. Res. J. 2015, 12, 121–126. [Google Scholar]
- Kobayashi, C.; Fontanive, T.O.; Enzweiler, B.G.; de Bona, L.R.; Massoni, T.; Apel, M.A.; Henriques, A.T.; Richter, M.F.; Ardenghi, P.; Suyenaga, E.S. Pharmacological Evaluation of Copaifera Multijuga Oil in Rats. Pharm. Biol. 2011, 49, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Bardají, D.K.R.; da Silva, J.J.M.; Bianchi, T.C.; de Souza Eugênio, D.; de Oliveira, P.F.; Leandro, L.F.; Rogez, H.L.G.; Venezianni, R.C.S.; Ambrosio, S.R.; Tavares, D.C.; et al. Copaifera Reticulata Oleoresin: Chemical Characterization and Antibacterial Properties against Oral Pathogens. Anaerobe 2016, 40, 18–27. [Google Scholar] [CrossRef]
- Garrido, A.D.B.; Lia, R.C.C.; França, S.C.; da Silva, J.F.; Astolfi-Filho, S.; Sousa-Neto, M.D. Laboratory Evaluation of the Physicochemical Properties of a New Root Canal Sealer Based on Copaifera Multijuga Oil-Resin. Int. Endod. J. 2010, 43, 283–291. [Google Scholar] [CrossRef]
- Tigmeanu, C.V.; Ardelean, L.C.; Rusu, L.C.; Negrutiu, M.L. Additive Manufactured Polymers in Dentistry, Current State-of-the-Art and Future Perspectives-A Review. Polymers 2022, 14, 3658. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, A.D.; Stepto, R.F.T.; Kratochvíl, P.; Suter, U.W. Glossary of Basic Terms in Polymer Science (IUPAC Recommendations 1996). Pure Appl. Chem. 1996, 68, 2287–2311. [Google Scholar] [CrossRef]
- Saldivar-Guerra, E.; Vivaldo-Lima, E. Handbook of Polymer Synthesis, Characterization, and Processing; Wiley: Hoboken, NJ, USA, 2013; ISBN 9781118480779. [Google Scholar]
- Thomé, T.; Erhardt, M.C.G.; Leme, A.A.; Al Bakri, I.; Bedran-Russo, A.K.; Bertassoni, L.E. Emerging Polymers in Dentistry. In Advanced Polymers in Medicine; Springer International Publishing: Cham, Switzerland, 2015; pp. 265–296. [Google Scholar] [CrossRef]
- Udayakumar, G.P.; Muthusamy, S.; Selvaganesh, B.; Sivarajasekar, N.; Rambabu, K.; Banat, F.; Sivamani, S.; Sivakumar, N.; Hosseini-Bandegharaei, A.; Show, P.L. Biopolymers and Composites: Properties, Characterization and Their Applications in Food, Medical and Pharmaceutical Industries. J. Environ. Chem. Eng. 2021, 9, 105322. [Google Scholar] [CrossRef]
- Singh, R.; Gautam, S.; Sharma, B.; Jain, P.; Chauhan, K.D. Biopolymers and Their Classifications. In Biopolymers and Their Industrial Applications; Elsevier: Amsterdam, The Netherlands, 2021; pp. 21–44. [Google Scholar] [CrossRef]
- Van De Velde, K.; Kiekens, P. Biopolymers: Overview of Several Properties and Consequences on Their Applications. Polym. Test. 2002, 21, 433–442. [Google Scholar] [CrossRef]
- Tønnesen, H.H.; Karlsen, J. Alginate in Drug Delivery Systems. Drug Dev. Ind. Pharm. 2002, 28, 621–630. [Google Scholar] [CrossRef]
- Cervino, G.; Fiorillo, L.; Herford, A.S.; Laino, L.; Troiano, G.; Amoroso, G.; Crimi, S.; Matarese, M.; D’Amico, C.; Nastro Siniscalchi, E.; et al. Alginate Materials and Dental Impression Technique: A Current State of the Art and Application to Dental Practice. Mar. Drugs 2018, 17, 18. [Google Scholar] [CrossRef] [PubMed]
- Hasnain, M.S.; Kiran, V.; Kurakula, M.; Rao, G.K.; Tabish, M.; Nayak, A.K. Use of Alginates for Drug Delivery in Dentistry. In Alginates in Drug Delivery; Academic Press: Cambridge, MA, USA, 2020; pp. 387–404. [Google Scholar] [CrossRef]
- Devillard, R.; Rémy, M.; Kalisky, J.; Bourget, J.-M.; Kérourédan, O.; Siadous, R.; Bareille, R.; Amédée-Vilamitjana, J.; Chassande, O.; Fricain, J.-C. In Vitro Assessment of a Collagen/Alginate Composite Scaffold for Regenerative Endodontics. Int. Endod. J. 2017, 50, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Liu, S.; Wu, J.; Qiu, D.; Dong, Y.-M. A Novel Bioactive Glass-Based Root Canal Sealer in Endodontics. J. Dent. Sci. 2022, 17, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.S.S.; Cher, C.Y.; Goh, Y.H.; Chan, D.Z.K.; Karobari, M.I.; Lai, J.C.H.; Noorani, T.Y. An Insight into the Role of Marine Biopolymer Alginate in Endodontics: A Review. Mar. Drugs 2022, 20, 539. [Google Scholar] [CrossRef] [PubMed]
- Barroso, B.; Garcia, A.; Molina, C.; de Vasconcellos, S.; Vital, V.; Lago, J.; Camilo, F.; de Oliveira, L. Enhanced mechanical and antimicrobial properties of hydroxypropyl methylcellulose films incorporating silver nanoparticles for wound dressing applications. Polym. Bull. 2024, 81, 11339–11357. [Google Scholar] [CrossRef]
- Stryer, L. Biochemia; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2003. [Google Scholar]
- Sarode, A.; Wang, P.; Cote, C.; Worthen, D.R. Low-Viscosity Hydroxypropylcellulose (HPC) Grades SL and SSL: Versatile Pharmaceutical Polymers for Dissolution Enhancement, Controlled Release, and Pharmaceutical Processing. AAPS PharmSciTech 2013, 14, 151–159. [Google Scholar] [CrossRef]
- Liu, C.; Li, N.; Niu, L.; Li, X.; Feng, J.; Liu, Z. Eco-Friendly Methylcellulose/Zinc Alginate Film with Multi-Function Properties: Thermal Stability, Flame Retardancy and Antibacterial Activities. Int. J. Biol. Macromol. 2024, 281, 136237. [Google Scholar] [CrossRef]
- Lee, B.N.; Chun, S.J.; Chang, H.S.; Hwang, Y.C.; Hwang, I.N.; Oh, W.M. Physical Properties and Biological Effects of Mineral Trioxide Aggregate Mixed with Methylcellulose and Calcium Chloride. J. Appl. Oral Sci. 2017, 25, 680–688. [Google Scholar] [CrossRef]
- Baba, T.; Tsujimoto, Y. Examination of Calcium Silicate Cements with Low-Viscosity Methyl Cellulose or Hydroxypropyl Cellulose Additive. Biomed. Res. Int. 2016, 2016, 4583854. [Google Scholar] [CrossRef]
- Estrela, C.; Sydney, G.B.; Bammann, L.L.; Felippe Júnior, O. Mechanism of Action of Calcium and Hydroxyl Ions of Calcium Hydroxide on Tissue and Bacteria. Braz Dent. J. 1995, 6, 85–90. [Google Scholar]
- Diamantstein, T.; Odenwald, M.V. Control of the Immune Response in Vitro by Calcium Ions: I. The Antagonistic Action of Calcium Ions on Cell Proliferation and on Cell Differentiation. Immunology 1974, 27, 531. [Google Scholar] [PubMed]
- Roberts, G.A.F. Chitin Chemistry; Macmillan Education: London, UK, 1992; ISBN 978-1-349-11547-1. [Google Scholar]
- Confederat, L.; Tuchilus, C.; Dragan, M.; Sha’at, M.; Dragostin, O. Preparation and Antimicrobial Activity of Chitosan and Its Derivatives: A Concise Review. Molecules 2021, 26, 3694. [Google Scholar] [CrossRef] [PubMed]
- Kucharska, M.; Sikora, M.; Brzoza-Malczewska, K.; Owczarek, M. Antimicrobial properties of chitin and chitosan. In Chitin and Chitosan: Properties and Applications; Willey Renewable Resources: Great Britain; John Wiley & Sons: Hoboken, NJ, USA, 2019; pp. 169–188. [Google Scholar]
- Chauhan, S.; Das, S.; Abdul Hamid Baig, F.; Shah Hussain Qadri, S.; Modi, H. Applications of chitosan in dentistry—A review article. J. Pharm. Negat. Results 2022, 13, 1359–1364. [Google Scholar] [CrossRef]
- Zakrzewski, W.; Dobrzyński, M.; Zawadzka-Knefel, A.; Lubojański, A.; Dobrzyński, W.; Janecki, M.; Kurek, K.; Szymo-nowicz, M.; Wiglusz, R.J.; Rybak, Z. Nanomaterials Application in Endodontics. Materials 2021, 14, 5296. [Google Scholar] [CrossRef] [PubMed]
- Sikora, M.; Wiśniewska-Wrona, M.; Arabski, M. Biomedyczne właściwości chitozanu—Zasto-sowanie w inżynierii tkankowej Biomedical properties of chitosan: Application in tissue engineering. Postępy Hig. I Med. Doświadczalnej 2021, 75, 1020–1037. [Google Scholar] [CrossRef]
- Ratih, D.N.; Mulyawati, E.; Santi, R.K.; Kristanti, Y. Antibacterial and Cytotoxicity of Root Canal Sealer with the Addition of Chitosan Nanoparticle at Various Concentrations. Eur. J. Dent. 2023, 17, 398–402. [Google Scholar] [CrossRef]
- Maharti, I.D.; Suprastiwi, E.; Agusnar, H.; Herdianto, N.; Margono, A. Characterization, Physical Properties, and Biocompatibility of Novel Tricalcium Silicate–Chitosan Endodontic Sealer. Eur. J. Dent. 2023, 17, 127–135. [Google Scholar] [CrossRef]
- Pattanaik, S.; Jena, A.; Shashirekha, G. In Vitro Comparative Evaluation of Antifungal Efficacy of Three Endodontic Sealers with and without Incorporation of Chitosan Nanoparticles against Candida Albicans. J. Conserv. Dent. 2019, 22, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Rane, S.; Pandit, V.; Gaikwad, A.; Shinde, M.; Chavan, S.; Jadhav, A.; Jadhav, A. Comparative Evaluation of Apical Microleakage of Bioceramic Sealer versus Bioceramic Sealer Mixed with Chitosan Nanoparticles—An In-Vitro Study. J. Popul. Ther. Clin. Pharmacol. 2023, 30, 179–188. [Google Scholar]
- Harishma, S.; Jeyalakshmi, K.; Shetty, K.S.; Harshini, S. Comparative Analysis of an Epoxy Resin-Based and a Premixed Calcium Silicate-Based Sealer’s Push-out Bond Strength with and without Incorporation of Chitosan. J. Conserv. Dent. Endod. 2024, 27, 970–974. [Google Scholar] [CrossRef]
- Loyola-Rodríguez, J.P.; Torres-Méndez, F.; Espinosa-Cristobal, L.F.; García-Cortes, J.O.; Loyola-Leyva, A.; González, F.J.; Soto-Barreras, U.; Nieto-Aguilar, R.; Contreras-Palma, G. Antimicrobial Activity of Endodontic Sealers and Medications Containing Chitosan and Silver Nanoparticles against Enterococcus Faecalis. J. Appl. Biomater. Funct. Mater. 2019, 17, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Desai, S.; Chandler, N. Calcium Hydroxide–Based Root Canal Sealers: A Review. J. Endod. 2009, 35, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Shindova, M. Root Canal Filling Materials in Primary Teeth-Review. Folia Medica 2021, 63, 657–662. [Google Scholar] [CrossRef]
- Barja-Fidalgo, F.; Moutinho-Ribeiro, M.; Oliveira, M.; de Oliveira, B. A systematic review of root canal filling materials for deciduous teeth: Is there an alternative for zinc oxide-eugenol? ISRN Dent. 2011, 2011, 367318. [Google Scholar] [CrossRef]
- Ozalp, N.; Saroglu, I.; Sönmez, H. Evaluation of Various Root Canal Filling Materials in Primary Molar Pulpectomies: An in Vivo Study. Am. J. Dent. 2005, 18, 347. [Google Scholar]
- Fakhri, E.; Eslami, H.; Maroufi, P.; Pakdel, F.; Taghizadeh, S.; Ganbarov, K.; Yousefi, M.; Tanomand, A.; Yousefi, B.; Mahmoudi, S.; et al. Chitosan Biomaterials Application in Dentistry. Int. J. Biol. Macromol. 2020, 162, 956–974. [Google Scholar] [CrossRef]
- Wieckiewicz, M.; Boening, K.W.; Grychowska, N.; Paradowska-Stolarz, A. Clinical Application of Chitosan in Dental Specialities. Mini Rev. Med. Chem. 2017, 17, 401–409. [Google Scholar] [CrossRef] [PubMed]
Type of Sealers | Advantages | Disadvantages | Product Name (Manufacturer, Country) | Composition | References |
---|---|---|---|---|---|
Zinc oxide-eugenol based | Antimicrobial, resorbable when overextended, removable | Cytotoxicity, porosity, shrinkage | Tubli-Seal (Kerr, Brea, CA, USA); Endomethazone N (Septodont, Saint-Maurdes-Fossés, France); Endoseal (Prevest, Jammu, India); Essenseal (Produits Dentaires, Vevey, Switzerland); Pulpdent Root Canal Sealer (Pulpdent, Watertown, MA, USA) | Zinc oxide, eugenol, barium sulfate, thymol iodide, eugenol, etc. | [24,25,26,27,28] |
Glass ionomer based | Chemical bonding to dentin, low shrinkage, low solubility, fracture resistance | Short-term antimicrobial, difficult retreatment | Ketac Endo (3M ESPE, Saint Paul, MN, USA) | Glass powder, polycarboxylic acids, tartaric acid | [13] |
Silicone based | Good biocompatibility, dimensional stability | Lack of antibacterial activity, cost | GuttaFlow 2; GuttaFlow Bioseal (Coltene Whaledent, Altstätten, Switzerland) | Gutta-percha powder, silicone oil, polydimethylsiloxane | [29] |
Methacrylate resin based | Adhesion, monoblock potential, fracture resistance | Cytotoxicity, residual monomers, gaps, cost | EndoRez (Ultradent, South Jordan, UT, USA); Super-Bond RC Sealer (SunMedical, Shiga, Japan) | UDMA, TEGDMA, PMMA, MMA, 4-META | [24,30,31] |
Epoxy resin based | Good sealing, low shrinkage, dimensional stability | Moderate biocompatibility, no bioactivity | AH Plus (Dentsply Sirona, Charlotte, NC, USA); Adseal (Meta Biomed, Chungcheongbuk-do, Republic of Korea); AH-26 (Dentsply Maillefer, Ballaigues, Switzerland) | Epoxy resin, amine adducts, zirconium dioxide | [32,33,34] |
Calcium hydroxide based | Alkaline pH, biocompatibility, hard tissue induction | Solubility, weaker sealing | Sealapex (Kerr, Brea, CA, USA); Apexit Plus (Ivoclar Vivadent, Schaan, Liechtenstein); Calapex (Prevest, Jammu, India) | Calcium hydroxide, calcium oxide, bismuth oxide, resin components | [35,36,37] |
Bioceramic based | Bioactivity, no shrinkage, chemical bonding to dentin | Difficult to remove, neurotoxicity risk | EndoSequence BC Sealer (Brasseler, Savannah, GA, USA); TotalFill BC Sealer (FKG, La Chaux-de-Fonds, Switzerland); BioRoot RCS (Septodont, Saint-Maurdes-Fossés, France); AH Plus Bioceramic (Dentsply Sirona, Charlotte, NC, USA); CeraSeal (Meta Biomed, Chungcheongbuk-do, Republic of Korea) | Tricalcium silicate, dicalcium silicate, calcium phosphate, zirconium oxide, tricalcium aluminate DMSO | [38,39,40,41,42,43] |
Study | Aim | Materials and Methods | Key Results | Conclusions |
---|---|---|---|---|
Ratih et al. (2023) [185] | Evaluate antibacterial and cytotoxic effects of epoxy resin-based sealer with different CS concentrations | AH26 modified with 0%, 10%, 20%, 30% CS; E. faecalis diffusion test; Vero cell cytotoxicity assay | 10% CS: largest inhibition zone; 30% CS: lowest cytotoxicity | CS increases antibacterial efficacy and decreases cytotoxicity in a concentration-dependent manner |
Maharti et al. (2023) [186] | Compare tricalcium silicate–CS-based sealer with commercial sealers | TCS-C vs. AH Plus vs. Sure-Seal Root; physicochemical tests; fibroblast viability assay | TCS-C: good biocompatibility, moderate flow, comparable thickness | TCS-C has potential, though further optimization is needed |
Pattanaik et al. (2020) [187] | Evaluate antifungal activity of sealers with and without 2% CS | AH Plus, Apexit Plus, MTA Fillapex with and without 2% CS; C. albicans disk diffusion | Sealers and CS showed higher antifungal activity; AH Plus and CS was most effective | CS improves antifungal efficacy of all sealer types |
Rane et al. (2023) [188] | Assess apical microleakage of bioceramic sealer with/without CS | Bioceramic sealer with and without CS; dye leakage test on extracted teeth | Lower microleakage in CS-modified group | CS improves sealing performance and dentinal adhesion |
Harishma et al. (2024) [189] | Measure push-out bond strength of sealers with and without CS | Adseal and CeraSeal with and without 2% CS; tested at 7 mm and 11 mm from apex | Higher bond strength in CS-modified groups at both levels | CS enhances adhesion of sealers to dentin |
Loyola-Rodríguez et al. (2019) [190] | Compare antibacterial activity of sealers modified with CS, AgNPs, and CHX | Multiple sealers with CS-CHX, AgNPs, Ca(OH)2, and CHX; direct E. faecalis inhibition test | Highest activity for CS-CHX modified groups | CS-CHX is an effective synergistic antibacterial modification |
Type of Sealers | Advantages | Disadvantages |
---|---|---|
Zinc oxide-eugenol based |
|
|
Glass ionomer based |
|
|
Silicone based |
|
|
Methacrylate resin based |
|
|
Epoxy resin based |
|
|
Calcium hydroxide based |
|
|
Bioceramic based |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Błaszczyk-Pośpiech, A.; Struzik, N.; Szymonowicz, M.; Sareło, P.; Wiśniewska-Wrona, M.; Wiśniewska, K.; Dobrzyński, M.; Wawrzyńska, M. Endodontic Sealers and Innovations to Enhance Their Properties: A Current Review. Materials 2025, 18, 4259. https://doi.org/10.3390/ma18184259
Błaszczyk-Pośpiech A, Struzik N, Szymonowicz M, Sareło P, Wiśniewska-Wrona M, Wiśniewska K, Dobrzyński M, Wawrzyńska M. Endodontic Sealers and Innovations to Enhance Their Properties: A Current Review. Materials. 2025; 18(18):4259. https://doi.org/10.3390/ma18184259
Chicago/Turabian StyleBłaszczyk-Pośpiech, Anna, Natalia Struzik, Maria Szymonowicz, Przemysław Sareło, Maria Wiśniewska-Wrona, Kamila Wiśniewska, Maciej Dobrzyński, and Magdalena Wawrzyńska. 2025. "Endodontic Sealers and Innovations to Enhance Their Properties: A Current Review" Materials 18, no. 18: 4259. https://doi.org/10.3390/ma18184259
APA StyleBłaszczyk-Pośpiech, A., Struzik, N., Szymonowicz, M., Sareło, P., Wiśniewska-Wrona, M., Wiśniewska, K., Dobrzyński, M., & Wawrzyńska, M. (2025). Endodontic Sealers and Innovations to Enhance Their Properties: A Current Review. Materials, 18(18), 4259. https://doi.org/10.3390/ma18184259