In Situ Fabrication of Gradient Porous Layers on Sintered Metallic Substrates via Surface Friction Treatment
Abstract
1. Introduction
2. Materials and Methods
2.1. Material and Surface Friction Treatment
2.2. Characterization
3. Results and Discussion
3.1. Morphology Evolution of Porous Samples
3.2. Processing Window and Deformation Mechanism
- A vertical component (Fv) compressing the porous surface;
- A horizontal component (Fh) imparting shear deformation.
3.3. Pore Architecture Evolution
3.4. Surface Topography Modification
4. Conclusions
- Crack-free gradient porous layers were achieved within optimal processing parameters (scanning velocity < 160 mm/s; normal load < 160 N). Exceeding these thresholds induced crack formation throughout the gradient layer.
- Pore structure refinement occurred via surface compression during SFT, narrowing the pore size distribution and reducing maximum pore size from 25 μm to 15 μm. This decreased gas fluctuation by approximately 40%.
- Surface roughness was significantly reduced from 23.8 μm (as-sintered) to ~4.3 μm (SFT-treated), resulting in markedly smoother surfaces.
- The reduction in surface pore size and optimization of roughness resulted in better surface functionality and cost advantages for the gradient porous material obtained through SBF treatment.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tian, X.; Zhao, Z.; Wang, H.; Liu, X.; Song, X. Progresses on the additive manufacturing of functionally graded metallic materials. J. Alloys Compd. 2023, 960, 170687. [Google Scholar] [CrossRef]
- Ji, W.; Zhou, R.; Vivegananthan, P.; Wu, M.S.; Gao, H.; Zhou, K. Recent progress in gradient-structured metals and alloys. Prog. Mater. Sci. 2023, 140, 101194. [Google Scholar] [CrossRef]
- Veeman, D.; Dutta, H.; Vellaisamy, M.; Jeevaraj, K. Functionally graded sustainable lattice structures: Insights into material grading and lattice hybridization. Mater. Lett. 2025, 379, 137713. [Google Scholar] [CrossRef]
- Patel, M. A comprehensive review of functionally graded materials and their ballistic impact performance: Current status and future challenges. Next Mater. 2025, 8, 100704. [Google Scholar] [CrossRef]
- Liu, L.; Huang, X.; Wang, G.; Zhang, X.; Zhou, K.; Wang, B. Microstructure and Mechanical Properties of Functionally Graded Materials on a Ti-6Al-4V Titanium Alloy by Laser Cladding. Materials 2025, 18, 3032. [Google Scholar] [CrossRef]
- Han, X.-Y.; Liu, S.-H.; Zhang, S.-Y.; Sun, J.-K. Functionally graded materials based on porous poly(ionic liquid)s: Design strategies and applications. Chin. J. Struct. Chem. 2025, 44, 100601. [Google Scholar] [CrossRef]
- Yadav, S.; Liu, S.; Singh, R.K.; Sharma, A.K.; Rawat, P. A state-of-art review on functionally graded materials (FGMs) manufactured by 3D printing techniques: Advantages, existing challenges, and future scope. J. Manuf. Process. 2024, 131, 2051–2072. [Google Scholar] [CrossRef]
- Shichalin, O.O.; Papynov, E.K.; Buravlev, I.Y.; Buravleva, A.A.; Chuklinov, S.V.; Gridasova, E.A.; Pogodaev, A.V.; Nepomnyushchaya, V.A.; Kornakova, Z.E.; Lembikov, A.O.; et al. Functionally Gradient Material Fabrication Based on Cr, Ti, Fe, Ni, Co, Cu Metal Layers via Spark Plasma Sintering. Coatings 2023, 13, 138. [Google Scholar] [CrossRef]
- Shichalin, O.O.; Ivanov, N.P.; Seroshtan, A.I.; Nadaraia, K.V.; Simonenko, T.L.; Gurin, M.S.; Kornakova, Z.E.; Shchitovskaya, E.V.; Barkhudarov, K.V.; Tsygankov, D.K.; et al. Spark plasma sintering of Ti2AlC/TiC MAX-phase based composite ceramic materials and study of their electrochemical characteristics. Ceram. Int. 2024, 50, 53120–53128. [Google Scholar] [CrossRef]
- Lu, K.; Lu, J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment. Mater. Sci. Eng. A 2004, 375–377, 38–45. [Google Scholar] [CrossRef]
- Heydari Astaraee, A.; Miresmaeili, R.; Bagherifard, S.; Guagliano, M.; Aliofkhazraei, M. Incorporating the principles of shot peening for a better understanding of surface mechanical attrition treatment (SMAT) by simulations and experiments. Mater. Des. 2017, 116, 365–373. [Google Scholar] [CrossRef]
- Fu, T.; Zhan, Z.; Zhang, L.; Yang, Y.; Liu, Z.; Liu, J.; Li, L.; Yu, X. Effect of surface mechanical attrition treatment on corrosion resistance of commercial pure titanium. Surf. Coat. Technol. 2015, 280, 129–135. [Google Scholar] [CrossRef]
- Boggarapu, V.; Gujjala, R.; Ojha, S.; Acharya, S.; Venkateswara babu, P.; Chowdary, S.; kumar Gara, D. State of the art in functionally graded materials. Compos. Struct. 2021, 262, 113596. [Google Scholar] [CrossRef]
- Zhou, X.; Li, X.; Lu, K. 70 nm: The most unstable grain size in Cu prepared by surface mechanical grinding treatment. Nano Mater. Sci. 2020, 2, 32–38. [Google Scholar] [CrossRef]
- Liu, X.C.; Zhang, H.W.; Lu, K. Formation of nano-laminated structure in nickel by means of surface mechanical grinding treatment. Acta Mater. 2015, 96, 24–36. [Google Scholar] [CrossRef]
- Dong, L.L.; Ahangarkani, M.; Zhang, W.; Zhang, B.; Chen, W.G.; Fu, Y.Q.; Zhang, Y.S. Formation of gradient microstructure and mechanical properties of hot-pressed W-20 wt% Cu composites after sliding friction severe deformation. Mater. Charact. 2018, 144, 325–335. [Google Scholar] [CrossRef]
- Liu, C.; Chen, X.; Zhang, W.; Zhang, Y.; Pan, F. Microstructure, creep behavior and corrosion resistance in the ultrafine-grained surface layer of Mg-6Zn-0.2Y-0.4Ce-0.5Zr alloy processed by surfacing friction treatment. Mater. Sci. Eng. A 2020, 776, 138995. [Google Scholar] [CrossRef]
- Zheng, G.Y.; Luo, X.; Yang, Y.Q.; Kou, Z.D.; Huang, B.; Zhang, Y.S.; Zhang, W. The gradient structure in the surface layer of an Al-Zn-Mg-Cu alloy subjected to sliding friction treatment. Results Phys. 2019, 13, 102318. [Google Scholar] [CrossRef]
- Bennett, T.D.; Coudert, F.-X.; James, S.L.; Cooper, A.I. The changing state of porous materials. Nat. Mater. 2021, 20, 1179–1187. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, Y.; Tong, S.; Wang, Y.; Wang, Z.; Sui, R.; Yang, K.; Witte, F.; Yang, S. Porous metal materials for applications in orthopedic field: A review on mechanisms in bone healing. J. Orthop. Transl. 2024, 49, 135–155. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, H.; Lin, J.; Wang, F.; Liu, Z.; Wang, L.; Li, Z.; Li, Y.; Li, Y.; Lu, Z. Nature-inspired hierarchical building materials with low CO2 emission and superior performance. Nat. Commun. 2025, 16, 3018. [Google Scholar] [CrossRef]
- Singh, H.; Saxena, P.; Puri, Y.M. The manufacturing and applications of the porous metal membranes: A critical review. CIRP J. Manuf. Sci. Technol. 2021, 33, 339–368. [Google Scholar] [CrossRef]
- Miao, X.; Sun, D. Graded/Gradient Porous Biomaterials. Materials 2010, 3, 26–47. [Google Scholar] [CrossRef]
- Yang, K.; Wang, J.; Yang, B.J.; Tang, H.P. Fabrication of Industrial-Scale Porous Stainless Steel Membrane Tubes and Their Applications. JOM 2020, 72, 4576–4582. [Google Scholar] [CrossRef]
- Yang, K.; Xu, C.Y.; Wang, H.; Zhao, S.Y.; Shen, L. One step co-sintering synthesis of asymmetric metal membrane with smooth surface for microfiltration. Mater. Lett. 2024, 367, 136626. [Google Scholar] [CrossRef]
- Zou, D.; Gong, Y.; Liu, Y.; Low, Z.-X.N.; Zhong, Z.; Xing, W. One-step co-sintering of hierarchical mullite whisker/fiber membranes with gradient pore structures for effective filtration of dust-laden gas. J. Membr. Sci. 2023, 668, 121143. [Google Scholar] [CrossRef]
- Ma, J.; Chen, W.; Qian, J.; Shui, A.; Du, B.; He, C. Co-pressing and co-sintering preparation of cost-effective and high-performance asymmetric ceramic membrane for oily wastewater treatment. Sep. Purif. Technol. 2023, 323, 124373. [Google Scholar] [CrossRef]
- Zou, D.; Zhong, Z.; Fan, Y. Co-sintered ceramic membranes for separation applications: Where are we and where to go? Sep. Purif. Technol. 2024, 338, 126441. [Google Scholar] [CrossRef]
- Lin, Y.; Zou, D.; Chen, X.; Qiu, M.; Kameyama, H.; Fan, Y. Low temperature sintering preparation of high-permeability TiO2/Ti composite membrane via facile coating method. Appl. Surf. Sci. 2015, 349, 8–16. [Google Scholar] [CrossRef]
- Ghanbarian, B.; Hunt, A.G.; Daigle, H. Fluid flow in porous media with rough pore-solid interface. Water Resour. Res. 2016, 52, 2045–2058. [Google Scholar] [CrossRef]
- Yu, J.; Hu, X.; Huang, Y. A modification of the bubble-point method to determine the pore-mouth size distribution of porous materials. Sep. Purif. Technol. 2010, 70, 314–319. [Google Scholar] [CrossRef]
- Holdich, R.; Kosvintsev, S.; Cumming, I.; Zhdanov, S. Pore design and engineering for filters and membranes. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2006, 364, 161–174. [Google Scholar] [CrossRef] [PubMed]
- Heidenreich, S. Hot gas filtration—A review. Fuel 2013, 104, 83–94. [Google Scholar] [CrossRef]
- Zhong, Z.; Xing, W.; Zhang, B. Fabrication of ceramic membranes with controllable surface roughness and their applications in oil/water separation. Ceram. Int. 2013, 39, 4355–4361. [Google Scholar] [CrossRef]
- Zhao, L.; Bram, M.; Buchkremer, H.P.; Stöver, D.; Li, Z. Preparation of TiO2 composite microfiltration membranes by the wet powder spraying method. J. Membr. Sci. 2004, 244, 107–115. [Google Scholar] [CrossRef]
- Zhong, Z.; Li, D.; Zhang, B.; Xing, W. Membrane surface roughness characterization and its influence on ultrafine particle adhesion. Sep. Purif. Technol. 2012, 90, 140–146. [Google Scholar] [CrossRef]
- Van Gestel, T.; Kruidhof, H.; Blank, D.H.A.; Bouwmeester, H.J.M. ZrO2 and TiO2 membranes for nanofiltration and pervaporation: Part 1. Preparation and characterization of a corrosion-resistant ZrO2 nanofiltration membrane with a MWCO < 300. J. Membr. Sci. 2006, 284, 128–136. [Google Scholar]
- Li, Z.; Qiu, N.; Yang, G. Effects of synthesis parameters on the microstructure and phase structure of porous 316L stainless steel supported TiO2 membranes. J. Membr. Sci. 2009, 326, 533–538. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, K.; Zhang, S.; Xu, C.; Zhao, S.; Shen, L. In Situ Fabrication of Gradient Porous Layers on Sintered Metallic Substrates via Surface Friction Treatment. Materials 2025, 18, 4220. https://doi.org/10.3390/ma18184220
Yang K, Zhang S, Xu C, Zhao S, Shen L. In Situ Fabrication of Gradient Porous Layers on Sintered Metallic Substrates via Surface Friction Treatment. Materials. 2025; 18(18):4220. https://doi.org/10.3390/ma18184220
Chicago/Turabian StyleYang, Kun, Shuai Zhang, Chenyang Xu, Shaoyang Zhao, and Lei Shen. 2025. "In Situ Fabrication of Gradient Porous Layers on Sintered Metallic Substrates via Surface Friction Treatment" Materials 18, no. 18: 4220. https://doi.org/10.3390/ma18184220
APA StyleYang, K., Zhang, S., Xu, C., Zhao, S., & Shen, L. (2025). In Situ Fabrication of Gradient Porous Layers on Sintered Metallic Substrates via Surface Friction Treatment. Materials, 18(18), 4220. https://doi.org/10.3390/ma18184220