Advances in Modelling and Simulation of Materials in Applied Sciences
Acknowledgments
Conflicts of Interest
References
- Lee, J.-W.; Lee, M.-G.; Barlat, F. Finite Element Modeling Using Homogeneous Anisotropic Hardening and Application to Spring-Back Prediction. Int. J. Plast. 2012, 29, 13–41. [Google Scholar] [CrossRef]
- Johnsen, J.; Holmen, J.K.; Myhr, O.R.; Hopperstad, O.S.; Børvik, T. A Nano-Scale Material Model Applied in Finite Element Analysis of Aluminium Plates under Impact Loading. Comput. Mater. Sci. 2013, 79, 724–735. [Google Scholar] [CrossRef]
- Kaushik, V.; Narasimhan, R.; Mishra, R.K. Finite Element Simulations of Notch Tip Fields in Magnesium Single Crystals. Acta Mater. 2014, 189, 195–216. [Google Scholar] [CrossRef]
- Mazière, M.; Forest, S. Strain Gradient Plasticity Modeling and Finite Element Simulation of Lüders Band Formation and Propagation. Contin. Mech. Thermodyn. 2015, 27, 83–104. [Google Scholar] [CrossRef]
- Spanos, K.N.; Georgantzinos, S.K.; Anifantis, N.K. Mechanical Properties of Graphene Nanocomposites: A Multiscale Finite Element Prediction. Compos. Struct. 2015, 132, 536–544. [Google Scholar] [CrossRef]
- Chatzopoulou, G.; Karamanos, S.A.; Varelis, G.E. Finite Element Analysis of UOE Manufacturing Process and Its Effect on Mechanical Behavior of Offshore Pipes. Int. J. Solids Struct. 2016, 83, 13–27. [Google Scholar] [CrossRef]
- Brilakis, E.V.; Kaselouris, E.; Markatos, K.; Mastrokalos, D.; Provatidis, C.; Efstathopoulos, N.; Chronopoulos, E. Mitchell’s Osteotomy Augmented with Bio-Absorbable Pins for the Treatment of Hallux Valgus: A Comparative Finite Element Study. J. Musculoskelet. Neuronal Interact. 2019, 19, 234–244. [Google Scholar]
- Berardo, A.; Borasso, M.; Gallus, E.; Pugno, N.M. Finite Element Simulations and Statistical Analysis for the Tribological Design of Mutually Textured Surfaces and Related Experimental Validation. J. Tribol. 2025, 147, 031701. [Google Scholar] [CrossRef]
- Langlet, A.; Petit, A.; Chaari, F.; Delille, R.; Drazetic, P. On the Response of Re-Entrant Auxetic Structures under Dynamic Crushing: Analytical Approach and Finite Element Simulations. Int. J. Crashworthin. 2025, 30, 387–401. [Google Scholar] [CrossRef]
- Nayak, A.S.; Prieto, A.; Fernández-Comesaña, D. Accuracy of Post-Processing Projections for Displacement Based Finite Element Simulations in Room Acoustics. Finite Elem. Anal. Des. 2025, 248, 104349. [Google Scholar] [CrossRef]
- Ionescu, V. Finite Element Method Modelling of a High Temperature PEM Fuel Cell. Rom. J. Phys. 2014, 59, 285–294. [Google Scholar]
- Massimino, G.; Colombo, A.; D’Alessandro, L.; Procopio, F.; Ardito, R.; Ferrera, M.; Corigliano, A. Multiphysics Modelling and Experimental Validation of an Air-Coupled Array of PMUTs with Residual Stresses. J. Micromech. Microeng. 2018, 28, 054005. [Google Scholar] [CrossRef]
- Kaselouris, E.; Dimitriou, V.; Fitilis, I.; Skoulakis, A.; Koundourakis, G.; Clark, E.L.; Chatzakis, J.; Bakarezos, M.; Nikolos, I.K.; Papadogiannis, N.A.; et al. Preliminary Investigation on the Use of Low Current Pulsed Power Z-Pinch Plasma Devices for the Study of Early Stage Plasma Instabilities. Plasma Phys. Control. Fusion 2018, 60, 014031. [Google Scholar] [CrossRef]
- Ahmed, K.; Paul, B.K.; Jabin, M.A.; Biswas, B. FEM Analysis of Birefringence, Dispersion and Nonlinearity of Graphene Coated Photonic Crystal Fiber. Ceram. Int. 2019, 45, 15343–15347. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, L.; Rosenkranz, A.; Song, C.; Yan, Y.; Sun, T. Nanosecond Pulsed Laser Ablation of Silicon—Finite Element Simulation and Experimental Validation. J. Micromech. Microeng. 2019, 29, 075009. [Google Scholar] [CrossRef]
- Orphanos, Y.; Kosma, K.; Kaselouris, E.; Vainos, N.; Dimitriou, V.; Bakarezos, M.; Tatarakis, M.; Papadogiannis, N.A. Integrated Nanosecond Laser Full-Field Imaging for Femtosecond Laser-Generated Surface Acoustic Waves in Metal Film–Glass Substrate Multilayer Materials. Appl. Sci. 2019, 9, 269. [Google Scholar] [CrossRef]
- Kaselouris, E.; Fitilis, I.; Skoulakis, A.; Orphanos, Y.; Koundourakis, G.; Clark, E.L.; Chatzakis, J.; Bakarezos, M.; Papadogiannis, N.A.; Dimitriou, V.; et al. The Importance of the Laser Pulse–Ablator Interaction Dynamics Prior to the Ablation Plasma Phase in Inertial Confinement Fusion Studies. Philos. Trans. R. Soc. A 2020, 378, 20200030. [Google Scholar] [CrossRef]
- Tserpes, K.; Kormpos, P. Detailed Finite Element Models for the Simulation of the Laser Shock Wave Response of 3D Woven Composites. J. Compos. Sci. 2024, 8, 83. [Google Scholar] [CrossRef]
- Scherer, C.; Schmid, F.; Letz, M.; Horbach, J. Structure and Dynamics of B${2}O{3}$ Melts and Glasses: From ab initio to Classical Molecular Dynamics Simulations. Comput. Mater. Sci. 2019, 159, 73–85. [Google Scholar] [CrossRef]
- Chu, W.; Saidi, W.A.; Prezhdo, O.V. Long-Lived Hot Electron in a Metallic Particle for Plasmonics and Catalysis: Ab initio Nonadiabatic Molecular Dynamics with Machine Learning. ACS Nano 2020, 14, 10305–10313. [Google Scholar] [CrossRef]
- Liu, J.; He, X. Ab initio Molecular Dynamics Simulation of Liquid Water with Fragment-Based Quantum Mechanical Approach under Periodic Boundary Conditions. Chin. J. Chem. Phys. 2021, 34, 761–768. [Google Scholar] [CrossRef]
- Dinsdale, A.; Khvan, A.; Smirnova, E.A.; Ponomareva, A.V.; Abrikosov, I.A. Modelling the thermodynamic data for hcp Zn and Cu–Zn alloys—An ab initio and calphad approach. Calphad 2021, 72, 102253. [Google Scholar] [CrossRef]
- Singh, M.; Shukla, A.; Chakraborty, B. An Ab-initio Study of the Y Decorated 2D Holey Graphyne for Hydrogen Storage Application. Nanotechnology 2022, 33, 405406. [Google Scholar] [CrossRef]
- Dornheim, T.; Schwalbe, S.; Moldabekov, Z.A.; Vorberger, J.; Tolias, P. Ab initio Path Integral Monte Carlo Simulations of the Uniform Electron Gas on Large Length Scales. J. Phys. Chem. Lett. 2024, 15, 1406–1412. [Google Scholar] [CrossRef]
- Huang, N.Q.; Shi, Y.; Meng, Z.K.; Ban, Z.G. A unified photo-excited GaAs model from ab initio simulation in terahertz regime. J. Phys. D Appl. Phys. 2024, 57, 265102. [Google Scholar] [CrossRef]
- Li, H.-S.; Cao, Z.-J. Matlab Codes of Subset Simulation for Reliability Analysis and Structural Optimization. Struct. Multidiscip. Optim. 2016, 54, 391–410. [Google Scholar] [CrossRef]
- Rong, Z.; Yi, J.; Li, F.; Liu, Y.; Eckert, J. Thermal Stress Analysis and Structural Optimization of Ladle Nozzle Based on Finite Element Simulation. Mater. Res. Express 2022, 9, 045601. [Google Scholar] [CrossRef]
- Chen, J.; Liang, X.; Xu, P.; Yao, S. Crashworthiness Analysis and Multi-Objective Optimisation of Multi-Cell Windowed Structures under Dynamic Impact Loading. Shock Vib. 2022, 2022, 2263308. [Google Scholar] [CrossRef]
- Xie, C.; Wang, D.; Zong, L.; Kong, D. Crashworthiness analysis and multi-objective optimization of spatial lattice structure under dynamic compression. Int. J. Impact Eng. 2023, 180, 104713. [Google Scholar] [CrossRef]
- Li, H.; Zhuang, S.; Zhao, B.; Yu, Y.; Liu, Y. Visualization of the Gas Permeation in Core–Shell MOF/Polyimide Mixed Matrix Membranes and Structural Optimization Based on Finite Element Equivalent Simulation. Sep. Purif. Technol. 2023, 305, 122504. [Google Scholar] [CrossRef]
- Rekatsinas, C.S.; Dimitriou, D.K.; Chrysochoidis, N.A. A Road Map to the Structural Optimization of a Type-C Composite UAV. Aerospace 2024, 11, 211. [Google Scholar] [CrossRef]
- Jin, H.; Jin, L. Stress Analysis and Structural Optimisation of Insulating Rods Under Dynamic and Static Loads. High Voltage 2025, 10, 116–125. [Google Scholar] [CrossRef]
- Kaselouris, E.; Papadoulis, T.; Variantza, E.; Baroutsos, A.; Dimitriou, V. A Study of Explicit Numerical Simulations in Orthogonal Metal Cutting. Solid State Phenom. 2017, 261, 339–346. [Google Scholar] [CrossRef]
- Stender, M.E.; Beghini, L.L.; Sugar, J.D.; Veilleux, M.G.; Subia, S.R.; Smith, T.R.; San Marchi, C.W.; Brown, A.A.; Dagel, D.J. A Thermal–Mechanical Finite Element Workflow for Directed Energy Deposition Additive Manufacturing Process Modeling. Addit. Manuf. 2018, 21, 556–566. [Google Scholar] [CrossRef]
- James, S.; De La Luz, L. Finite Element Analysis and Simulation Study of CFRP/Ti Stacks Using Ultrasonic Additive Manufacturing. Int. J. Adv. Manuf. Technol. 2019, 104, 4421–4431. [Google Scholar] [CrossRef]
- Ibrahim, M.M.; El Aghoury, I.M.; Ibrahim, S.A.-B. Experimental and Numerical Investigation of Ultimate Shear Strength of Unstiffened Slender Web-Tapered Steel Members. Thin-Walled Struct. 2020, 148, 106601. [Google Scholar] [CrossRef]
- Soliman, H.A.; Shash, A.Y.; El Hossainy, T.M.; Abd-Rabou, M. Investigation of Process Parameters in Orthogonal Cutting Using Finite Element Approaches. Heliyon 2020, 6, e05498. [Google Scholar] [CrossRef]
- Saddighi, A.; Mahbod, M.; Asgari, M. Bi-tubular corrugated composite conical–cylindrical tube for energy absorption in axial and oblique loading: Analysis and optimization. J. Compos. Mater. 2020, 54, 2399–2432. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, X.; Ren, B.; Liu, J.; Zhao, R. Effect of Geometrical Factors on Torsion in Cold Roll Forming of the Lower Side Beam of a Car. Appl. Sci. 2021, 11, 7852. [Google Scholar] [CrossRef]
- Albak, E.I. Crashworthiness design and optimization of nested structures with a circumferentially corrugated circular outer wall and inner ribs. Thin-Walled Struct. 2021, 167, 108219. [Google Scholar] [CrossRef]
- Luo, Z.; Sun, M.; Zhang, Z.; Lu, C.; Zhang, G.; Fan, X. Finite element analysis of circle-to-rectangle roll forming of thick-walled rectangular tubes with small rounded corners. Int. J. Mater. Form. 2022, 15, 73. [Google Scholar] [CrossRef]
- Abeyrathna, B.; Ghanei, S.; Rolfe, B.; Taube, R.; Weiss, M. Optimising part quality in the flexible roll forming of an automotive component. Int. J. Adv. Manuf. Tech. 2022, 118, 3361–3373. [Google Scholar] [CrossRef]
- Pacana, J.; Siwiec, D.; Pacana, A. Numerical Analysis of the Kinematic Accuracy of the Hermetic Harmonic Drive in Space Vehicles. Appl. Sci. 2023, 13, 1694. [Google Scholar] [CrossRef]
- Yan, X.; Liu, Z.; Zhao, Y.; Li, Y.; Chen, W.; Li, M. Experimental and Numerical Study on the Effect of Load Direction on the Bolt Loosening Failure. Eng. Fail. Anal. 2024, 163, 108574. [Google Scholar] [CrossRef]
- Yang, F.; Deng, X.; Wang, C. Analysis of energy absorption characteristics of a sinusoidal corrugated filled tube. Mech. Adv. Mater. Struct. 2024, 31, 7386–7403. [Google Scholar] [CrossRef]
- Rojas-Sola, J.I.; Sánchez-García, S. Mechanical Study of a Single-Cylinder High-Pressure Steam Engine with a Corliss Valve Gear Using Finite Element Method. Appl. Sci. 2025, 15, 4782. [Google Scholar] [CrossRef]
- Sadighi, M.; Hosseini, S.A. Finite Element Simulation and Experimental Study on Mechanical Behavior of 3D Woven Glass Fiber Composite Sandwich Panels. Compos. Part B Eng. 2013, 55, 158–166. [Google Scholar] [CrossRef]
- Sabuncuoglu, B.; Acar, M.; Silberschmidt, V.V. Finite Element Modelling of Fibrous Networks: Analysis of Strain Distribution in Fibres under Tensile Load. Comput. Mater. Sci. 2013, 79, 143–158. [Google Scholar] [CrossRef]
- Zimmermann, J.; Stommel, M. The Mechanical Behaviour of Rubber under Hydrostatic Compression and the Effect on the Results of Finite Element Analyses. Arch. Appl. Mech. 2013, 83, 293–302. [Google Scholar] [CrossRef]
- Saxena, A.; Dwivedi, S.P.; Kumaraswamy, A.; Srivastava, A.K.; Maurya, N.K. Influence of SD Effect on Johnson–Cook Hardening Constitutive Material Model: Numerical and Experimental Investigation for Armor Steel. Mech. Adv. Mater. Struct. 2020, 29, 285–302. [Google Scholar] [CrossRef]
- Kweon, H.D.; Kim, J.W.; Song, O.; Oh, D. Determination of true stress–strain curve of type 304 and 316 stainless steels using a typical tensile test and finite element analysis. Nucl. Eng. Technol. 2021, 53, 647–656. [Google Scholar] [CrossRef]
- Harris, A.; Lee, H.P. Finite element analysis and experimental investigation on the mechanical behaviours of multifunctional sandwich structures embedded with batteries. Adv. Compos. Mater. 2021, 31, 86–101. [Google Scholar] [CrossRef]
- Sudhagar, P.E.; Gunasegeran, M. Evaluation, optimization and prediction of the transverse shear modulus of biomimetic 3D printed sandwich core. Mech. Adv. Mater. Struct. 2022, 31, 854–868. [Google Scholar] [CrossRef]
- Kladovasilakis, N.; Tsongas, K.; Kostavelis, I.; Tzovaras, D.; Tzetzis, D. Effective Mechanical Properties of Additive Manufactured Triply Periodic Minimal Surfaces: Experimental and Finite Element Study. Int. J. Adv. Manuf. Technol. 2022, 121, 7169–7189. [Google Scholar] [CrossRef]
- Lu, J.-F.; Cheng, J.; Feng, Q.-S. Plane wave finite element model for the 2-D phononic crystal under force loadings. Eur. J. Mech. A-Solids 2022, 91, 104426. [Google Scholar] [CrossRef]
- Laly, Z.; Mechefske, C.; Ghinet, S.; Kone, C.T.; Atalla, N. Design and analysis of periodic acoustic metamaterial sound insulator using finite element method. Noise Control Eng. J. 2023, 71, 344–364. [Google Scholar] [CrossRef]
- Danielli, F.; Ciriello, L.; La Barbera, L.; Rodriguez Matas, J.F.; Pennati, G. On the need of a scale-dependent material characterization to describe the mechanical behavior of 3D printed Ti6Al4V custom prostheses using finite element models. J. Mech. Behav. Biomed. Mater. 2023, 140, 105707. [Google Scholar] [CrossRef] [PubMed]
- Tonder, J.D.V.; Venter, M.P.; Venter, G. A New Method for Improving Inverse Finite Element Method Material Characterization for the Mooney–Rivlin Material Model through Constrained Optimization. Math. Comput. Appl. 2023, 28, 78. [Google Scholar] [CrossRef]
- Koppisetti, S.B.; Nallu, R. Material characterization of A356-T6 aluminum alloy and correlation of wheel impact test results using finite element analysis. Int. J. Comp. Mat. Sci. Eng. 2024, 13, 2350025. [Google Scholar] [CrossRef]
- Trindade, D.; Habiba, R.; Fernandes, C.; Costa, A.; Silva, R.; Alves, N.; Martins, R.; Malça, C.; Branco, R.; Moura, C. Material Performance Evaluation for Customized Orthoses: Compression, Flexural, and Tensile Tests Combined with Finite Element Analysis. Polymers 2024, 16, 2553. [Google Scholar] [CrossRef]
- Kaselouris, E.; Nikolos, I.K.; Orphanos, Y.; Bakarezos, M.; Papadogiannis, N.A.; Tatarakis, M.; Dimitriou, V. Elastoplastic study of nanosecond-pulsed laser interaction with metallic films using 3D multiphysics fem modeling. Int. J. Damage Mech. 2016, 25, 42–55. [Google Scholar] [CrossRef]
- Kumar, K.K.; Samuel, G.L.; Shunmugam, M.S. Theoretical and experimental investigations of ultra-short pulse laser interaction on Ti6Al4V alloy. J. Mater. Process. Technol. 2019, 263, 266–275. [Google Scholar] [CrossRef]
- Abali, B.E.; Zohdi, T.I. Multiphysics computation of thermal tissue damage as a consequence of electric power absorption. Comput. Mech. 2020, 65, 149–158. [Google Scholar] [CrossRef]
- Sakaev, I.; Linden, J.; Ichaaya, A.A. Dynamic fracture of SiO2 films due to laser-induced confined micro-explosion at the Si/SiO2 interface: Time-resolved imaging and finite-element simulation. Opt. Laser Technol. 2022, 150, 107938. [Google Scholar] [CrossRef]
- Wang, Z.; Min, J.; Hu, J.; Wang, Z.; Chen, X.; Tang, Z.; Liu, S. Femtosecond laser–acoustic modeling and simulation for AlCu nanofilm nondestructive testing. Front. Mech. Eng. 2024, 19, 33. [Google Scholar] [CrossRef]
- Smart, T.J.; Abali, B.E.; Boschker, H.; Braun, W. Deposition rates in thermal laser epitaxy: Simulation and experiment. J. Phys. D Appl. Phys. 2025, 58, 205303. [Google Scholar] [CrossRef]
- Bellot, J.-P.; Déculot, L.; Jardy, A.; Hans, S.; Doridot, E.; Delfosse, J.; McDonald, N. Numerical Simulation of the Plasma Arc Melting Cold Hearth Refining Process (PAMCHR). Metall. Mater. Trans. B 2020, 51, 1329–1338. [Google Scholar] [CrossRef]
- Kumar, N.; Shukla, A.; Bansal, S.; Khatri, C.B.; Thakre, G.D.; Yadav, S.K.; Sharma, S.C.; Harsha, S.P. Thermo-hydrodynamic simulation study of twin-groove elliptical (two-lobe) journal bearing of steam turbine with experimental investigations. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2021, 235, 1745–1764. [Google Scholar] [CrossRef]
- Youcef, S.; Mokhefi, A.; Bouzit, M. Theoretical study of thermo-hydrodynamic performances inside an agitated tank equipped with modified two-blade design. Therm. Sci. Eng. Prog. 2024, 55, 102866. [Google Scholar] [CrossRef]
- Pegios, I.P.; Hatzigeorgiou, G.D. Finite element free and forced vibration analysis of gradient elastic beam structures. Acta Mech. 2018, 229, 4817–4830. [Google Scholar] [CrossRef]
- Zangeneh, S.; Lashgari, H.R.; Sharifi, H.R. Fitness-for-service assessment and failure analysis of AISI 304 demineralized-water (DM) pipeline weld crack. Eng. Fail. Anal. 2020, 107, 104210. [Google Scholar] [CrossRef]
- Fuad, M.F.I.A.; Mustafa, M.S.; Nazari, A.D.Z.A.; Rashid, Z.A. Gas Piping System Fatigue Life Estimation through Acoustic Induced Vibration (AIV) Analysis. Int. J. Mech. Eng. Robot. Res. 2021, 10, 276–282. [Google Scholar] [CrossRef]
- Liao, J.; Yu, Y.; Yan, J.; Hsu, S.-H. Simulation and modal analysis of marine diesel engine based on finite element model and vibration sensor data. Sens. Mater. 2021, 33, 1645–1656. [Google Scholar] [CrossRef]
- Codina, R.; Türk, Ö. Modal analysis of elastic vibrations of incompressible materials using a pressure-stabilized finite element method. Finite Elem. Anal. Des. 2022, 206, 103760. [Google Scholar] [CrossRef]
- Kaselouris, E.; Alexandraki, C.; Bakarezos, M.; Tatarakis, M.; Papadogiannis, N.A.; Dimitriou, V. A detailed FEM study on the vibro-acoustic behaviour of crash and splash musical cymbals. Int. J. Circuits Syst. Signal Process. 2022, 16, 948–955. [Google Scholar] [CrossRef]
- Sha, Y.; Zhao, W.; Tang, X.; Zhao, F. Acoustic and Vibration Response and Fatigue Life Analysis of Thin-Walled Connection Structures under Heat Flow Conditions. Aerospace 2024, 11, 287. [Google Scholar] [CrossRef]
- Luo, B.; Gallas, S.; Micallef, C.; Govaerts, J.; Gryllias, K.; Poortmans, J. Experimental and finite element modal analysis of photovoltaic modules for the design of next-generation vehicle-integrated PV applications. Sol. Energy Mater. Sol. Cells 2025, 290, 113683. [Google Scholar] [CrossRef]
- Bruchen, J.; Liu, Y.; Moulin, N. Finite element setting for fluid flow simulations with natural enforcement of the triple junction equilibrium. Comput. Fluids 2018, 171, 103–121. [Google Scholar] [CrossRef]
- Alsabery, A.I.; Sheremet, M.A.; Ghalambaz, M.; Chamkha, A.J.; Hashim, I. Fluid-structure interaction in natural convection heat transfer in an oblique cavity with a flexible oscillating fin and partial heating. Appl. Therm. Eng. 2018, 145, 80–97. [Google Scholar] [CrossRef]
- Long, T.; Yang, P.; Liu, M. A novel coupling approach of smoothed finite element method with SPH for thermal fluid structure interaction problems. Int. J. Mech. Sci. 2020, 174, 105558. [Google Scholar] [CrossRef]
- Arif, M.S.; Shatanawi, W.; Nawaz, Y. Finite Element Study of Electrical MHD Williamson Nanofluid Flow under the Effects of Frictional Heating in the View of Viscous Dissipation. Energies 2023, 16, 2778. [Google Scholar] [CrossRef]
- Du, L.; Liang, W.-G.; Xu, G.-G.; Qin, Q.-H.; Li, D.-S. Finite Element Analysis and Computational Fluid Dynamics Verification of Molten Pool Characteristics During Selective Laser Melting of Ti-6Al-4V Plates. 3D Print. Addit. Manuf. 2023, 10, 711–722. [Google Scholar] [CrossRef] [PubMed]
- Weiss, A.G.; Zaidan, L.J.; Ahmad, M.T.H.B.; Abdoelatef, M.G.; Peterson, J.W.; Lindsay, A.D.; Kong, F.; Ahmed, K.; Kimber, M.L. Characterization of the Finite Element Computational Fluid Dynamics Capabilities in the Multiphysics Object Oriented Simulation Environment. ASME J. Nucl. Rad. Sci. 2023, 9, 021402. [Google Scholar] [CrossRef]
- Esposito, G.; Tsamopoulos, J.; Villone, M.M.; D’Avino, G. Numerical simulations of the pressure-driven flow of pairs of rigid spheres in elastoviscoplastic fluids. J. Fluid Mech. 2025, 1011, A20. [Google Scholar] [CrossRef]
- Song, J.; Lan, J.; Zhu, L.; Jiang, Z.; Zhang, Z.; Han, J.; Ma, C. Finite Element Simulation and Microstructural Analysis of Roll Forming for DP590 High-Strength Dual-Phase Steel Wheel Rims. Materials 2024, 17, 3795. [Google Scholar] [CrossRef]
- Zou, L.; Wang, X.; Wang, R.; Huang, X.; Li, M.; Li, S.; Jiang, Z.; Yin, W. Crashworthiness Performance and Multi-Objective Optimization of Bi-Directional Corrugated Tubes under Quasi-Static Axial Crushing. Materials 2024, 17, 3958. [Google Scholar] [CrossRef]
- Wang, S.; Wang, B.; Mu, S.; Zhang, J.; Zhang, Y.; Gong, X. Study on the Approach to Obtaining Mechanical Properties Using Digital Image Correlation Technology. Materials 2025, 18, 1875. [Google Scholar] [CrossRef]
- Rodella, A. Extreme Behaviors in Fibrous Material Remodeling: Auxetic to Non-Auxetic Transition and Phase Segregation. Materials 2025, 18, 1674. [Google Scholar] [CrossRef]
- Vasile, A.; Constantinescu, D.M.; Indreș, A.I.; Coropețchi, I.C.; Sorohan, Ș.; Apostol, D.A. Numerical Simulation of Compressive Testing of Sandwich Structures with Novel Triply Periodic Minimal Surface Cores. Materials 2025, 18, 260. [Google Scholar] [CrossRef]
- Kaniolakis Kaloudis, E.; Kaleris, K.; Aravantinos-Zafiris, N.; Sigalas, M.; Katerelos, D.T.G.; Dimitriou, V.; Bakarezos, M.; Tatarakis, M.; Papadogiannis, N.A. Evaluating the Role of Unit Cell Multiplicity in the Acoustic Response of Phononic Crystals Using Laser-Plasma Sound Sources. Materials 2025, 18, 1251. [Google Scholar] [CrossRef]
- Xiong, X.; Wang, W.; Li, X.; Fan, F.; Zhou, J.; Chen, M. Prediction and Optimization of the Long-Term Fatigue Life of a Composite Hydrogen Storage Vessel Under Random Vibration. Materials 2025, 18, 712. [Google Scholar] [CrossRef]
- Bellot, J.-P.; Ayadh, W.; Kroll-Rabotin, J.-S.; Marin, R.; Delfosse, J.; Cardon, A.; Biagi, A.; Hans, S. Experimental and Numerical Study of the Plasma Arc Melting of Titanium Alloys: Application to the Removal of High Density Inclusions (HDIs). Materials 2025, 18, 2051. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Hua, M.; Wang, L.; Wang, S.; Liu, J.; Liu, R.; Tian, X.; Lin, X. Theoretical and Experimental Research on the Short-Range Structure in Gallium Melts Based on the Wulff Cluster Model. Materials 2025, 18, 133. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Peng, B.; Yue, Q.; Huang, G.; Wang, C.; Wang, R.; Tian, N. First-Principles Study on the Electrical and Thermal Conductivities of Cu–Zn Binary Alloys. Materials 2025, 18, 2310. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaselouris, E. Advances in Modelling and Simulation of Materials in Applied Sciences. Materials 2025, 18, 4141. https://doi.org/10.3390/ma18174141
Kaselouris E. Advances in Modelling and Simulation of Materials in Applied Sciences. Materials. 2025; 18(17):4141. https://doi.org/10.3390/ma18174141
Chicago/Turabian StyleKaselouris, Evaggelos. 2025. "Advances in Modelling and Simulation of Materials in Applied Sciences" Materials 18, no. 17: 4141. https://doi.org/10.3390/ma18174141
APA StyleKaselouris, E. (2025). Advances in Modelling and Simulation of Materials in Applied Sciences. Materials, 18(17), 4141. https://doi.org/10.3390/ma18174141