Experimental and Analytical Study on Concrete Mechanical Properties of Recycled Carbon Fibers from Wind Turbine Blades
Abstract
1. Introduction
2. Materials and Methods
- Stage 1—Cleaning of the polymer composite reinforced with recycled carbon fibers
- Stage 2—Development of the geometry of recycled carbon fibers and fiber production
- Stage 3—Testing the mechanical properties of recycled carbon macrofibers
- Stage 4—Determination of the strength parameters of concretes with recycled carbon fibers
2.1. Materials
2.2. Testing Procedure
2.2.1. Chemical Composition Analysis of Recycled Carbon Fibers
2.2.2. Mechanical Properties Testing of Recycled Carbon Fibers
2.2.3. Slump Test of Fresh Concrete Mix
2.2.4. Density Testing of Concrete
2.2.5. Compressive Strength Testing of Concrete
2.2.6. Flexural Tensile Strength Testing of Concrete
2.2.7. Splitting Tensile Strength Testing of Concrete
2.2.8. Testing of Concrete Modulus of Elasticity
3. Results
3.1. Analysis of the Composition and Mechanical Parameters of Carbon Fibers
- 1770–1780 cm−1, corresponding to the stretching vibrations of carbonyl groups (C=O),
- 1500–1600 cm−1, associated with aromatic ring vibrations,
- 1200–1300 cm−1, typical for the stretching vibrations of C–O bonds in the ester structure of polycarbonate.
3.2. Analysis of Concrete Mix and Hardened Concrete Properties
3.2.1. Effect of Fibers on Concrete Mix Consistency
3.2.2. Effect of Fibers on Density
3.2.3. Effect of Fibers on Concrete Compressive Strength
- For concretes made with CEM I 42.5, compressive strength ranged approximately from 51 to 59 MPa, with higher values (ca. 58–59 MPa) recorded for mixes with w/c = 0.4;
- A similar trend was observed in concretes made with CEM II 42.5 R/B-M (S-V), where again, higher fc values (exceeding 58 MPa) were observed for w/c = 0.4;
- Fiber length (25, 38, 50 mm) did not result in any significant differences in the compressive strength trends.
3.2.4. Effect of Fibers on the Flexural Tensile Strength of Concrete
3.2.5. Effect of Fibers on the Splitting Tensile Strength of Concrete
3.2.6. Effect of Fibers on Modulus of Elasticity
3.3. Miscoscopy Analysis
4. Analytical Investigation and Discussion
- ACI 318R-95 [41]
- ACI 363R-92 [42]
- Ahmad & Shah [43]
- ACI 544.4R-88 (for FRCs in general) [44]
- fib Model Code [45]
- JSCE (Japan Society of Civil Engineers, 1983) for concrete with steel fibers [46]
- Nanni (1989) for polymer fibers in concrete [47]
- A. Bentur and S. Mindess (1990) for FRC in general [28]:
- RILEM TC 162-TDF [48]
- Model ACI 544.4R [49]
- Model Swamy and Magat [50]
- Model Glinicki [51]
- Model Balaguru and Shah (1992) [52]
5. Conclusions
- Recycled carbon fibers significantly enhanced the flexural and splitting tensile strength of concrete. The highest fiber dosage (8 kg/m3) led to flexural strength gains exceeding 60% and splitting tensile strength gains over 100% relative to plain concrete. The improvement was attributed to the fibers’ efficient crack-bridging behavior and high tensile strength.
- Compressive strength was mainly governed by the water-to-cement (w/c) ratio rather than fiber dosage or length. The inclusion of fibers had a marginal effect on compressive strength and showed mixed trends for Modulus of elasticity (Ecm)—with slight reductions in some mixes (due to fiber clustering and increased porosity) and marginal increases in others, particularly those containing CEM II blended cement.
- Shorter fibers (25 mm) were more effective in increasing flexural strength, while longer fibers (50 mm) provided greater gains in splitting tensile strength. These differences reflect the interaction between fiber anchorage, crack width, and the distribution uniformity of fibers.
- Increasing fiber content significantly reduced the workability of the concrete mix, particularly at higher dosages and longer fiber lengths. This highlights the need for careful mix design adjustments (e.g., use of superplasticizers) to maintain acceptable consistency levels in practical applications.
- Fiber inclusion led to a slight reduction in concrete density due to the lower specific weight of carbon fibers and potential for increased air content. Microscopy revealed relatively uniform fiber dispersion at lower dosages and localized clustering at higher contents, with the dominant failure mechanism being fiber pull-out—beneficial for energy dissipation and post-cracking performance.
- Empirical and standard-based models (e.g., RILEM TC 162-TDF, Nanni, Ahmad & Shah) generally underestimated the flexural strength of recycled-carbon-fiber-reinforced concrete. Calibration of these models (e.g., adjusting the α-factor in RILEM from 0.8 to 0.9) yielded better alignment with experimental data. A new regression model was developed that effectively predicted flexural strength based on compressive strength, fiber volume fraction, and aspect ratio.
- The use of recycled carbon fibers aligns with circular economy principles, offering a viable solution for composite waste management while enhancing concrete performance. The findings support the implementation of this reinforcement strategy in structural and non-structural applications, especially where enhanced ductility and crack resistance are desired.
Funding
Data Availability Statement
Conflicts of Interest
References
- Arslan, G.; Keskin, R.S.O.; Ulusoy, S. An experimental study on the shear strength of SFRC beams without stirrups. J. Theor. Appl. Mech. 2017, 55, 1205–1217. Available online: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-9477c382-1df2-44bb-8a13-102199f6cf80 (accessed on 4 April 2019). [CrossRef]
- Muthukumarana, T.V.; Arachchi, M.A.V.H.M.; Somarathna, H.M.C.C.; Raman, S.N. A review on the variation of mechanical properties of carbon fibre-reinforced concrete. Constr. Build. Mater. 2023, 366, 130173. [Google Scholar] [CrossRef]
- Wei, A.; Tan, M.Y.; Koay, Y.-C.; Hu, X.; Al-Ameri, R. Effect of carbon fiber waste on steel corrosion of reinforced concrete structures exposed to the marine environment. J. Clean. Prod. 2021, 316, 128356. [Google Scholar] [CrossRef]
- Cardoso, D.C.T.; Pereira, G.B.S.; Silva, F.A.; Filho, J.J.H.S.; Pereira, E.V. Influence of steel fibers on the flexural behavior of RC beams with low reinforcing ratios: Analytical and experimental investigation. Compos. Struct. 2019, 222, 110926. [Google Scholar] [CrossRef]
- Carmona, J.R.; Ruiz, G. Bond and size effect on the shear capacity of RC beams without stirrups. Eng. Struct. 2014, 66, 45–56. [Google Scholar] [CrossRef]
- Artemenko, S.E. Polymer Composite Materials Made from Carbon, Basalt, and Glass Fibres. Structure and Properties. Fibre Chem. 2003, 35, 226–229. [Google Scholar] [CrossRef]
- Baumgaertel, E.; Marx, S. The Recycling of Carbon Components and the Reuse of Carbon Fibers for Concrete Reinforcements. Appl. Sci. 2023, 13, 7091. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhao, B.; Lone, U.A.; Fan, Y. Experimental study on mechanical properties of shredded prepreg carbon cloth waste fiber reinforced concrete. J. Clean. Prod. 2024, 436, 140456. [Google Scholar] [CrossRef]
- Waqar, A.; Khan, M.B.; Afzal, M.T.; Radu, D.; Gălăţanu, T.; Cazacu, C.E.; Dodo, Y.; Althoey, F.; Almujibah, H.R. Investigating the synergistic effects of carbon fiber and silica fume on concrete strength and eco-efficiency. Case Stud. Constr. Mater. 2024, 20, e02967. [Google Scholar] [CrossRef]
- Ge, L.; Li, X.; Feng, H.; Xu, C.; Lu, Y.; Chen, B.; Li, D.; Xu, C. Analysis of the pyrolysis process, kinetics and products of the base components of waste wind turbine blades (epoxy resin and carbon fiber). J. Anal. Appl. Pyrolysis 2023, 170, 105919. [Google Scholar] [CrossRef]
- Lin, T.A.; Chuang, Y.-C.; Lin, J.-Y.; Lin, M.-C.; Lou, C.-W.; Lin, J.-H. Weaving carbon fiber/recycled polypropylene selvages to reinforce the polymer-based protective composite fabrics: Manufacturing techniques and electromagnetic shielding effectiveness. Polym. Compos. 2019, 40, E1910–E1917. [Google Scholar] [CrossRef]
- Xiong, C.; Li, Q.; Lan, T.; Li, H.; Long, W.; Xing, F. Sustainable use of recycled carbon fiber reinforced polymer and crumb rubber in concrete: Mechanical properties and ecological evaluation. J. Clean. Prod. 2021, 279, 123624. [Google Scholar] [CrossRef]
- Li, Y.-F.; Li, J.Y.; Ramanathan, G.K.; Chang, S.M.; Shen, M.Y.; Tsai, Y.K.; Huang, C.H. An Experimental Study on Mechanical Behaviors of Carbon Fiber and Microwave-Assisted Pyrolysis Recycled Carbon Fiber-Reinforced Concrete. Sustainability 2021, 13, 6829. [Google Scholar] [CrossRef]
- Dai, L.; Hu, X.; Zhao, C.; Zhou, H.; Zhang, Z.; Wang, Y.; Ma, S.; Liu, X.; Li, X.; Shu, X. Machine learning constructs the microstructure and mechanical properties that accelerate the development of CFRP pyrolysis for carbon-fiber recycling. Waste Manag. 2024, 190, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Baskar, S.; Subbiah, G.; Guntaj, J.; Kumar, M.; Kaliappan, N. Development and characterization of an epoxy matrix composite reinforced with Al2O3 embedded banyan fibers for secondary structural applications. Results Eng. 2025, 26, 105587. [Google Scholar] [CrossRef]
- Valente, M.; Sambucci, M.; Rossitti, I.; Abruzzese, S.; Sergi, C.; Sarasini, F.; Tirillò, J. Carbon-Fiber-Recycling Strategies: A Secondary Waste Stream Used for PA6,6 Thermoplastic Composite Applications. Materials 2023, 16, 5436. [Google Scholar] [CrossRef] [PubMed]
- ACI 440.3R-12; ACI 440.3R-12 Guide Test Methods for Fiber-Reinforced Polymer (FRP) Composites for Reinforcing or Strengthening Concrete Structures. American Concrete Institute: Farmington Hills, MI, USA, 2012.
- ACI Committee 440. Guide Test Methods for Fiber Reinforced Polymers (FRPs) for Reinforcing or Strengthening Concrete Structures; American Concrete Institute: Farmington Hills, MI, USA, 2004. [Google Scholar]
- EN 12350-1; Testing Fresh Concrete Sampling and Common Apparatus. European Committee for Standardization (CEN): Brussels, Belgium, 2019. Available online: https://www.en-standard.eu/bs-en-12350-1-2019-testing-fresh-concrete-sampling-and-common-apparatus (accessed on 9 July 2025).
- EN 12390-7; Testing Hardened Concrete—Part 7: Density of Hardened Concrete. European Committee for Standardization (CEN): Brussels, Belgium, 2019.
- EN 12390-3; Testing Hardened Concrete—Part 3: Compressive Strength of Test Specimens. European Committee for Standardization (CEN): Brussels, Belgium, 2019.
- EN 12390-5; Testing Hardened Concrete—Part 5: Flexural Strength of Test Specimens. European Committee for Standardization (CEN): Brussels, Belgium, 2019.
- EN 12390-6; Testing Hardened Concrete—Part 6: Tensile Splitting Strength of Test Specimens. European Committee for Standardization (CEN): Brussels, Belgium, 2010.
- PN-EN 12390-13; Testing Hardened Concrete—Part 13: Determination of Secant Modulus of Elasticity in Compression. European Committee for Standardization (CEN): Brussels, Belgium, 2014.
- Mashrei, M.; Sultan, A.; Mahdi, A.M. Effects of polypropylene fibers on compressive and flexural strength of concrete material. Int. J. Civ. Eng. Technol. 2018, 9, 2208–2217. [Google Scholar]
- Blazy, J.; Blazy, R. Polypropylene fiber reinforced concrete and its application in creating architectural forms of public spaces. Case Stud. Constr. Mater. 2021, 14, e00549. [Google Scholar] [CrossRef]
- Balasubramanian, N.; Subasini, Y.; Shanmugam, P. Modelling and Prediction of Strength for Polypropylene Fiber Reinforced Concrete. In Recent Developments in Sustainable Infrastructure (ICRDSI-2020)—Structure and Construction Management: Conference Proceedings from ICRDSI-2020; Springer: Berlin/Heidelberg, Germany, 2022; Volume 1, pp. 89–100. [Google Scholar] [CrossRef]
- Bentur, A.; Mindess, S. Fibre Reinforced Cementitious Composites. In Elsevier Applied Science; CRC: Boca Raton, FL, USA, 1990. [Google Scholar]
- Banthia, N.; Gupta, R. Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete. Cem. Concr. Res. 2006, 36, 1263–1267. [Google Scholar] [CrossRef]
- van den Heever, M.; Plessis, A.D.; Kruger, J.; van Zijl, G. Evaluating the effects of porosity on the mechanical properties of extrusion-based 3D printed concrete. Cem. Concr. Res. 2022, 153, 106695. [Google Scholar] [CrossRef]
- Zhang, G.; Yang, Z.; Yan, Y.; Wang, M.; Wu, L.; Lei, H.; Gu, Y. Experimental and Theoretical Prediction Model Research on Concrete Elastic Modulus Influenced by Aggregate Gradation and Porosity. Sustainability 2021, 13, 1811. [Google Scholar] [CrossRef]
- Alshahrani, A.; Kulasegaram, S.; Kundu, A. Elastic modulus of self-compacting fibre reinforced concrete: Experimental approach and multi-scale simulation. Case Stud. Constr. Mater. 2023, 18, e01723. [Google Scholar] [CrossRef]
- Zhang, X.; Pel, L.; Smeulders, D. Influence of water-soluble leachates from natural fibers on the hydration and microstructure of cement paste studied by nuclear magnetic resonance. Cem. Concr. Res. 2024, 185, 107629. [Google Scholar] [CrossRef]
- Wu, J.; Ding, Q.; Yang, W.; Wang, L.; Wang, H. Influence of Submicron Fibrillated Cellulose Fibers from Cotton on Hydration and Microstructure of Portland Cement Paste. Molecules 2021, 26, 5831. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, A.; De Matos, P.; Marvila, M.; Sakata, R.; Silvestro, L.; Gleize, P.; Brito, J.D. Rheology, Hydration, and Microstructure of Portland Cement Pastes Produced with Ground Açaí Fibers. Appl. Sci. 2021, 11, 3036. [Google Scholar] [CrossRef]
- Tran, N.P.; Gunasekara, C.; Law, D.W.; Houshyar, S.; Setunge, S. Microstructural characterisation of cementitious composite incorporating polymeric fibre: A comprehensive review. Constr. Build. Mater. 2022, 335, 127497. [Google Scholar] [CrossRef]
- Wang, Y.; Pan, L.; Niu, W.; Li, K.; Guo, K. Variability Analysis of the Hysteretic Behavior of Fiber-Reinforced Polymer (FRP)-Confined Concrete Columns Based on a Secondary Development Model. Buildings 2023, 13, 2396. [Google Scholar] [CrossRef]
- Kahanji, C.; Ali, F.; Nadj, A. Structural performance of ultra-high-performance fiber-reinforced concrete beams. Struct. Concr. 2017, 18, 249–258. [Google Scholar] [CrossRef]
- Thomas, J.; Ramaswamy, A. Mechanical Properties of Steel Fiber-Reinforced Concrete. J. Mater. Civ. Eng. 2007, 19, 385–392. [Google Scholar] [CrossRef]
- Khalel, H.H.; Khan, M.; Starr, A.; Sadawi, N.; Mohamed, O.A.; Khalil, A.; Esaker, M. Parametric study for optimizing fiber-reinforced concrete properties. Struct. Concr. 2025, 26, 88–110. [Google Scholar] [CrossRef]
- ACI 318R-95; Building Code Requirements for Structural Concrete (ACI 318-95) and Commentary (ACI 318R-95). American Concrete Institute: Farmington Hills, MI, USA, 1995.
- ACI 363R-92; Report on High-Strength Concrete (Reapproved 1997). Available online: https://www.concrete.org/publications/internationalconcreteabstractsportal/m/details/id/5194 (accessed on 9 July 2025).
- Ahmad, S.H.; Shah, S.P. Structural properties of high-strength concrete and its implications for pre-cast prestressed concrete. PCI J. 1985, 30, 92–119. [Google Scholar]
- 4R-88; Design Considerations for Steel Fiber Reinforced Concrete. 2009. Available online: https://www.concrete.org/store/productdetail.aspx?ItemID=544488&Format=DOWNLOAD&Language=English&Units=US_AND_METRIC (accessed on 9 July 2025).
- Fib Model Code 2010. Fib Model Code for Concrete Structures 2010; International Federation for Structural Concrete (fib): Lausanne, Switzerland, 2013. [Google Scholar]
- Japan Society of Civil Engineers (JSCE). Standard Specifications for Concrete Structures—2007: Design; Japan Society of Civil Engineers: Tokyo, Japan, 2007. [Google Scholar]
- Nanni, A. Flexural Behavior and Design of RC Members Using FRP Reinforcement. J. Struct. Eng. 1993, 119, 3344–3359. [Google Scholar] [CrossRef]
- Vandewalle, L.; Nemegeer, D.; Balazs, G.L.; Barr, B.; Bartos, P.; Banthia, N.; Brandt, A.M.; Criswell, M.; Denarie, F.; Di Prisco, M.; et al. RILEM TC 162-TDF: Test and design methods for steel fibre reinforced concrete—Uni-axial tension test for steel fibre reinforced concrete. Mater. Struct. 2001, 34, 3–6. [Google Scholar]
- 4R-18; Guide for Design with Fiber-Reinforced Concrete. 2018. Available online: https://www.scribd.com/document/807774534/ACI-544-4R-18-Standard (accessed on 9 July 2025).
- Swamy, R.N.; Mangat, P.S. Influence of fiber geometry on the properties of steel fiber reinforced concrete. Cem. Concr. Res. 1974, 4, 451–465. [Google Scholar] [CrossRef]
- Glinicki, M.A. Beton ze zbrojeniem strukturalnym. In Proceedings of the XXV Ogólnopolskie Warsztaty Pracy Projektanta Konstrukcji, Szczyrk, Poland, 10–13 March 2010; p. 30. [Google Scholar]
- Balaguru, P.N.; Shah, S.P. Fiber—Reinforced Cement Composites; McGraw-Hill: New York, NY, USA, 1992. [Google Scholar]
- Szmatuła, J.K.F. Effect of Recycled Carbon Fiber Reinforcement on Concrete Properties. In Proceedings of the Dni Betonu 2023, Wisła, Poland, 9–11 October 2023; Stowarzyszenie Producentów Cementu: Kraków, Poland, 2023. [Google Scholar]
- Overhage, V.; Gries, T. Potential of and Current Challenges in Reusing Recycled Carbon Fibres in Concrete Construction Applications. Sustainability 2025, 17, 2779. [Google Scholar] [CrossRef]
- Xiong, C.; Lan, T.; Li, Q.; Li, H.; Long, W. Study of Mechanical Properties of an Eco-Friendly Concrete Containing Recycled Carbon Fiber Reinforced Polymer and Recycled Aggregate. Materials 2020, 13, 4592. [Google Scholar] [CrossRef]
- de Souza Abreu, F.; Ribeiro, C.C.; da Silva Pinto, J.D.; Nsumbu, T.M.; Buono, V.T.L. Influence of adding discontinuous and dispersed carbon fiber waste on concrete performance. J. Clean. Prod. 2020, 273, 122920. [Google Scholar] [CrossRef]
- Mastali, M.; Dalvand, A.; Sattarifard, A. The impact resistance and mechanical properties of the reinforced self-compacting concrete incorporating recycled CFRP fiber with different lengths and dosages. Compos. Part B Eng. 2017, 112, 74–92. [Google Scholar] [CrossRef]
- Lee, J.-H. Influence of concrete strength combined with fiber content in the residual flexural strengths of fiber reinforced concrete. Compos. Struct. 2017, 168, 216–225. [Google Scholar] [CrossRef]
- Wang, C.; Li, K.-Z.; Li, H.-J.; Jiao, G.-S.; Lu, J.; Hou, D.-S. Effect of carbon fiber dispersion on the mechanical properties of carbon fiber-reinforced cement-based composites. Mater. Sci. Eng. 2008, 487, 52–57. [Google Scholar] [CrossRef]
- Patchen, A.; Young, S.; Penumadu, D. An Investigation of Mechanical Properties of Recycled Carbon Fiber Reinforced Ultra-High-Performance Concrete. Materials 2022, 16, 314. [Google Scholar] [CrossRef] [PubMed]
Mixture Proportions | w/c = 0.5 | w/c = 0.4 |
---|---|---|
CEM I 42.5R or CEM II 42.5R/A-V [kg] | 320 | 320 |
Water [kg] | 160 | 128 |
Sand 0.125–2 mm [kg] | 732 | 742 |
Aggregate 2/16 [kg] | 1203 | 1203 |
Sika Sikacem Superplast [kg] | 3.2 | 6.4 |
1 | Fmax | Rm | Relative Elongation at Rm | Modulus of Elasticity | Elongation at Tensile Strength Point | True Stress at Maximum Displacement During Tension |
---|---|---|---|---|---|---|
[N] | [MPa] | [%] | [MPa] | [%] | [MPa] | |
1 | 770.092 | 1283.486 | 0.46 | 302,642.10 | 0.023 | 546.294 |
2 | 656.093 | 1093.488 | 0.38 | 331,850.89 | 0.377 | 698.943 |
3 | 661.662 | 1102.770 | 0.36 | 310,719.00 | 0.007 | 298.007 |
4 | 716.602 | 1194.337 | 0.38 | 322,984.50 | 0.006 | 258.448 |
average | 701.112 | 1168.520 | 0.95 | 317,049.12 | 0.103 | 450.423 |
Type of Cement | lf | Vf | lf/df | fc | fct | ACI 318R-95 [41] | ACI 363R-92 [42] | Ahmad & Shah [43] | Fib Model Code [45] | JSCE [46] | Nanni (1989) [47] | A. Bentur and S. Mindess (1990) [28] | RILEM TC 162-TDF [48] | ACI 544.4R [49] | Swamy and Magat [50] | Glinicki [51] | Balaguru and Shah (1992) [52] |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[-] | [mm] | [%] | [-] | [MPa] | [MPa] | [MPa] | [MPa] | [MPa] | [MPa] | [MPa] | [MPa] | [MPa] | [MPa] | [MPa] | [MPa] | [MPa] | [MPa] |
w/c = 0.5 | |||||||||||||||||
CEM I 42.5 | 25 | 0.1 | 28.7 | 52.1 | 3.7 | 4.5 | 6.8 | 3.2 | 4.3 | 4.3 | 4.3 | 4.3 | 2.7 | 4.5 | 2.7 | 1.0 | 3.2 |
CEM I 42.5 | 25 | 0.2 | 28.7 | 57.5 | 4.2 | 4.7 | 7.1 | 3.3 | 4.5 | 4.5 | 4.8 | 4.6 | 2.8 | 4.8 | 2.8 | 1.2 | 3.7 |
CEM I 42.5 | 25 | 0.4 | 28.7 | 58.0 | 5.1 | 4.7 | 7.2 | 3.4 | 4.6 | 4.6 | 5.5 | 4.6 | 2.9 | 4.9 | 3.0 | 1.7 | 4.8 |
CEM I 42.5 | 38 | 0.1 | 43.7 | 51.1 | 3.6 | 4.4 | 6.7 | 3.1 | 4.3 | 4.3 | 4.3 | 4.3 | 3.0 | 4.5 | 3.0 | 1.1 | 3.5 |
CEM I 42.5 | 38 | 0.2 | 43.7 | 54.2 | 4.7 | 4.6 | 6.9 | 3.2 | 4.4 | 4.4 | 4.7 | 4.4 | 3.1 | 4.7 | 3.1 | 1.5 | 4.0 |
CEM I 42.5 | 38 | 0.4 | 43.7 | 55.9 | 5.2 | 4.6 | 7.0 | 3.3 | 4.5 | 4.5 | 5.4 | 4.5 | 3.4 | 4.9 | 3.5 | 2.3 | 5.1 |
CEM I 42.5 | 50 | 0.1 | 57.5 | 51.5 | 3.3 | 4.5 | 6.7 | 3.2 | 4.3 | 4.3 | 4.3 | 4.3 | 3.1 | 4.5 | 3.0 | 1.2 | 3.5 |
CEM I 42.5 | 50 | 0.2 | 57.5 | 52.1 | 4.2 | 4.5 | 6.8 | 3.2 | 4.3 | 4.3 | 4.6 | 4.3 | 3.2 | 4.7 | 3.2 | 1.7 | 4.0 |
CEM I 42.5 | 50 | 0.4 | 57.5 | 55.6 | 7.0 | 4.6 | 7.0 | 3.3 | 4.5 | 4.5 | 5.4 | 4.5 | 3.5 | 5.0 | 3.7 | 2.8 | 5.1 |
w/c = 0.4 | |||||||||||||||||
CEM I 42.5 | 25 | 0.1 | 28.7 | 53.9 | 3.5 | 4.6 | 6.9 | 3.2 | 4.4 | 4.4 | 4.4 | 4.4 | 2.5 | 4.6 | 2.5 | 1.0 | 3.0 |
CEM I 42.5 | 25 | 0.2 | 28.7 | 57.6 | 5.8 | 4.7 | 7.1 | 3.3 | 4.6 | 4.6 | 4.8 | 4.6 | 2.6 | 4.8 | 2.6 | 1.2 | 3.6 |
CEM I 42.5 | 25 | 0.4 | 28.7 | 58.7 | 5.5 | 4.7 | 7.2 | 3.4 | 4.6 | 4.6 | 5.5 | 4.6 | 2.7 | 4.9 | 2.8 | 1.7 | 4.7 |
CEM I 42.5 | 38 | 0.1 | 43.7 | 54.9 | 4.5 | 4.6 | 7.0 | 3.3 | 4.4 | 4.4 | 4.4 | 4.5 | 2.6 | 4.7 | 2.6 | 1.1 | 3.0 |
CEM I 42.5 | 38 | 0.2 | 43.7 | 57.5 | 4.5 | 4.7 | 7.1 | 3.3 | 4.5 | 4.5 | 4.8 | 4.6 | 2.7 | 4.8 | 2.7 | 1.5 | 3.6 |
CEM I 42.5 | 38 | 0.4 | 43.7 | 58.1 | 5.8 | 4.7 | 7.2 | 3.4 | 4.6 | 4.6 | 5.5 | 4.6 | 2.9 | 5.0 | 3.1 | 2.3 | 4.7 |
CEM I 42.5 | 50 | 0.1 | 57.5 | 56.5 | 3.8 | 4.7 | 7.1 | 3.3 | 4.5 | 4.5 | 4.5 | 4.5 | 2.2 | 4.8 | 2.3 | 1.2 | 2.7 |
CEM I 42.5 | 50 | 0.2 | 57.5 | 58.0 | 3.1 | 4.7 | 7.2 | 3.4 | 4.6 | 4.6 | 4.8 | 4.6 | 2.3 | 4.9 | 2.5 | 1.7 | 3.2 |
CEM I 42.5 | 50 | 0.4 | 57.5 | 58.2 | 6.5 | 4.7 | 7.2 | 3.4 | 4.6 | 4.6 | 5.5 | 4.6 | 2.5 | 5.1 | 2.9 | 2.8 | 4.3 |
w/c = 0.5 | |||||||||||||||||
CEM II 42.5 R/B-M (S-V) | 25 | 0.1 | 28.7 | 52.6 | 3.3 | 4.5 | 6.8 | 3.2 | 4.4 | 4.4 | 4.3 | 4.4 | 2.8 | 4.5 | 2.7 | 1.0 | 3.3 |
CEM II 42.5 R/B-M (S-V) | 25 | 0.2 | 28.7 | 54.8 | 5.2 | 4.6 | 7.0 | 3.3 | 4.4 | 4.4 | 4.7 | 4.4 | 2.8 | 4.7 | 2.8 | 1.2 | 3.8 |
CEM II 42.5 R/B-M (S-V) | 25 | 0.4 | 28.7 | 59.1 | 7.9 | 4.8 | 7.2 | 3.4 | 4.6 | 4.6 | 5.5 | 4.6 | 3.0 | 5.0 | 3.0 | 1.7 | 4.9 |
CEM II 42.5 R/B-M (S-V) | 38 | 0.1 | 43.7 | 52.5 | 3.7 | 4.5 | 6.8 | 3.2 | 4.3 | 4.3 | 4.3 | 4.3 | 2.6 | 4.6 | 2.6 | 1.1 | 3.1 |
CEM II 42.5 R/B-M (S-V) | 38 | 0.2 | 43.7 | 58.1 | 4.3 | 4.7 | 7.2 | 3.4 | 4.6 | 4.6 | 4.9 | 4.6 | 2.7 | 4.9 | 2.8 | 1.5 | 3.6 |
CEM II 42.5 R/B-M (S-V) | 38 | 0.4 | 43.7 | 59.4 | 5.2 | 4.8 | 7.2 | 3.4 | 4.6 | 4.6 | 5.6 | 4.6 | 2.9 | 5.1 | 3.1 | 2.3 | 4.7 |
CEM II 42.5 R/B-M (S-V) | 50 | 0.1 | 57.5 | 50.8 | 3.3 | 4.4 | 6.7 | 3.1 | 4.3 | 4.3 | 4.2 | 4.3 | 2.7 | 4.5 | 2.7 | 1.2 | 3.1 |
CEM II 42.5 R/B-M (S-V) | 50 | 0.2 | 57.5 | 53.0 | 5.2 | 4.5 | 6.8 | 3.2 | 4.4 | 4.4 | 4.7 | 4.4 | 2.8 | 4.7 | 2.9 | 1.7 | 3.6 |
CEM II 42.5 R/B-M (S-V) | 50 | 0.4 | 57.5 | 54.2 | 6.2 | 4.6 | 6.9 | 3.2 | 4.4 | 4.4 | 5.4 | 4.4 | 3.1 | 4.9 | 3.3 | 2.8 | 4.7 |
w/c = 0.4 | |||||||||||||||||
CEM II 42.5 R/B-M (S-V) | 25 | 0.1 | 28.7 | 51.1 | 3.2 | 4.4 | 6.7 | 3.1 | 4.3 | 4.3 | 4.3 | 4.3 | 4.4 | 4.5 | 4.3 | 1.0 | 4.9 |
CEM II 42.5 R/B-M (S-V) | 25 | 0.2 | 28.7 | 55.0 | 5.2 | 4.6 | 7.0 | 3.3 | 4.4 | 4.4 | 4.7 | 4.5 | 4.5 | 4.7 | 4.4 | 1.2 | 5.4 |
CEM II 42.5 R/B-M (S-V) | 25 | 0.4 | 28.7 | 55.8 | 6.3 | 4.6 | 7.0 | 3.3 | 4.5 | 4.5 | 5.4 | 4.5 | 4.7 | 4.8 | 4.6 | 1.7 | 6.5 |
CEM II 42.5 R/B-M (S-V) | 38 | 0.1 | 43.7 | 53.2 | 3.5 | 4.5 | 6.9 | 3.2 | 4.4 | 4.4 | 4.3 | 4.4 | 2.1 | 4.6 | 2.1 | 1.1 | 2.6 |
CEM II 42.5 R/B-M (S-V) | 38 | 0.2 | 43.7 | 55.7 | 5.2 | 4.6 | 7.0 | 3.3 | 4.5 | 4.5 | 4.8 | 4.5 | 2.2 | 4.8 | 2.3 | 1.5 | 3.1 |
CEM II 42.5 R/B-M (S-V) | 38 | 0.4 | 43.7 | 58.4 | 6.0 | 4.7 | 7.2 | 3.4 | 4.6 | 4.6 | 5.5 | 4.6 | 2.4 | 5.0 | 2.6 | 2.3 | 4.2 |
CEM II 42.5 R/B-M (S-V) | 50 | 0.1 | 57.5 | 52.2 | 3.1 | 4.5 | 6.8 | 3.2 | 4.3 | 4.3 | 4.3 | 4.3 | 2.4 | 4.6 | 2.4 | 1.2 | 2.8 |
CEM II 42.5 R/B-M (S-V) | 50 | 0.2 | 57.5 | 53.7 | 5.1 | 4.5 | 6.9 | 3.2 | 4.4 | 4.4 | 4.7 | 4.4 | 2.5 | 4.7 | 2.6 | 1.7 | 3.4 |
CEM II 42.5 R/B-M (S-V) | 50 | 0.4 | 57.5 | 59.1 | 6.5 | 4.8 | 7.2 | 3.4 | 4.6 | 4.6 | 5.5 | 4.6 | 2.7 | 5.1 | 3.0 | 2.8 | 4.5 |
Ref. | lf/df | Vf | fct | Comments |
---|---|---|---|---|
[-] | [%] | [MPa] | ||
own research | 29 | 0 | 2.63 | ✔ |
29 | 0.11 | 3.71 | ||
29 | 0.22 | 4.21 | ||
29 | 0.44 | 5.12 | ||
29 | 0 | 2.48 | ||
29 | 0.11 | 3.45 | ||
29 | 0.22 | 5.78 | ||
29 | 0.44 | 5.54 | ||
29 | 0 | 2.70 | ||
29 | 0.11 | 3.28 | ||
29 | 0.22 | 5.19 | ||
29 | 0.44 | 7.87 | ||
29 | 0 | 2.52 | ||
29 | 0.11 | 3.24 | ||
29 | 0.22 | 5.24 | ||
29 | 0.44 | 6.25 | ||
44 | 0 | 2.91 | ||
44 | 0.11 | 3.63 | ||
44 | 0.22 | 4.71 | ||
44 | 0.44 | 5.21 | ||
44 | 0 | 2.12 | ||
44 | 0.11 | 4.48 | ||
44 | 0.22 | 4.45 | ||
44 | 0.44 | 5.78 | ||
44 | 0 | 2.54 | ||
44 | 0.11 | 3.70 | ||
44 | 0.22 | 4.28 | ||
44 | 0.44 | 5.19 | ||
44 | 0 | 3.87 | ||
44 | 0.11 | 3.52 | ||
44 | 0.22 | 5.24 | ||
44 | 0.44 | 6.01 | ||
57 | 0 | 2.30 | ||
57 | 0.11 | 3.30 | ||
57 | 0.22 | 4.16 | ||
57 | 0.44 | 6.97 | ||
57 | 0 | 2.26 | ||
57 | 0.11 | 3.81 | ||
57 | 0.22 | 4.14 | ||
57 | 0.44 | 6.47 | ||
57 | 0 | 2.04 | ||
57 | 0.11 | 4.31 | ||
57 | 0.22 | 5.25 | ||
57 | 0.44 | 6.24 | ||
57 | 0 | 2.27 | ||
57 | 0.11 | 4.10 | ||
57 | 0.22 | 5.09 | ||
57 | 0.44 | 6.54 | ||
[14] | 50 | 0 | 4.46 | ✔ |
50 | 0.5 | 4.92 | ✔ | |
50 | 1 | 5.42 | ✔ | |
50 | 1.5 | 5.39 | ✖ | |
[53] | 0 | 0 | 2.62 | ✔ |
25 | 0.5 | 2.61 | ✔ | |
25 | 1 | 2.6 | ✔ | |
25 | 1.5 | 2.54 | ✖ | |
0 | 0 | 2.62 | ✔ | |
38 | 0.5 | 2.78 | ✔ | |
38 | 1 | 2.8 | ✔ | |
38 | 1.5 | 2.64 | ✖ | |
0 | 0 | 2.62 | ✔ | |
50 | 0.5 | 2.93 | ✔ | |
50 | 1 | 2.78 | ✔ | |
50 | 1.5 | 2.68 | ✖ | |
[54] | 0 | 0 | 5.97 | ✔ |
40 | 1 | 8.1 | ✔ | |
[55] | 0 | 0 | 4.46 | ✔ |
18 | 0.5 | 4.92 | ✔ | |
18 | 1 | 5.42 | ✔ | |
18 | 1.5 | 5.39 | ✖ | |
0 | 0 | 4.16 | ✔ | |
18 | 0.5 | 4.25 | ✔ | |
18 | 1 | 4.94 | ✔ | |
18 | 1.5 | 5.52 | ✖ | |
[56] | 0 | 0 | 3.72 | ✔ |
0 | 0 | 3.54 | ✔ | |
0 | 0 | 4.38 | ✔ | |
0 | 0 | 3.35 | ✔ | |
20 | 0.5 | 4.92 | ✔ | |
20 | 1.5 | 4.24 | ✖ | |
20 | 2.5 | 4.53 | ✖ | |
20 | 3.5 | 5.12 | ✖ | |
[57] | 0 | 0 | 5.4 | ✔ |
10 | 0.5 | 6.5 | ✔ | |
10 | 1 | 7.2 | ✔ | |
10 | 1.5 | 6.8 | ✖ | |
10 | 2 | 6.4 | ✖ | |
20 | 0.5 | 6.4 | ✔ | |
20 | 1.5 | 7.4 | ✔ | |
20 | 2 | 6.8 | ✖ | |
30 | 0.5 | 6.7 | ✔ | |
30 | 1 | 7.1 | ✔ | |
30 | 1.5 | 6.7 | ✖ | |
30 | 2 | 6.4 | ✖ | |
[58] | 0 | 0 | 2.2 | ✖ |
95 | 0.25 | 4.3 | ✖ | |
95 | 0.375 | 4.6 | ✖ | |
95 | 0.5 | 6.2 | ✖ | |
[59] | 0 | 0 | 2 | ✖ |
714 | 0.2 | 4.72 | ✖ | |
714 | 0.4 | 4.38 | ✖ | |
714 | 0.6 | 4.26 | ✖ | |
714 | 0.8 | 4.11 | ✖ | |
[60] | 0 | 0 | 11.7 | ✖ |
65 | 1.5 | 12.9 | ✖ | |
1455 | 1.5 | 10.8 | ✖ | |
1764 | 1.5 | 9.83 | ✖ | |
224 | 1.5 | 10.7 | ✖ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krassowska, J. Experimental and Analytical Study on Concrete Mechanical Properties of Recycled Carbon Fibers from Wind Turbine Blades. Materials 2025, 18, 4105. https://doi.org/10.3390/ma18174105
Krassowska J. Experimental and Analytical Study on Concrete Mechanical Properties of Recycled Carbon Fibers from Wind Turbine Blades. Materials. 2025; 18(17):4105. https://doi.org/10.3390/ma18174105
Chicago/Turabian StyleKrassowska, Julita. 2025. "Experimental and Analytical Study on Concrete Mechanical Properties of Recycled Carbon Fibers from Wind Turbine Blades" Materials 18, no. 17: 4105. https://doi.org/10.3390/ma18174105
APA StyleKrassowska, J. (2025). Experimental and Analytical Study on Concrete Mechanical Properties of Recycled Carbon Fibers from Wind Turbine Blades. Materials, 18(17), 4105. https://doi.org/10.3390/ma18174105