High-Performance Optically Transparent EMI Shielding Sandwich Structures Based on Irregular Aluminum Meshes: Modeling and Experiment
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of IAM and Sandwich Structures
2.2. Characterizations of IAM and Sandwich Structures
2.3. Spectroscopies of IAM and Sandwich Structure in the 0.01–7 GHz Range
3. Results
3.1. Study of Morphological and Geometrical Parameters of IAM by SEM, EDS and Statistical Analysis
3.2. Optoelectronic Properties and Stability of IAMs
3.3. Measurements Shielding Properties of IAMs in 0.01–7 GHz Range
3.4. Calculation and Measurements Shielding Properties Sandwich Structures in 0.01–7 GHz Ranges
3.5. Optical Properties Sandwich Structures
3.6. Comparison of Optical and Shielding Properties of Sandwich Structures with Literature
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IAM | Irregular aluminum mesh |
SEM | Scanning electron microscopy |
FF | Fill factor |
EMI | Electromagnetic interference |
PMMA | Polymethylmetacryalte |
PET | Polyetheleneterephtalate |
References
- Tan, D.; Jiang, C.; Li, Q.; Bi, S.; Wang, X.; Song, J. Development and current situation of flexible and transparent EM shielding materials. J. Mater. Sci. Mater. Electron. 2021, 32, 25603–25630. [Google Scholar] [CrossRef]
- Liang, Z.; Zhao, Z.; Pu, M.; Luo, J.; Xie, X.; Wang, Y.; Guo, Y.; Ma, X.; Luo, X. Metallic nanomesh for high-performance transparent electromagnetic shielding. Opt. Mater. Express 2020, 10, 796–806. [Google Scholar] [CrossRef]
- Osipkov, A.; Makeev, M.; Konopleva, E.; Kudrina, N.; Gorobinskiy, L.; Mikhalev, P.; Ryzhenko, D.; Yurkov, G. Optically transparent and highly conductive electrodes for acousto-optical devices. Materials 2021, 14, 7178. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.-I.; Kim, P.K.; Ha, T.-G.; Han, J.T. High-performance flexible transparent nanomesh electrodes. Nanotechnology 2019, 30, 125301. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.-I.; Kim, P.K.; Ha, T.-G. High-performance transparent electromagnetic interference shielding film based on metal meshes. J. Micromech. Microeng. 2023, 33, 035002. [Google Scholar] [CrossRef]
- Han, Y.; Liu, Y.X.; Han, L.; Lin, J.; Jin, P. High-performance hierarchical graphene/metal-mesh film for optically transparent electromagnetic interference shielding. Carbon 2017, 115, 34–42. [Google Scholar] [CrossRef]
- Voronin, A.S.; Fadeev, Y.V.; Govorun, I.V.; Podshivalov, I.V.; Simunin, M.M.; Tambasov, I.A.; Karpova, D.V.; Smolyarova, T.E.; Lukyanenko, A.V.; Karacharov, A.A.; et al. Cu–Ag and Ni–Ag meshes based on cracked template as efficient transparent electromagnetic shielding coating with excellent mechanical performance. J. Mater. Sci. 2021, 56, 14741–14762. [Google Scholar] [CrossRef]
- Voronin, A.S.; Fadeev, Y.V.; Makeev, M.O.; Mikhalev, P.A.; Osipkov, A.S.; Provatorov, A.S.; Ryzhenko, D.S.; Yurkov, G.Y.; Simunin, M.M.; Karpova, D.V.; et al. Low Cost Embedded Copper Mesh Based on Cracked Template for Highly Durability Transparent EMI Shielding Films. Materials 2022, 15, 1449. [Google Scholar] [CrossRef]
- Guan, Y.; Yang, L.; Chen, C.; Wan, R.; Guo, C.; Wang, P. Regulable crack patterns for the fabrication of high-performance transparent EMI shielding windows. iScience 2025, 28, 111543. [Google Scholar] [CrossRef] [PubMed]
- Zarei, M.; Mohammadi, K.; Mahmood, A.A.; Li, M.; Leu, P.W. Flexible embedded metal meshes by nanosphere lithography for very low sheet resistance transparent electrodes, Joule heating, and electromagnetic interference shielding. ACS Appl. Electron. Mater. 2025, 7, 4266–4278. [Google Scholar] [CrossRef]
- Lin, S.; Wang, H.; Wu, F.; Wang, Q.; Bai, X.; Zu, D.; Song, J.; Wang, D.; Liu, Z.; Li, Z.; et al. Room-temperature production of silver-nanofiber film for large-area, transparent and flexible surface electromagnetic interference shielding. NPJ Flex. Electron. 2019, 3, 6. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, S.; Li, W.; Li, P.; Ma, J.; Li, B.; Zhao, X.; Ju, Z.; Chang, H.; Xiao, L.; et al. Reduced graphene oxide conformally wrapped silver nanowire networks for flexible transparent heating and electromagnetic interference shielding. ACS Nano 2020, 14, 8754–8765. [Google Scholar] [CrossRef]
- Jiang, C.; Tan, D.; Li, Q.; Huang, J.; Bu, J.; Zang, L.; Ji, R.; Bi, S.; Guo, Q. High-performance and reliable silver nanotube networks for efficient and large-scale transparent electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2021, 13, 15525–15535. [Google Scholar] [CrossRef]
- Liao, D.; Zhou, J.; Zheng, Y. Preparation and performance of double-layer metal mesh transparent conductive films based on crack template method. Acta Phys. Sin. 2025, 74, 014201. [Google Scholar] [CrossRef]
- Zarei, M.; Li, M.; Papazekos, E.; Su, Y.-D.; Sinha, S.; Walker, S.B.; LeMieux, M.; Ohodnicki, P.R.; Leu, P.W. Single- and double-layer embedded metal meshes for flexible, highly transparent electromagnetic interference shielding. Adv. Mater. Technol. 2024, 9, 2302057. [Google Scholar] [CrossRef]
- Voronin, A.S.; Fadeev, Y.V.; Ivanchenko, F.S.; Dobrosmyslov, S.S.; Makeev, M.O.; Mikhalev, P.A.; Osipkov, A.S.; Damaratsky, I.A.; Ryzhenko, D.S.; Yurkov, G.Y.; et al. Original concept of cracked template with controlled peeling of the cells perimeter for high performance transparent EMI shielding films. Surf. Interfaces 2023, 38, 102793. [Google Scholar] [CrossRef]
- Chen, Q.; Huang, L.; Wang, X.; Yuan, Y. Transparent and flexible composite films with excellent electromagnetic interference shielding and thermal insulating performance. ACS Appl. Mater. Interfaces 2023, 15, 24901–24912. [Google Scholar] [CrossRef]
- Gu, J.; Hu, S.; Ji, H.; Feng, H.; Zhao, W.; Wei, J.; Li, M. Multi-layer silver nanowire/polyethylene terephthalate mesh structure for highly efficient transparent electromagnetic interference shielding. Nanotechnology 2020, 31, 185303. [Google Scholar] [CrossRef] [PubMed]
- Lei, Q.; Luo, Z.; Zheng, X.; Lu, N.; Zhang, Y.; Huang, J.; Yang, L.; Gao, S.; Liang, Y.; He, S. Broadband transparent and flexible silver mesh for efficient electromagnetic interference shielding and high-quality free-space optical communication. Opt. Mater. Express 2023, 13, 469–483. [Google Scholar] [CrossRef]
- Kim, M.-H.; Joh, H.; Hong, S.-H.; Oh, S.J. Coupled Ag nanocrystal-based transparent mesh electrodes for transparent and flexible electro-magnetic interference shielding films. Curr. Appl. Phys. 2019, 19, 8–13. [Google Scholar] [CrossRef]
- Voronin, A.S.; Fadeev, Y.V.; Govorun, I.V.; Voloshin, A.S.; Tambasov, I.A.; Simunin, M.M.; Khartov, S.V. A transparent radio frequency shielding coating obtained using a self-organized template. Tech. Phys. Lett. 2021, 47, 259–262. [Google Scholar] [CrossRef]
- Tai, Y.; Zhou, J.; Zhu, X.; Zhang, H.; Li, H.; Li, Z.; Wang, R.; Zhang, F.; Zhang, G.; Liu, C.; et al. Additive manufacturing of large-scale metal mesh with core-shell composite structure for transparent electromagnetic shielding/glass heater. Chin. J. Mech. Eng. Addit. Manuf. Front. 2023, 2, 100089. [Google Scholar] [CrossRef]
- Li, T.; Chen, X.; Xu, Z.; Nie, S.; Xu, W.; Yuan, W.; Xu, S.; Zhang, S.; Pei, F.; Su, W.; et al. High-performance visible-infrared broadband transparent copper mesh conductor and applications for electromagnetic shielding and heating. Sci. China Mater. 2025, 68, 421–431. [Google Scholar] [CrossRef]
- Yang, L.; Guo, R.; Gao, F.; Guan, Y.; Zhang, M.; Wang, P. Electromagnetic interference (EMI) shielding performance and photoelectric characteristics of ZnS Infrared Window. Materials 2025, 18, 1067. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Huang, X.; Wen, K.; Wu, Z.; Yao, L.; Pan, J.; Liu, W.; Liu, P. Metal mesh-based infrared transparent EMI shielding window with balanced shielding properties over a wide frequency spectrum. Appl. Sci. 2023, 13, 4846. [Google Scholar] [CrossRef]
- Voronin, A.S.; Makeev, M.O.; Damaratsky, I.A. Aluminium mesh transparent conductor with irregular structure as effective EMI shielding material // IEEEXplore. In Proceedings of the 2024 International Ural Conference on Electrical Power Engineering (UralCon), Magnitogorsk, Russia, 27–29 September 2024; pp. 663–667. [Google Scholar] [CrossRef]
- ASTM D4541; Standard Test Method for Pull-Off Strength of Coatings Using Portable Adhesion Testers. ASTM: West Conshohocken, PA, USA, 2022.
- Khodzitsky, M.K.; Bassarab, V.V.; Shakhmin, A.A.; Sokolov, V.S.; Kropotov, G.I. The electromagnetic shielding of optoelectronic devices by mesh structures. Appl. Sci. 2021, 11, 9841. [Google Scholar] [CrossRef]
- Lee, H.B.; Jin, W.-Y.; Ovhal, M.M.; Kumar, N.; Kang, J.-W. Flexible transparent conducting electrodes based on metal meshes for organic optoelectronic device applications: A review. J. Mater. Chem. C 2019, 7, 1087–1110. [Google Scholar] [CrossRef]
- Ellmer, K. Past achievements and future challenges in the development of optically transparent electrodes. Nat. Photon. 2012, 6, 809–817. [Google Scholar] [CrossRef]
- Qin, F.; Yan, Z.; Fan, J.; Cai, J.; Zhu, X.; Zhang, X. Highly uniform and stable transparent electromagnetic interference shielding film based on silver nanowire–PEDOT:PSS composite for high power microwave shielding. Macromol. Mater. Eng. 2021, 306, 2000607. [Google Scholar] [CrossRef]
- Zhu, X.; Xu, J.; Qin, F.; Yan, Z.; Guo, A.; Kan, C. Highly efficient and stable transparent electromagnetic interference shielding films based on silver nanowires. Nanoscale 2020, 12, 14589–14597. [Google Scholar] [CrossRef] [PubMed]
- Voronin, A.; Bril’, I.; Pavlikov, A.; Makeev, M.; Mikhalev, P.; Parshin, B.; Fadeev, Y.; Khodzitsky, M.; Simunin, M.; Khartov, S. THz shielding properties of optically transparent PEDOT:PSS/AgNW composite films and their sandwich structures. Polymers 2025, 17, 321. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Lin, N.; Chen, Y.; Wang, Z.; Xie, Q.; Zheng, T.; Gao, N.; Li, S.; Kang, J.; Cai, D.; et al. Copper nanowires as fully transparent conductive electrodes. Sci. Rep. 2013, 3, 2323. [Google Scholar] [CrossRef]
- Kim, W.-K.; Lee, S.; Lee, D.H.; Park, I.H.; Bae, J.S.; Lee, T.W.; Kim, J.-Y.; Park, J.H.; Cho, Y.C.; Cho, C.R.; et al. Cu mesh for flexible transparent conductive electrode. Sci. Rep. 2015, 5, 10715. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-J.; Kim, Y.; Jeong, J.-H.; Choi, J.-H.; Lee, J.; Choi, D.-G. Cupronickel-based micromesh film for use as a high-performance and low-voltage transparent heater. J. Mater. Chem. A 2015, 3, 16621–16626. [Google Scholar] [CrossRef]
- Liao, D.; Kang, L.; Zhou, J. Calculation and verification of optical diffraction performance of random metallic meshes. J. Appl. Phys. 2025, 137, 123108. [Google Scholar] [CrossRef]
- Han, Y.; Lin, J.; Liu, Y.; Fu, H.; Ma, Y.; Jin, P.; Tan, J. Crackle template based metallic mesh with highly homogeneous light transmission for high-performance transparent EMI shielding. Sci. Rep. 2016, 6, 25601. [Google Scholar] [CrossRef]
- Halman, J.I.; Ramsey, K.A.; Thomas, M.; Griffin, A. Predicted and measured transmission and diffraction by a metallic mesh coating. In Proceedings of the Window and Dome Technologies and Materials XI, Orlando, FL, USA, 15–16 April 2009; p. 73020Y. [Google Scholar] [CrossRef]
- Zhong, H.; Han, Y.; Lin, J.; Jin, P. Pattern randomization: An efficient way to design high-performance metallic meshes with uniform stray light for EMI shielding. Opt. Express 2020, 28, 7008–7017. [Google Scholar] [CrossRef]
- Liao, D.; Zheng, Y.; Ma, X.; Fu, Y. Honeycomb-ring hybrid random mesh design with electromagnetic interference (EMI) shielding for low stray light. Opt. Express 2023, 31, 32200–32213. [Google Scholar] [CrossRef] [PubMed]
- Cao, D.; Ma, J.; Li, C.; Guan, Y.; Hu, J.; Feng, J.; Wang, L.; Wang, Y.; Lin, J.; Jin, P. Voronoi diagrams metallic mesh for transparent EMI shielding. Appl. Phys. Lett. 2025, 126, 031702. [Google Scholar] [CrossRef]
- Voronin, A.S.; Fadeev, Y.V.; Ivanchenko, F.S.; Dobrosmyslov, S.S.; Simunin, M.M.; Govorun, I.V.; Podshivalov, I.V.; Mikhalev, P.A.; Makeev, M.O.; Damaratskiy, I.A.; et al. Waste-free self-organized process manufacturing transparent conductive mesh and micro flakes in closed cycle for broadband electromagnetic shielding and heater application. J. Mater. Sci. Mater. Electron. 2025, 36, 62. [Google Scholar] [CrossRef]
- Landau, L.D.; Pitaevskii, L.P.; Lifshitz, E.M. Electrodynamics of continuous media. In Course of Theoretical Physics, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 1984; Volume 8. [Google Scholar]
- Shi, Z.; Song, L.; Zhang, T. Optical and electrical characterization of pure PMMA for terahertz wide-band metamaterial absorbers. J. Infrared Millim. Terahertz Waves 2019, 40, 80–91. [Google Scholar] [CrossRef]
- Hassan, S.G.; Mohammad, E.J. Study of the skin depth in different metallic atoms. Mater. Today Proceed. 2021, 42, 2749–2751. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, H.; Li, Q.; Mou, N.; Chen, L.; Zhang, L. Double-layer metal mesh etched by femtosecond laser for high-performance electromagnetic interference shielding window. RSC Adv. 2019, 9, 22282–22287. [Google Scholar] [CrossRef]
- Wang, H.; Lu, Z.; Liu, Y.; Tan, J.; Ma, L.; Lin, S. Double-layer interlaced nested multi-ring array metallic mesh for high-performance transparent electromagnetic interference shielding. Opt. Lett. 2017, 42, 1620–1623. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.-S.; Suh, S.-J.; Kim, S.-W.; Kim, H.-J.; Park, J.-W. Transparent electromagnetic shielding film utilizing imprinting-based micro patterning technology. Polymers 2021, 13, 738. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Zhao, S.; Huang, W.; Chen, L.; Liu, Y.-H. Embedded flexible and transparent double-layer nickel-mesh for high shielding efficiency. Opt. Express 2020, 28, 26531–26542. [Google Scholar] [CrossRef]
- Phan, D.T.; Jung, C.W. Optically transparent and very thin structure against electromagnetic pulse (EMP) using metal mesh and saltwater for shielding windows. Sci. Rep. 2021, 11, 2603. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Liu, L.-X.; Zhang, H.-B.; Yu, Z.-Z. Flexible, transparent, and conductive Ti3C2Tx MXene−silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding. ACS Nano 2020, 14, 16643–16653. [Google Scholar] [CrossRef]
- Wang, Q.; Feng, Y.; Lin, F.; Chen, Y.; Ding, N.; Zhang, Y.; Liu, S.; Zhao, W.; Zhao, Q. High-precision printing sandwich flexible transparent silver mesh for tunable electromagnetic interference shielding visualization windows. ACS Appl. Mater. Interfaces 2024, 16, 70644–70655. [Google Scholar] [CrossRef]
- Kim, D.-H.; Kim, Y.; Kim, J.-W. Transparent and flexible film for shielding electromagnetic interference. Mater. Design 2016, 89, 703–707. [Google Scholar] [CrossRef]
- Su, Z.; Yang, H.; Wang, G.; Zhang, Y.; Zhang, J.; Lin, J.; Jia, D.; Wang, H.; Lu, Z.; Hu, P.A. Transparent and high-performance electromagnetic interference shielding composite film based on single-crystal graphene/hexagonal boron nitride heterostructure. J. Colloid Interface Sci. 2023, 640, 610–618. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Huang, X.; Pan, J.; Liu, W.; Wen, K.; Zhai, D.; Shang, P.; Liu, P. Shorted micro-waveguide array for high optical transparency and superior electromagnetic shielding in ultra-wideband frequency spectrum. Adv. Mater. Technol. 2023, 8, 2201532. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voronin, A.S.; Parshin, B.A.; Makeev, M.O.; Mikhalev, P.A.; Fadeev, Y.V.; Ivanchenko, F.S.; Bril’, I.I.; Tambasov, I.A.; Simunin, M.M.; Khartov, S.V. High-Performance Optically Transparent EMI Shielding Sandwich Structures Based on Irregular Aluminum Meshes: Modeling and Experiment. Materials 2025, 18, 4102. https://doi.org/10.3390/ma18174102
Voronin AS, Parshin BA, Makeev MO, Mikhalev PA, Fadeev YV, Ivanchenko FS, Bril’ II, Tambasov IA, Simunin MM, Khartov SV. High-Performance Optically Transparent EMI Shielding Sandwich Structures Based on Irregular Aluminum Meshes: Modeling and Experiment. Materials. 2025; 18(17):4102. https://doi.org/10.3390/ma18174102
Chicago/Turabian StyleVoronin, Anton S., Bogdan A. Parshin, Mstislav O. Makeev, Pavel A. Mikhalev, Yuri V. Fadeev, Fedor S. Ivanchenko, Il’ya I. Bril’, Igor A. Tambasov, Mikhail M. Simunin, and Stanislav V. Khartov. 2025. "High-Performance Optically Transparent EMI Shielding Sandwich Structures Based on Irregular Aluminum Meshes: Modeling and Experiment" Materials 18, no. 17: 4102. https://doi.org/10.3390/ma18174102
APA StyleVoronin, A. S., Parshin, B. A., Makeev, M. O., Mikhalev, P. A., Fadeev, Y. V., Ivanchenko, F. S., Bril’, I. I., Tambasov, I. A., Simunin, M. M., & Khartov, S. V. (2025). High-Performance Optically Transparent EMI Shielding Sandwich Structures Based on Irregular Aluminum Meshes: Modeling and Experiment. Materials, 18(17), 4102. https://doi.org/10.3390/ma18174102