High-Temperature Deformation Behaviors of Gradient-Structured Mg-Gd-Y-Zr Alloys at High Strain Rates
Abstract
1. Introduction
2. Materials and Experimental Procedures
3. Results
3.1. Hot Deformation Behaviors
3.2. Microstructure After Hot Deformation
4. Discussion
4.1. DRX Behavior
4.2. Residual Strain Analysis
4.3. Deformation Mechanisms
5. Conclusions
- The ES samples with uniform CG structure exhibited high flow stress and low elongation, while the ESS samples with gradient structure exhibited lower flow stress and higher elongation. Moreover, the strain rate sensitivity index (m) values of the ESS samples were higher than those of the ES samples.
- The ES samples exhibited significantly lower DRX ratios (3% and 3.1%) compared to the ESS samples (SD layer: 39.6% and 52.9%; DCG layer: 15.0% and 24.9%) under deformation conditions of 400 °C/0.1 s−1 and 400 °C/1.0 s−1, respectively. When the strain rate increased from 0.1 s−1 to 1.0 s−1, the enhanced deformation heating promoted DRX grain growth in the ESS samples, resulting in improved DRX.
- The deformed grains in the ES samples contained high residual stresses, and the deformation relied solely on the prismatic <a> slips in the coarse grains. The lack of softening and coordinating effect during the deformation led to the low plasticity. In contrast, the high dislocation density in the SD layer of the ESS samples promoted profuse DRX during deformation. The GBS mechanism facilitated by DRX significantly enhanced the overall deformability of these samples.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, Y.J.; Wan, Y.C.; Liu, C.M.; Jiang, S.N.; Gao, Y.H.; Chen, Z.Y. Effect of forging temperature on the microstructure, subsequent aging precipitation behavior, and mechanical properties of Mg-Gd-Y-Zr-Ag alloy. J. Mater. Sci. Technol. 2024, 181, 41–57. [Google Scholar] [CrossRef]
- Zhang, Q.H.; Li, J.G.; Jiang, K.; Li, P.; Li, Y.S.; Zhang, Y.; Suo, T. Gradient structure induced simultaneous enhancement of strength and ductility in AZ31 Mg alloy with twin-twin interactions. J. Magnes. Alloys 2023, 11, 2872–2882. [Google Scholar] [CrossRef]
- Zhou, T.S.; Li, Y.Q.; Guo, F.F.; Li, Q.L.; Jia, Z.; Liu, D.X. Achieving high strength-ductility synergy in Mg-6Sn-3Zn-0.3Zr (wt.%) alloy via a combination of casting, pre-treatment and hot extrusion. J. Magnes. Alloys 2024, 12, 4622–4645. [Google Scholar] [CrossRef]
- Zeng, Z.R.; Zhou, M.R.; Lynch, P.; Mompiou, F.; Gu, Q.F.; Esmaily, M.; Yan, Y.M.; Qiu, Y.; Xu, S.W.; Fujii, H.; et al. Deformation modes during room temperature tension of fine-grained pure magnesium. Acta Mater. 2021, 206, 116648. [Google Scholar] [CrossRef]
- Kandemir, S.; Gavras, S.; Dieringa, H. High temperature tensile, compression and creep behavior of recycled short carbon fibre reinforced AZ91 magnesium alloy fabricated by a high shearing dispersion technique. J. Magnes. Alloys 2021, 9, 1753–1767. [Google Scholar] [CrossRef]
- Wang, S.Q.; Zha, M.; Jia, H.L.; Yang, Y.J.; Wang, D.W.; Wang, C.; Gao, Y.P.; Wang, H.Y. A review of superplastic magnesium alloys: Focusing on alloying strategy, grain structure control and deformation mechanisms. J. Mater. Sci. Technol. 2025, 211, 303–319. [Google Scholar] [CrossRef]
- Malik, A.; Masood Chaudry, U.; Hamad, K.; Jun, T.-S. Microstructure Features and Superplasticity of Extruded, Rolled and SPD-Processed Magnesium Alloys: A Short Review. Metals 2021, 11, 1766. [Google Scholar] [CrossRef]
- Edalati, K.; Masuda, T.; Arita, M.; Furui, M.; Sauvage, X.; Horita, Z.; Valiev, R.Z. Room-temperature superplasticity in an ultrafine-grained magnesium alloy. Sci. Rep. 2017, 7, 2662. [Google Scholar] [CrossRef]
- Wu, H.R.; Jiang, J.H.; Yang, Z.Q.; Li, M.J.; Yuan, Y.X.; Ma, A.B. High-strain-rate superplasticity and microstructural evolution in ECAP-processed Mg–6.5Y–1.2Er–1.6Zn–0.5Ag alloy. J. Mater. Res. Technol. 2023, 23, 4790–4801. [Google Scholar] [CrossRef]
- Wu, H.R.; Jiang, J.H.; Yang, Z.Q.; Li, M.J.; Huang, H.; Ge, N.F.; Ma, A.B.; Liu, H. Achieving high-strain-rate and low-temperature superplasticity in an ECAP-processed Mg-Y-Er-Zn alloy via Ag addition. J. Magnes. Alloys 2023, 11, 3765–3778. [Google Scholar] [CrossRef]
- Vávra, T.; Minárik, P.; Veselý, J.; Král, R. Excellent superplastic properties achieved in Mg–4Y–3RE alloy in high strain rate regime. Mater. Sci. Eng. A 2020, 784, 139314. [Google Scholar] [CrossRef]
- Zhan, L.Q.; Xue, G.J.; Yang, J.L.; Zhang, W.C.; Jiao, X.Y.; Wang, G.; Wang, G.F. Superplastic behavior and microstructure evolution of a fine-grained Mg-Nd-Zn-Zr alloy processed by hot extrusion. Mater. Sci. Eng. A 2022, 846, 143314. [Google Scholar] [CrossRef]
- Duan, M.; Luo, L.; Liu, Y. Microstructural evolution of AZ31 Mg alloy with surface mechanical attrition treatment: Grain and texture gradient. J. Alloys Compd. 2020, 823, 153691. [Google Scholar] [CrossRef]
- Azadmanjiri, J.; Berndt, C.C.; Kapoor, A.; Wen, C. Development of surface nano-crystallization in alloys by surface mechanical attrition treatment (SMAT). Crit. Rev. Solid State Mater. Sci. 2015, 40, 164–181. [Google Scholar] [CrossRef]
- Xia, S.W.; Xu, J.M.; Wang, Z.J.; Liu, Y.; Lu, J. Precipitation behavior of bulk nanocrystalline GW103K alloy induced by surface mechanical attrition treatment. J. Alloys Compd. 2017, 697, 282–286. [Google Scholar] [CrossRef]
- Sun, W.; Wu, B.; Fu, H.; Yang, X.S.; Qiao, X.G.; Zheng, M.Y.; He, Y.; Lu, J.; Shi, S.Q. Combining gradient structure and supersaturated solid solution to achieve superior mechanical properties in WE43 magnesium alloy. J. Mater. Sci. Technol. 2022, 99, 223–238. [Google Scholar] [CrossRef]
- Ling, Z.H.; Yang, K.P.; Wang, L.Q.; Ma, K.; Zhang, D.D.; Li, Y.L.; Zhang, Z.; Zhao, Z.Y.; Bai, P.K. Hot deformation behavior and microstructural evolutions of a Mg-Gd-Y-Zn-Zr alloy prepared by hot extrusion. J. Alloys Compd. 2024, 1009, 176916. [Google Scholar] [CrossRef]
- Shalbafi, M.; Roumina, R.; Mahmudi, R. Hot deformation of the extruded Mg–10Li–1Zn alloy: Constitutive analysis and processing maps. J. Alloys Compd. 2017, 696, 1269–1277. [Google Scholar] [CrossRef]
- Zhang, K.; Zheng, J.H.; Shao, Z.T.; Pruncu, C.; Turski, M.; Guerini, C.; Jiang, J. Experimental investigation of the viscoplastic behaviours and microstructure evolutions of AZ31B and Elektron 717 Mg-alloys. Mater. Des. 2019, 184, 108160. [Google Scholar] [CrossRef]
- Ning, J.L.; Gao, B.S.; Yuan, X.Y.; Zhou, J.L.; Tang, G.Z.; Chen, L.S. Strength and ductility improvement in a heterostructured Mg-Gd-Y alloy with inversely-gradient hardness distribution. J. Mater. Res. Technol. 2024, 28, 3781–3793. [Google Scholar] [CrossRef]
- Ding, N.; Du, W.B.; Li, S.B.; Liu, K.; Du, X.; Yu, Z.J. Strain rate dependence of dynamic recrystallization and texture evolution in hot compressed Mg-Gd-Er-Zr alloy. J. Magnes. Alloys 2025, 13, 161–171. [Google Scholar] [CrossRef]
- Al-Samman, T.; Gottstein, G. Dynamic recrystallization during high temperature deformation of magnesium. Mater. Sci. Eng. A 2008, 490, 411–420. [Google Scholar] [CrossRef]
- Cai, Z.W.; Chen, F.X.; Ma, F.J.; Guo, J.Q. Dynamic recrystallization behavior and hot workability of AZ41M magnesium alloy during hot deformation. J. Alloys Compd. 2016, 670, 55–63. [Google Scholar] [CrossRef]
- Yang, Y.L.; Liu, Y.X.; Yan, S.; Jiang, S.; He, Z.F.; Pan, H.Z.; Jia, N. On the micromechanism of superior strength and ductility synergy in a heterostructured Mg-2.77Y alloy. J. Magnes. Alloys 2024, 12, 2793–2811. [Google Scholar] [CrossRef]
- Yang, L.D.; Li, Q.A.; Chen, X.Y.; Yan, L.P. The microstructure evolution and abnormal yield asymmetry of extruded Mg-10Gd-0.5Zr alloy. J. Mater. Res. Technol. 2022, 19, 4031–4043. [Google Scholar] [CrossRef]
- She, H.; Shu, D.; Dong, A.P.; Wang, J.; Sun, B.D.; Lai, H.C. Relationship of particle stimulated nucleation, recrystallization and mechanical properties responding to Fe and Si contents in hot-extruded 7055 aluminum alloys. J. Mater. Sci. Technol. 2019, 35, 2570–2581. [Google Scholar] [CrossRef]
- Zhou, Y.C.; Chen, Z.Y.; Ji, J.H.; Sun, Z.J. Effects of second phases on deformation behavior and dynamic recrystallization of as-cast mg-4.3Li-4.1Zn-1.4Y alloy during hot compression. J. Alloys Compd. 2019, 770, 540–548. [Google Scholar] [CrossRef]
- Wu, Y.P.; Zhang, X.M.; Deng, Y.L.; Tang, C.P.; Yang, L.; Zhong, Y.Y. Dynamic recrystallization mechanisms during hot compression of Mg–Gd–Y–Nd–Zr alloy. Trans. Nonferrous Met. Soc. China 2015, 25, 1831–1839. [Google Scholar] [CrossRef]
- Wu, H.; Fan, G.H. An overview of tailoring strain delocalization for strength-ductility synergy. Prog. Mater. Sci. 2020, 113, 100675. [Google Scholar] [CrossRef]
- Ye, X.; Suo, Z.; Heng, Z.H.; Chen, B.; Wei, Q.M.; Umeda, J.; Kondoh, K.; Shen, J.H. An in-situ study of static recrystallization in Mg using high temperature EBSD. J. Magnes. Alloys 2024, 12, 1419–1430. [Google Scholar] [CrossRef]
- Yuan, S.; Wang, J.H.; Zhang, L.; Jin, P.P. Revealing the deformation behavior and microstructure evolution in Mg-12Y–1Al alloy during hot compression. J. Alloys Compd. 2023, 946, 169462. [Google Scholar] [CrossRef]
- Shen, R.R.; Efsing, P. Overcoming the drawbacks of plastic strain estimation based on KAM. Ultramicroscopy 2018, 184, 156–163. [Google Scholar] [CrossRef]
- Deng, J.F.; Tian, J.; Zhou, Y.C.; Chang, Y.Y.; Liang, W.; Ma, J.Y. Plastic deformation mechanism and hardening mechanism of rolled rare-earth magnesium alloy thin sheet. Mater. Des. 2022, 218, 110678. [Google Scholar] [CrossRef]
- Samberger, S.; Weißensteiner, I.; Stemper, L.; Kainz, C.; Uggowitzer, P.J.; Pogatscher, S. Fine-grained aluminium crossover alloy for high-temperature sheet forming. Acta Mater. 2023, 253, 118952. [Google Scholar] [CrossRef]
- Korla, R.; Chokshi, A.H. A constitutive equation for grain boundary sliding: An experimental approach. Metall. Mater. Trans. A 2014, 45, 698–708. [Google Scholar] [CrossRef]
- Yang, Q.; Xiao, B.L.; Ma, Z.Y. Enhanced superplasticity in friction stir processed Mg–Gd–Y–Zr alloy. J. Alloys Compd. 2013, 551, 61–66. [Google Scholar] [CrossRef]
- Zhang, X.M.; Li, L.; Deng, Y.L.; Zhou, N. Superplasticity and microstructure in Mg–Gd–Y–Zr alloy prepared by extrusion. J. Alloys Compd. 2009, 481, 296–300. [Google Scholar] [CrossRef]
- Sun, C.; Liu, H.; Wang, X.J.; Hu, X.S.; Jiang, S.S. Microstructure evolution during superplastic deformation process and its impact on superplastic behavior of a Mg-Gd-Y-Zn-Zr alloy. Mater. Charact. 2021, 172, 110879. [Google Scholar] [CrossRef]
- Cao, G.H.; Zhang, D.T.; Chai, F.; Zhang, W.; Qiu, C. High-strain-rate superplasticity in Mg–Y–Nd alloy prepared by submerged friction stir processing. Adv. Eng. Mater. 2016, 18, 312–318. [Google Scholar] [CrossRef]
- Cao, G.H.; Zhang, D.T.; Chai, F.; Zhang, W.W.; Qiu, C. Superplastic behavior and microstructure evolution of a fine-grained Mg–Y–Nd alloy processed by submerged friction stir processing. Mater. Sci. Eng. A 2015, 642, 157–166. [Google Scholar] [CrossRef]
- Kang, Z.X.; Zhou, L.L.; Zhang, J.Y. Achieving high strain rate superplasticity in Mg–Y–Nd–Zr alloy processed by homogenization treatment and equal channel angular pressing. Mater. Sci. Eng. A 2015, 633, 59–62. [Google Scholar] [CrossRef]
- Liu, G.L.; Cheng, W.L.; Luo, L.; Yu, H.; Wang, L.F.; Li, H.; Wang, H.X.; Wang, J.H. Hot compression deformation behavior and dynamic recrystallization of a precipitate-free Mg–Bi–Sn alloy. J. Mater. Res. Technol. 2023, 25, 497–510. [Google Scholar] [CrossRef]
- Liu, G.L.; You, Z.Y.; Cheng, W.L.; Luo, L.; Yu, H.; Wang, L.F.; Li, H.; Cui, Z.Q.; Wang, J.H. Hot deformation behavior and resultant microstructural evolution of dilute Mg–Bi–Sn–Mn alloy during hot compression. J. Mater. Res. Technol. 2023, 26, 2815–2829. [Google Scholar] [CrossRef]
- Wang, L.F.; Pan, X.H.; Zhu, X.X.; Xing, B.; Zhang, H.; Lu, L.W.; Wang, H.X.; Cheng, W.L.; Vedani, M. Effect of two-step increased temperature thermal rolling on anisotropy and stretch formability of AZ31 magnesium alloy sheets. Trans. Nonferrous Met. Soc. China 2023, 33, 1066–1085. [Google Scholar] [CrossRef]
- Luan, S.Y.; Zhang, L.; Chen, L.J.; Li, W.; Wang, J.H.; Jin, P.P. The influence of the LPSO on the deformation mechanisms and tensile properties at elevated temperatures of the Mg-Gd-Zn-Mn alloys. J. Mater. Res. Technol. 2023, 23, 6216–6229. [Google Scholar] [CrossRef]
- Ma, D.Q.; Yuan, S.; Luan, S.Y.; Jin, P.P.; Hu, H.R.; Wang, J.H.; Li, X.Q. Hot deformation behavior, microstructure evolution and slip system of Mg-2Zn-0.5Mn-0.2Ca alloy. J. Mater. Res. Technol. 2022, 21, 1643–1654. [Google Scholar] [CrossRef]
- Barrett, C.D.; Imandoust, A.; Oppedal, A.L.; Inal, K.; Tschopp, M.A.; El Kadiri, H. Effect of grain boundaries on texture formation during dynamic recrystallization of magnesium alloys. Acta Mater. 2017, 128, 270–283. [Google Scholar] [CrossRef]
- Chun, Y.B.; Battaini, M.; Davies, C.H.J.; Hwang, S.K. Distribution characteristics of in-grain misorientation axes in cold-rolled commercially pure titanium and their correlation with active slip modes. Metall. Mater. Trans. A 2010, 41, 3473–3487. [Google Scholar] [CrossRef]
- Han, L.Y.; Yu, Y.N.; Wei, D.J.; Wang, X.; Zhao, G.Q.; Wang, G.C. The synergistic and interactive effects of slip systems and dynamic recrystallization on the weakening basal texture of Mg-Y-Nd-Zr-Gd magnesium alloy. Mater. Des. 2024, 237, 112583. [Google Scholar] [CrossRef]
- Ning, J.L.; Gao, B.S.; Zhou, J.L.; Chen, L.S.; Tang, G.Z.; Li, S.B. In-situ study on the tensile deformation and fracture mechanism of a bimodal-structured Mg-Gd-Y alloy. Materials 2023, 16, 5978. [Google Scholar] [CrossRef]
- Feng, Y.D.; Wang, J.H.; Luan, S.Y.; Yuan, S.; Liu, X.Y.; Li, X.W.; Han, L.; Wei, Q. Revealing microstructures evolution and dynamic recrystallization mechanisms of Mg–Sn–Mn alloy during compressive deformation at elevated temperature. Results Mater. 2023, 20, 100473. [Google Scholar] [CrossRef]
- Kardani, A.; Mehrafrooz, B.; Montazeri, A. MD-based computational design of new engineered Ni-based nanocatalysts: An in-depth study of the underlying mechanism. Eur. Phys. J. Plus 2018, 133, 88. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, X.M.; Deng, Y.L.; Fan, X.H. Superplasticity of Mg-Gd-Y alloy in tensile test at elevated temperature. Trans. Nonferrous Met. Soc. China 2007, 17, 372–375. [Google Scholar]
- Li, J.L.; Wu, D.; Yang, Q.B.; Chen, R.S. Superplasticity of multi-directional impact forged Mg–Gd–Y-Zr alloy. J. Alloys Compd. 2016, 672, 27–35. [Google Scholar] [CrossRef]
- Azizi, N.; Mahmudi, R. Superplasticity of fine-grained Mg–xGd alloys processed by multi-directional forging. Mater. Sci. Eng. A 2019, 767, 138436. [Google Scholar] [CrossRef]
Alloy | Compositions (wt%) | |||
---|---|---|---|---|
Gd | Y | Zr | Mg | |
Mg-8.5Gd-2.5Y-0.5Zr | 8.34 | 2.32 | 0.35 | Bal. |
Sample Designation | Procedures |
---|---|
ES | Extrusion + Solution treatment |
ESS | Extrusion + Solution treatment + SMAT |
Samples | Temperature (°C) | True Stress at 0.1 True Strain | |||
---|---|---|---|---|---|
0.01 s−1 | 0.1 s−1 | 0.5 s−1 | 1 s−1 | ||
ES | 350 | 228.916 | 143.977 | 106.294 | 58.663 |
400 | 253.492 | 171.462 | 169.909 | 113.598 | |
ESS | 350 | 256.450 | 210.268 | 203.206 | 160.078 |
400 | 277.853 | 221.873 | 244.451 | 178.860 |
Samples | Temperature (°C) | Logarithm of the True Stress at 0.1 True Strain | |||
---|---|---|---|---|---|
0.01 s−1 | 0.1 s−1 | 0.5 s−1 | 1 s−1 | ||
ES | 350 | 5.433 | 4.970 | 4.666 | 4.072 |
400 | 5.535 | 5.144 | 5.135 | 4.733 | |
ESS | 350 | 5.547 | 5.348 | 5.314 | 5.076 |
400 | 5.627 | 5.402 | 5.499 | 5.187 |
Samples | Temperature (°C) | m |
---|---|---|
ES | 350 | 0.037 |
400 | 0.096 | |
ESS | 350 | 0.173 |
400 | 0.244 |
Slip Mode | Slip Type | Slip Systems | Taylor Axes | Variants |
---|---|---|---|---|
Basal <a> | 3 | 3 | ||
Prismatic <a> | 3 | <0001> | 1 | |
Pyramidal <a> | 6 | 6 | ||
Pyramidal I <c + a> | 12 | * | 6 | |
Pyramidal II <c + a> | 6 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Wu, M.; Zhang, W.; Ning, J. High-Temperature Deformation Behaviors of Gradient-Structured Mg-Gd-Y-Zr Alloys at High Strain Rates. Materials 2025, 18, 4085. https://doi.org/10.3390/ma18174085
Zhou J, Wu M, Zhang W, Ning J. High-Temperature Deformation Behaviors of Gradient-Structured Mg-Gd-Y-Zr Alloys at High Strain Rates. Materials. 2025; 18(17):4085. https://doi.org/10.3390/ma18174085
Chicago/Turabian StyleZhou, Jialiao, Minghui Wu, Wenxuan Zhang, and Jiangli Ning. 2025. "High-Temperature Deformation Behaviors of Gradient-Structured Mg-Gd-Y-Zr Alloys at High Strain Rates" Materials 18, no. 17: 4085. https://doi.org/10.3390/ma18174085
APA StyleZhou, J., Wu, M., Zhang, W., & Ning, J. (2025). High-Temperature Deformation Behaviors of Gradient-Structured Mg-Gd-Y-Zr Alloys at High Strain Rates. Materials, 18(17), 4085. https://doi.org/10.3390/ma18174085