Ir- and Pt-Doped InTe Monolayers as Potential Sensors for SF6 Decomposition Products: A DFT Investigation
Abstract
1. Introduction
2. Computational Details
3. Results and Discussion
3.1. Properties of Ir-InTe and Pt-InTe Monolayers
3.2. Adsorption Characteristics of the SDPs on Ir-InTe Monolayers
3.3. Adsorption Properties of the SDPs on Pt-InTe Monolayers
3.4. Gas Sensor Explorations
4. Conclusions
- (1)
- Ir and Pt atoms stably embed into the hollow sites of the InTe monolayer, driven by strong orbital hybridization between Ir/Pt d and Te p orbitals. These modifications significantly reduce the bandgap of the InTe monolayer.
- (2)
- The unique d-orbital configurations of Ir and Pt atoms facilitate chemisorption of SDPs. Ir-InTe exhibits strong affinity for H2S, SO2, and SOF2 (|Eads| ≥ 1.35 eV), while Pt-InTe effectively chemisorbs all four gases, as corroborated by the PDOS, DCD, and charge transfer analyses.
- (3)
- Ir-InTe is highly sensitive to H2S, SO2, and SOF2, with bandgap change (ΔEg) values of 49.6%, 54.3%, and 65.5%, respectively, while Pt-InTe displays superior sensitivity to SO2, SOF2, and SO2F2, as evidenced by the large ΔEg values of 45.5%, 74.5%, and 105.2%. Furthermore, both monolayers exhibit notable work-function-based sensitivity to H2S, SO2, and SOF2.
- (4)
- Recovery time analysis suggests that Ir-InTe is a promising reusable sensor for H2S, whereas Pt-InTe serves as a recyclable detector for SO2 and SOF2 under high-temperature conditions. This work provides a theoretical foundation for designing efficient InTe-based sensors for real-time SDP monitoring. To validate the predictions, future research should integrate DFT with synthesis and in situ testing.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nagarajan, V.; Vishnuja, B.; Chandiramouli, R. Adsorption studies of SF6 and decomposed constituents on 4–8 arsenene nanotubes—A first-principles study. Comput. Theor. Chem. 2022, 1211, 113663. [Google Scholar] [CrossRef]
- Hou, W.; Liu, Y.; Zeng, W.; Zhou, Q. Theoretical screening into Ag-Embedded HfS2 monolayers as gas sensor for detecting SF6 decomposition gases. J. Mater. Res. Technol. 2022, 18, 1991–2000. [Google Scholar] [CrossRef]
- Cui, H.; Guo, Y.; Zhao, Q.; Zhang, G. Pd-doped PtSe2 monolayer with strain-modulated effect for sensing SF6 decomposed species: A first-principles study. J. Mater. Res. Technol. 2022, 18, 629–636. [Google Scholar] [CrossRef]
- Yuan, J.Y.; Shao, Z.G. Investigating transition metal (Fe, Co, Ni)-doped biphenylene network as a sensor for SF6 decomposition molecules detection at the atomic scale. Phys. E Low-Dimens. Syst. Nanostruct. 2025, 168, 116178. [Google Scholar] [CrossRef]
- Qin, X.; Luo, C.; li, Y.; Cui, H. InP3 monolayer as a promising 2D sensing material in SF6 insulation devices. ACS Omega 2021, 6, 29752–29758. [Google Scholar] [CrossRef]
- Liu, H.; Wang, F.; Hu, K.; Li, T.; Yan, Y.; Li, J. The adsorption and sensing performances of Ir-modified MoS2 monolayer toward SF6 decomposition products: A DFT study. Nanomaterials 2021, 11, 100. [Google Scholar] [CrossRef]
- Zhu, Z.; Yang, Q.; Zhang, M.; Ye, J. Study on the adsorption behavior, and electronic and gas-sensing properties of SF6 decomposition products on Co- and Ni-modified g-C3N4 monolayer films. Phys. Chem. Chem. Phys. 2025, 27, 11941–11954. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Zhang, H.; Xi, H.; Ou, X.; Ma, Y.; Jing, Q.; Xiong, H. Unlocking the sensing performance improvement of H-vacancy defect and Cu doping of diamane towards the SF6 decomposition gases. Mater. Today Commun. 2025, 46, 112779. [Google Scholar] [CrossRef]
- Yang, M.; Xiong, H.; Ma, Y.; Yang, L. Theoretical investigation of Ag and Au modified CSiN monolayer as a potential gas sensor for air decomposition components detection. J. Mol. Liq. 2024, 410, 125648. [Google Scholar] [CrossRef]
- Xiong, H.; Liu, B.; Zhang, H.; Qin, J. Theoretical insight into two-dimensional M-Pc monolayer as an excellent material for formaldehyde and phosgene sensing. Appl. Surf. Sci. 2021, 543, 148805. [Google Scholar] [CrossRef]
- Ahmad, H.; Li, X.; Kalwar, B.A.; Tan, X.; Naich, M.R. Adsorption and work function type sensing of SF6 decompositions (SO2, SOF2, SO2F2, H2S and HF) based on Fe and Cu decorated B4CN3 monolayer. A first-principles study. Chem. Phys. 2025, 589, 112522. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Q.; Wang, J.; Zeng, W. Cr doped MN (M = In, Ga) monolayer: A promising candidate to detect and scavenge SF6 decomposition components. Sens. Actuators A Phys. 2021, 330, 112854. [Google Scholar] [CrossRef]
- Gao, X.; Zhou, Q.; Wang, J.; Xu, L.; Zeng, W. DFT study on the selective adsorption properties of modified graphene for SF6 decompositions. IEEE Sens. J. 2021, 21, 3193–3200. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, L.; Gui, Y.; Hu, W. First-principles study of SF6 decomposed gas adsorbed on Au-decorated graphene. Appl. Surf. Sci. 2016, 367, 259–269. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, X.; Liu, L.; Wang, Z. Adsorption of SF6 decomposition products by the S vacancy structure and edge structure of SnS2: A density functional theory study. ACS Omega 2021, 6, 28131–28139. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Liang, X.; Deng, X.; Guo, C.; Wu, C. Adsorption of SF6 Decomposed Species on Ti3C2O2 and Ti3C2F2 with Point Defects by DFT Study. Adv. Theory Simul. 2021, 4, 2100074. [Google Scholar] [CrossRef]
- Dong, A.; Liu, M. A DFT study on the adsorption properties of Ti3C2O2 MXene towards SF6 decomposition gases. Surf. Sci. 2023, 734, 122317. [Google Scholar] [CrossRef]
- Liu, M. Adsorption Behavior of Ni-Doped ZnO Monolayer upon SF6 Decomposed Components and Effect of the Applied Electric Field. ACS Omega 2020, 5, 24118–24124. [Google Scholar] [CrossRef]
- Peng, R.; Zhou, Q.; Zeng, W. First-Principles Study of Au-Doped InN Monolayer as Adsorbent and Gas Sensing Material for SF6 Decomposed Species. Nanomaterials 2021, 11, 1708. [Google Scholar] [CrossRef]
- Sun, H.; Tao, L.Q.; Li, T.; Gao, X.; Sang, T.; Li, Y.; Wei, Y.; Wang, G.; Peng, Z.; Gui, Y.; et al. TiO2–Doped GeSe Monolayer: A highly selective gas sensor for SF6 decomposed species detection based on DFT method. Appl. Surf. Sci. 2022, 572, 151212. [Google Scholar] [CrossRef]
- Wang, R.; Cheng, B.; Ou, W. Intrinsic and Ag-doped graphdiyne as a two-dimensional material gas sensing detector for the detection of SF6 decomposition products. Appl. Surf. Sci. 2023, 608, 155276. [Google Scholar] [CrossRef]
- Khengar, S.J.; Mahida, H.R.; Patel, H.P.; Thakor, P.B. Adsorption Analysis of SF6 Decomposition Remnants on a 2D Doped InTe Monolayer: A DFT Approach. ACS Appl. Nano Mater. 2024, 7, 17648–17658. [Google Scholar] [CrossRef]
- Qiu, X.; Xu, D.; Li, z.; Dong, J.; Hou, D.; Xiong, H. Atomic-level insights into sensing performance of toxic gases on the InSe monolayer decorated with Pd and Pt under humid environment. Sens. Actuators A Phys. 2024, 378, 115846. [Google Scholar] [CrossRef]
- Shi, Z.; Xia, S.Y. First-Principle Study of Rh-Doped Nitrogen Vacancy Boron Nitride Monolayer for Scavenging and Detecting SF6 Decomposition Products. Polymers 2021, 13, 3507. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Li, X.; Duan, Y.; Pan, Y.; Yuan, J.; Zhang, X. Adsorption and sensing of SF6 decomposition gas molecules by Ni-InN monolayer: A first-principles study. Mater. Sci. Semicond. Process. 2025, 188, 109137. [Google Scholar] [CrossRef]
- Xia, S.Y.; Tao, L.Q.; Jiang, T.; Sun, H.; Li, J. Rh-doped h-BN monolayer as a high sensitivity SF6 decomposed gases sensor: A DFT study. Appl. Surf. Sci. 2021, 536, 147965. [Google Scholar] [CrossRef]
- Cui, H.; Hu, J.; Jiang, X.; Zhang, X. A first-principles study of SOF2 and SO2F2 adsorption onto PdSe2-based monolayers: Favorable sensitivity and selectivity by doping single Cu or Rh atom. Environ. Res. 2025, 269, 120843. [Google Scholar] [CrossRef]
- Zhou, W.; Li, Z.; Li, L.; Zeng, W.; Zhou, Q. Adsorption and detection of SF6 decomposed toxic gases (H2S, SO2, SOF2, SO2F2) on transition metal (Fe, Ru, Os) modified WTe2 monolayer: A DFT investigation. J. Environ. Chem. Eng. 2025, 13, 115545. [Google Scholar] [CrossRef]
- Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756–7764. [Google Scholar] [CrossRef]
- Hammer, B.; Hansen, L.B.; Nørskov, J.K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys. Rev. B 1999, 59, 7413–7421. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Bučko, T.; Lebègue, S.; Hafner, J.; Angyan, J.G. Tkatchenko-Scheffler van der Waals correction method with and without self-consistent screening applied to solids. Phys. Rev. B 2013, 87, 064110. [Google Scholar] [CrossRef]
- Vozzi, C.; Negro, M.; Calegari, F.; Sansone, G.; Nisoli, M.; De Silvestri, S.; Stagira, S. Generalized molecular orbital tomography. Nat. Phys. 2011, 7, 822–826. [Google Scholar] [CrossRef]
- Inada, Y.; Orita, H. Efficiency of numerical basis sets for predicting the binding energies of hydrogen bonded complexes: Evidence of small basis set superposition error compared to Gaussian basis sets. J. Comput. Chem. 2008, 29, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Xiong, H.; Zhang, S.; Ma, Y.; Zhang, Y.; Huang, H.; Li, J.; Sun, C.; Zhong, X. First-principles study of WS2 monolayer decorated with noble metals (Pt, Rh, Ir) as the promising candidates to detect nitrogenous poisonous gases. Surf. Interfaces 2024, 55, 105363. [Google Scholar] [CrossRef]
- Saleem, U.; Jamil, R.; Nadeem, H.; Ahmed, H.; Abdelmohse, S.A.M.; Alanazi, M.M.; Iqbal, J. Sensing potential of C6N8 for ammonia (NH3) and nitrogen triflouride (NF3): A DFT study. J. Mol. Graph. Model. 2024, 127, 108701. [Google Scholar] [CrossRef]
- Xu, H.; Li, L.; Xia, J.; Zeng, W.; Zhou, Q. Innovative doping strategies in ZrSe2: Co and Rh for enhanced agricultural greenhouse gas adsorption. Surf. Interfaces 2025, 60, 105988. [Google Scholar] [CrossRef]
- Ma, Y.; Yang, M.; Deng, G.; Xiong, H. Theoretical insights into gas-sensitive properties of B, Ga and In doped WS2 monolayer towards oxygen-containing toxic gases. Appl. Surf. Sci. 2024, 670, 160725. [Google Scholar] [CrossRef]
- Jalilian, J.; Safari, M. Electronic and optical properties of α-InX (X = S, Se and Te) monolayer: Under strain conditions. Phys. Lett. A 2017, 381, 1313–1320. [Google Scholar] [CrossRef]
- Jiang, W.; Cao, J.; Wang, M.; Zeng, Q.; Zhang, Y.; Liu, J.; Xu, M.; Jia, P. Scenting out biomarkers for early lung cancer diagnosis using WSe2 monolayers doped with different TM atoms: A feasibility investigation. Surf. Interfaces 2024, 55, 105436. [Google Scholar] [CrossRef]
- Ma, Y.; Xiong, H.; Gan, L.; Deng, G. Theoretical investigation of FeMnPc, Fe2Pc, Mn2Pc monolayers as a potential gas sensors for nitrogenous toxic gases. Surf. Interfaces 2024, 45, 103910–103923. [Google Scholar] [CrossRef]
- Xie, S.; Zhan, W.; Zhang, H. Theoretical investigation of Ni, Cu, Nb-doped HfS2 monolayers for sensing biomarkers relevant to early health status. Surf. Interfaces 2025, 72, 106956. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Xiong, H.; Deng, G.; Gan, L. Theoretical investigations of adsorption and sensing properties of M2Pc (M = Cr, Mo) monolayers towards volatile organic compounds. Colloids Surf. A Physicochem. Eng. Asp. 2025, 717, 136750. [Google Scholar] [CrossRef]
Materials | Gases | Eads, eV | QT, e | Eg, eV | E′g, eV | τ, s |
---|---|---|---|---|---|---|
Ir-InTe | H2S | −1.35 | +0.279 | 0.278 | 0.416 | 0.24 |
SO2 | −2.05 | −0.043 | 0.278 | 0.429 | 1.87 × 105 | |
SOF2 | −1.88 | −0.034 | 0.278 | 0.460 | 6.91 × 103 | |
SO2F2 | −0.11 | −0.010 | 0.278 | 0.292 | 8.45 × 10−12 | |
Pt-InTe | H2S | −0.59 | +0.195 | 0.593 | 0.641 | 9.35 × 10−8 |
SO2 | −1.51 | −0.020 | 0.593 | 0.863 | 5.27 | |
SOF2 | −1.33 | −0.042 | 0.593 | 1.035 | 0.16 | |
SO2F2 | −0.53 | −0.041 | 0.593 | 1.217 | 2.92 × 10−8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, J.; Huang, S.; Dong, J.; Fan, J.; Hou, D.; Lin, S. Ir- and Pt-Doped InTe Monolayers as Potential Sensors for SF6 Decomposition Products: A DFT Investigation. Materials 2025, 18, 4022. https://doi.org/10.3390/ma18174022
Tan J, Huang S, Dong J, Fan J, Hou D, Lin S. Ir- and Pt-Doped InTe Monolayers as Potential Sensors for SF6 Decomposition Products: A DFT Investigation. Materials. 2025; 18(17):4022. https://doi.org/10.3390/ma18174022
Chicago/Turabian StyleTan, Juanjuan, Shuying Huang, Jianhong Dong, Jiaming Fan, Dejian Hou, and Shaomin Lin. 2025. "Ir- and Pt-Doped InTe Monolayers as Potential Sensors for SF6 Decomposition Products: A DFT Investigation" Materials 18, no. 17: 4022. https://doi.org/10.3390/ma18174022
APA StyleTan, J., Huang, S., Dong, J., Fan, J., Hou, D., & Lin, S. (2025). Ir- and Pt-Doped InTe Monolayers as Potential Sensors for SF6 Decomposition Products: A DFT Investigation. Materials, 18(17), 4022. https://doi.org/10.3390/ma18174022