Nanoparticle-Reinforced Electroless Composite Coatings for Pipeline Steel: Synthesis and Characterization
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Substrate Preparation
2.1.2. Chemicals and Reagents Used
2.2. Synthesis of the Composite Coatings
- Mechanical substrate polishing was performed using emery papers with grit sizes ranging from coarse to fine (200 to 1500 GSM).
- Ultrasonic cleaning in acetone was performed for 10 min to effectively remove organic contaminants.
- Alkaline treatment was conducted using 10 wt.% sodium hydroxide at 50 °C for 5 min to eliminate residual dirt and foreign particles, in compliance with ASTM B 656 [46] standards.
2.3. Characterization of the EL Coatings
2.3.1. Optical Microscopy, SEM, EDAX, AFM, and XRD Test
2.3.2. Adhesion Test
2.3.3. Surface Roughness Test
2.3.4. Microhardness and Wear Test
3. Results
3.1. Morphology of the EL Coatings
3.1.1. Optical Microscopy Study of EL Coatings
3.1.2. SEM, EDAX, and XRD Study of the EL Coatings
3.1.3. Atomic Force Microscopy of EL Coatings
3.2. Microhardness of the EL Coatings
3.3. Surface Roughness Study of the EL Coatings
3.4. Adhesion Assessment of the Coatings
3.5. Wear Study of EL Coatings
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nykyforchyn, H.; Zvirko, O.; Dzioba, I.; Krechkovska, H.; Hredil, M.; Tsyrulnyk, O.; Student, O.; Lipiec, S.; Pala, R. Assessment of Operational Degradation of Pipeline Steels. Materials 2021, 14, 3247. [Google Scholar] [CrossRef] [PubMed]
- Mohtadi-Bonab, M.A. Effects of Different Parameters on Initiation and Propagation of Stress Corrosion Cracks in Pipeline Steels: A Review. Metals 2019, 9, 590. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Y.; Xu, X.; Zhang, M.; Leng, H.; Sun, B. Optimization of Plating Process on Inner Wall of Metal Pipe and Research on Coating Performance. Materials 2023, 16, 2800. [Google Scholar] [CrossRef]
- Li, C.; Quan, G.; Zhang, Q.; Wang, X.; Li, X.; Kou, S. A Novel Amorphous Alloy Coating for Elevating Corrosion Resistance of X70 Pipeline Steel. J. Therm. Spray Technol. 2024, 33, 1612–1629. [Google Scholar] [CrossRef]
- Zarei, M.; Eskandarzade, M.; Babapoor, A.; Seyfaee, A. A Review of Recent Advances and Applications of Inorganic Coating for Oil and Gas Pipe Systems. Surf. Coat. Technol. 2024, 494, 131339. [Google Scholar] [CrossRef]
- Bembenek, M.; Prysyazhnyuk, P.; Shihab, T.; Machnik, R.; Ivanov, O.; Ropyak, L. Microstructure and Wear Characterization of the Fe-Mo-B-C—Based Hardfacing Alloys Deposited by Flux-Cored Arc Welding. Materials 2022, 15, 5074. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S. Laser Surface Modification of Ti6Al4V Implants. In Proceedings of the 1st International Electronic Conference on Materials, Online, 26 May–10 June 2014. [Google Scholar] [CrossRef]
- Kumar, V.; Shrivastava, A.; Patra Karmakar, D.; Shekhar Chakraborty, S.; Roy, H.; Gopinath, M.; Kumar, P.; Mukherjee, S. Effect of Process Parameters on Geometrical Aspects in Direct Metal Laser Deposition of Ni5Mo5Al Hardface Coating. IOP Conf. Ser. Mater. Sci. Eng. 2019, 561, 012063. [Google Scholar] [CrossRef]
- Brenner, A.; Riddell, G.E. Nickel Plating on Steel by Chemical Reduction. J. Res. Natl. Bur. Stand. 1946, 37, 31. [Google Scholar] [CrossRef]
- Kumar, V.; Mandal, B.B.; Das, S.; Oraon, B.; Mukherjee, S. Tailoring Electroless Ni-W-P Polyalloy Coatings: Unveiling the Synergistic Impact of Cerium Addition and Annealing on Surface Functional Properties. Surf. Coat. Technol. 2024, 485, 130874. [Google Scholar] [CrossRef]
- Fayyad, E.M.; Abdullah, A.M.; Mohamed, A.M.A.; Jarjoura, G.; Farhat, Z.; Hassan, M.K. Effect of Electroless Bath Composition on the Mechanical, Chemical, and Electrochemical Properties of New NiP–C3N4 Nanocomposite Coatings. Surf. Coat. Technol. 2019, 362, 239–251. [Google Scholar] [CrossRef]
- Saha, N.; Basu, J.; Sen, P.; Majumdar, G. Corrosion Behaviour of Electroless NiP Coating in Artificial Blood Plasma. Adv. Mater. Process. Technol. 2024, 10, 1401–1411. [Google Scholar] [CrossRef]
- De, J.; Sarkar, S.; Roy, P.; Sen, R.S.; Majumdar, G.; Oraon, B. Synthesis and Characterization of Electroless Ni-Co-P Coating. Sādhanā 2022, 47, 163. [Google Scholar] [CrossRef]
- Biswas, A.; Das, S.K.; Sahoo, P. Hardness, Friction and Wear Trends of Electroless Ni-W-P Coating Heat-Treated at Different Temperatures. In Advances in Materials, Mechanical and Industrial Engineering; Springer: Cham, Switzerland, 2019; pp. 83–105. [Google Scholar] [CrossRef]
- Mandal, B.B.; Kumar, V.; Oraon, B. Optimization, Prediction, and Characterization of Electroless Ni-W-P-NanoTiO2 Composite Coatings on Pipeline Steel. Arab. J. Sci. Eng. 2024, 49, 1643–1657. [Google Scholar] [CrossRef]
- Rauta, C.S.; Majumdar, G.; Mukherjee, S.; Sarkar, S. An Eco-Friendly One-Step Pretreatment Method for the Synthesis of Electroless Coating on Magnesium Alloy. Phys. Scr. 2024, 99, 105934. [Google Scholar] [CrossRef]
- Mandal, R.; Ghosh, A.; Sarkar, S.; De, J.; Mandal, T.; Sen, R.S.; Majumdar, G. Parametric Optimization to Maximize Microhardness of Electroless Ni-Sn-P Coating Using Taguchi and Evolutionary Approaches. J. Inst. Eng. Ser. C 2024, 105, 1217–1231. [Google Scholar] [CrossRef]
- Rauta, C.S.; Majumdar, G.; Sarkar, S. Parametric Optimization of Microhardness of Electroless Ni-Zn-Cu-P Coating Using Taguchi Design and Artificial Neural Network. JOM 2022, 74, 4564–4574. [Google Scholar] [CrossRef]
- Wang, W.; Jü, X.; Xu, C.; Zhang, W.; Mitsuzaki, N.; Chen, Z. Study on Electroless Plating Ni-W-P Ternary Alloy with High Tungsten from Compound Complexant Bath. J. Mater. Eng. Perform. 2020, 29, 8213–8220. [Google Scholar] [CrossRef]
- Thabassoom, H.A.; Florence, J.F. Electroless Ni-W-P Alloy Deposition on Mildsteel Using Lawsone as Complexing Agent. Orient. J. Chem. 2022, 38, 1489–1497. [Google Scholar] [CrossRef]
- Mukhopadhyay, A.; Barman, T.K.; Sahoo, P. Co-Deposition of W and Mo in Electroless Ni–B Coating and Its Effect on the Surface Morphology, Structure, and Tribological Behavior. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2021, 235, 149–161. [Google Scholar] [CrossRef]
- Barai, B.; Boorgula, K.; Begam, H.; Sarkar, S.; Barui, A.; Kundu, S.; Oraon, B.; Mandal, T. Multiphysics Simulation and Experimental Investigation of HA and Zn-Doped HA Coatings on Magnesium Alloys for Resorbable Implant Applications. Mater. Today Commun. 2025, 42, 111241. [Google Scholar] [CrossRef]
- Yanhai, C. Effect of Tungsten Addition on the Anti-Fouling Property of the Electroless Ni-W-P Deposits. Rare Met. Mater. Eng. 2016, 45, 1931–1937. [Google Scholar] [CrossRef]
- Paul, A. Development and Evaluation of NiW Alloy and NiW-TiO2 Composite Coatings on the Mechanical Properties, Tribological Performance and the Corrosion Resistance of Bearing Steel. Doctor Thesis, University of Akron, Akron, OH, USA, 2020. [Google Scholar]
- Gadhari, P.; Sahoo, P. Improvement in Tribological Performance of Ni-P-TiO2 Composite Coatings Using Taguchi Technique with Grey Relational Analysis. Indian J. Mater. Sci. 2015, 2015, 1–10. [Google Scholar] [CrossRef]
- Mohanty, D.; Barman, T.K.; Sahoo, P. Tribological Behavior, Mechanical Properties and Electrochemical Corrosion Response of Ultrasonically Assisted TiO2 Reinforced Electroless Ni–B Coatings. J. Inst. Eng. Ser. D 2024, 105, 1231–1242. [Google Scholar] [CrossRef]
- Barai, B.; Ojha, A.; Sarkar, S.; Kundu, S.; Oraon, B.; Mandal, T. Enhancing Corrosion Resistance of Biodegradable Magnesium Alloys through Hydrophobic Surface Modification: Experimental Analysis and ANN Modeling. Surf. Rev. Lett. 2024. [Google Scholar] [CrossRef]
- Shah, V.; Bhaliya, J.; Patel, G.M.; Deshmukh, K. Advances in Polymeric Nanocomposites for Automotive Applications: A Review. Polym. Adv. Technol. 2022, 33, 3023–3048. [Google Scholar] [CrossRef]
- Hu, J.; Wang, B.; Xu, Y.; Zhou, L. The Anticorrosive and Antifouling Properties of Ni-W-P-NSiO2 Composite Coating in A Simulated Oilfield Environment. JOM 2018, 70, 2619–2625. [Google Scholar] [CrossRef]
- Islam, M.; Azhar, M.R.; Khalid, Y.; Khan, R.; Abdo, H.S.; Dar, M.A.; Oloyede, O.R.; David Burleigh, T. Electroless Ni-P/SiC Nanocomposite Coatings With Small Amounts of SiC Nanoparticles for Superior Corrosion Resistance and Hardness. J. Mater. Eng. Perform. 2015, 24, 4835–4843. [Google Scholar] [CrossRef]
- Shozib, I.A.; Ahmad, A.; Abdul-Rani, A.M.; Beheshti, M.; Aliyu, A.A. A Review on the Corrosion Resistance of Electroless Ni-P Based Composite Coatings and Electrochemical Corrosion Testing Methods. Corros. Rev. 2022, 40, 1–37. [Google Scholar] [CrossRef]
- Chintada, V.B.; Gurugubelli, T.R.; Tamtam, M.R.; Koutavarapu, R. Advancements in Nickel-Phosphate/Boron Based Electroless Composite Coatings: A Comprehensive Review of Mechanical Properties and Recent Developments. Materials 2023, 16, 6116. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, X.; Li, J.; Cao, P.; Wang, G.; Zhang, L.; Jia, S.; Zhao, X.; Peng, H.; Tian, R. Progress in Research on Ni-Based Protective Coatings for Downhole Tubing Steel in CO2 Flooding. Coatings 2024, 14, 871. [Google Scholar] [CrossRef]
- De, J.; Banerjee, T.; Sen, R.S.; Oraon, B.; Majumdar, G. Multi-Objective Optimization of Electroless Ternary Nickel–Cobalt–Phosphorous Coating Using Non-Dominant Sorting Genetic Algorithm-II. Eng. Sci. Technol. Int. J. 2016, 19, 1526–1533. [Google Scholar] [CrossRef]
- Ranganatha, S.; Venkatesha, T.V. Studies on the Preparation and Properties of Electroless Ni-W-P Alloy Coatings and Its Nano-MoS 2 Composite. Phys. Scr. 2012, 85, 035601. [Google Scholar] [CrossRef]
- Miri, T.; Seifzadeh, D.; Rajabalizadeh, Z. Electroless Ni–B–MMT Nanocomposite on Magnesium Alloy. Surf. Eng. 2021, 37, 1194–1205. [Google Scholar] [CrossRef]
- Gbenontin, B.V.; Kang, M.; Ndiithi, N.J.; Nyambura, S.M.; Awuah, E.; Zhang, Y. Effect of Grit Blasting and Polishing Pretreatments on the Microhardness, Adhesion and Corrosion Properties of Electrodeposited Ni-W/SiC Nanocomposite Coatings on 45 Steel Substrate. Crystals 2021, 11, 729. [Google Scholar] [CrossRef]
- Bae, S.H.; Nguyen, Y.N.; Son, I. Ni–W–P Layer-Induced Strength Improvement of Solder Joint in Bi2Te3 Thermoelectric Module. Sci. Technol. Weld. Join. 2023, 28, 399–406. [Google Scholar] [CrossRef]
- Uppada, S.; Koona, R.; Chintada, V. A Study on the Microhardness and Corrosion Behavior of the ZnO and SiC Reinforced Multi Layer Electroless Nickel Coating. Aust. J. Mech. Eng. 2024, 22, 603–614. [Google Scholar] [CrossRef]
- Liu, H.; Li, Z.; Zhang, X.; Chen, H.; Xu, S.; Fan, Y.; Yuan, Q.; Sun, Y.; Hou, X.; He, Y. Study on Corrosion Resistance and Tribo Behavior of Electrodeposited Ni-W-P/TiN Composite Coatings. J. Phys. Chem. C 2024, 128, 20679–20692. [Google Scholar] [CrossRef]
- Haruna, A.; Chong, F.-K.; Ho, Y.-C.; Merican, Z.M.A. Preparation and Modification Methods of Defective Titanium Dioxide-Based Nanoparticles for Photocatalytic Wastewater Treatment—A Comprehensive Review. Environ. Sci. Pollut. Res. 2022, 29, 70706–70745. [Google Scholar] [CrossRef] [PubMed]
- Tran-Phu, T.; Chen, H.; Daiyan, R.; Chatti, M.; Liu, B.; Amal, R.; Liu, Y.; Macfarlane, D.R.; Simonov, A.N.; Tricoli, A. Nanoscale TiO2 Coatings Improve the Stability of an Earth-Abundant Cobalt Oxide Catalyst during Acidic Water Oxidation. ACS Appl. Mater. Interfaces 2022, 14, 33130–33140. [Google Scholar] [CrossRef]
- Hadipour, A.; Hosseini, M.R.; Bahrololoom, M.E. The Effect of Multi-Step Cycles on the Surface Properties of Ni-TiO2 Coatings Produced by Pulse Current Electrodeposition: L’effet de Cycles à Plusieurs Étapes Sur Les Propriétés de Surface de Revêtements de Ni-TiO2 Produits Par Électrodéposition à Couran. Can. Metall. Q. 2024, 64, 1078–1095. [Google Scholar] [CrossRef]
- Qi, L.; Guo, B.; Lu, Q.; Gong, H.; Wang, M.; He, J.; Jia, B.; Ren, J.; Zheng, S.; Lu, Y. Preparation and Photocatalytic and Antibacterial Activities of Micro/Nanostructured TiO2-Based Photocatalysts for Application in Orthopedic Implants. Front. Mater. 2022, 9, 914905. [Google Scholar] [CrossRef]
- He, Z.; Zhou, Y.; Wang, Y.; Guo, P.; Jiang, W.; Yao, C.; Shu, X. Preparation and Properties of Ni-W-P-TiO2 Nanocomposite Coatings Developed by a Sol-Enhanced Electroplating Method. Chin. J. Chem. Eng. 2022, 44, 369–376. [Google Scholar] [CrossRef]
- ASTM B-656; Auto Catalytic (Electroless) Nickel-Phosphorus Deposition on Metals for Engineering Use. ASTM: West Conshohocken, PA, USA, 1992.
- ASTM D3359; Tape S. Standard Test Methods for Measuring Adhesion by Tape Test1. ASTM: West Conshohocken, PA, USA, 2012.
- ISO 25178-2; Geometrical Product Specification (GPS)—Surface Texture: Areal—Part 2: Terms, Definitions and Surface Texture Parameters. International Standards Organization: Geneva, Switzerland, 2012.
- Constable, F.H. Spectrophotometric Observations on the Growth of Oxide Films on Iron, Nickel, and Copper. Proc. R. Soc. Lond. Ser. A Contain. Pap. A Math. Phys. Character 1927, 115, 376–387. [Google Scholar] [CrossRef]
- Nowrouzi, I.; Manshad, A.K.; Mohammadi, A.H. Effects of Concentration and Size of TiO2 Nano-Particles on the Performance of Smart Water in Wettability Alteration and Oil Production under Spontaneous Imbibition. J. Pet. Sci. Eng. 2019, 183, 106357. [Google Scholar] [CrossRef]
- Li, T.; Lv, Y.; Zhou, H.; Suo, X.; Ruan, D.; Jian, W.; He, J.; Ren, L. Investigation on Corrosion Resistance of Electroless Ni-W-P Coatings Co-Deposited with SiO2 Nanoparticles. Surf. Topogr. Metrol. Prop. 2024, 12, 025033. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, R.; Liu, S.; Wang, T.; Wu, D.; Zhang, Y.; Chen, J.; Zou, Y. Microstructure Analysis of Element W in Improving the Ni–P Deposit Thermal Stability. J. Mater. Res. Technol. 2020, 9, 5474–5486. [Google Scholar] [CrossRef]
- Liu, H.; Yao, H.L.; Thompson, G.E.; Liu, Z.; Harrison, G. Correlation between Structure and Properties of Annealed Electroless Ni-W-P Coatings. Surf. Eng. 2015, 31, 412–419. [Google Scholar] [CrossRef]
- Amjad-Iranagh, S.; Zarif, M. TiO2 Nano-Particle Effect on the Chemical and Physical Properties of Ni-P-TiO2 Nanocomposite Electroless Coatings. J. Nanostruct. 2020, 10, 415–423. [Google Scholar] [CrossRef]
- Xu, R.; Zhai, D.; Zhang, Y. Crystallization Characteristics of Ni-W-P Composite Coatings Reinforced by CeO2 and SiO2 Nano-Particles. J. Cent. South Univ. 2014, 21, 4424–4431. [Google Scholar] [CrossRef]
- Genova, V.; Paglia, L.; Pulci, G.; Pedrizzetti, G.; Pranzetti, A.; Romanelli, M.; Marra, F. Medium and High Phosphorous Ni-P Coatings Obtained via an Electroless Approach: Optimization of Solution Formulation and Characterization of Coatings. Coatings 2023, 13, 1490. [Google Scholar] [CrossRef]
- Pintaude, G. Hardness as an Indicator of Material Strength: A Critical Review. Crit. Rev. Solid State Mater. Sci. 2023, 48, 623–641. [Google Scholar] [CrossRef]
- Saber, D.; El-Aziz, K.A.; Felemban, B.F.; Alghtani, A.H.; Ali, H.T.; Ahmed, E.M.; Megahed, M. Characterization and Performance Evaluation of Cu-Based/TiO2 Nano Composites. Sci. Rep. 2022, 12, 6669. [Google Scholar] [CrossRef]
- Naik, S.N.; Walley, S.M. The Hall–Petch and Inverse Hall–Petch Relations and the Hardness of Nanocrystalline Metals. J. Mater. Sci. 2020, 55, 2661–2681. [Google Scholar] [CrossRef]
- ISO 4287; Geometric Product Specifications (GPS)—Surface Texture: Profile Method—Terms, Definitions and Surface Texture Parameters. International Standards Organization: Geneva, Switzerland, 1997.
- Malathi, M.; Mabel, J.H.; Easwaramoorthy, D.; Rajendran, R. Ni-P SiC Composite Coatings on Piston Rings by Plate and Bumper Technique and Its Tribological Properties. Surf. Eng. 2024, 40, 1063–1078. [Google Scholar] [CrossRef]
- Makarava, I.; Esmaeili, M.; Kharytonau, D.S.; Pelcastre, L.; Ryl, J.; Bilesan, M.R.; Vuorinen, E.; Repo, E. Influence of CeO2 and TiO2 Particles on Physicochemical Properties of Composite Nickel Coatings Electrodeposited at Ambient Temperature. Materials 2022, 15, 5550. [Google Scholar] [CrossRef] [PubMed]
- Shao, W.; Nabb, D.; Renevier, N.; Sherrington, I.; Fu, Y.; Luo, J. Mechanical and Anti-Corrosion Properties of TiO2 Nanoparticle Reinforced Ni Coating by Electrodeposition. J. Electrochem. Soc. 2012, 159, D671–D676. [Google Scholar] [CrossRef]
- Zhao, L.; Yuan, M.; Fan, Z.; Zhang, Z.; Wei, G. Temperature Induced Wear Mechanism Transition of Ni-Co-W Alloy Coatings. Mater. Lett. 2023, 352, 135198. [Google Scholar] [CrossRef]
- Makkar, P.; Agarwala, R.C.; Agarwala, V. Wear Characteristics of Mechanically Milled TiO2 Nanoparticles Incorporated in Electroless Ni-P Coatings. Adv. Powder Technol. 2014, 25, 1653–1660. [Google Scholar] [CrossRef]
- Zhang, W.; Cao, D.; Qiao, Y.; He, Z.; Wang, Y.; Li, X.; Gao, W. Microstructure and Properties of Duplex Ni-P-TiO2/Ni-P Nanocomposite Coatings. Mater. Res. 2019, 22, e20180748. [Google Scholar] [CrossRef]
- Zhang, W.; Cao, D.; Qiao, Y.; Wang, Y.; Li, X.; Gao, W. Preparation and Properties of Duplex Ni-P-TiO2/Ni Nanocomposite Coatings. Int. J. Mod. Phys. B 2019, 33, 1940019. [Google Scholar] [CrossRef]
Element | C | Mn | P | Si | Cr | Ni | Mo | Cu | Ti | Fe |
---|---|---|---|---|---|---|---|---|---|---|
Weight% | 0.068 | 1.396 | 0.015 | 0.206 | 0.021 | 0.016 | 0.001 | 0.009 | 0.018 | Balance |
Chemical Name | Supplier | Concentration (g·L−1) | Role |
---|---|---|---|
Nickel sulfate hexahydrate | Merck, Mumbai, India | 35 | Nickel ion source |
Sodium tungstate dihydrate | Merck, Mumbai, India | 10 | Tungsten ion source |
Sodium hypophosphite monohydrate | Merck, Mumbai, India | 18 | Reducing agent |
Tri-Sodium citrate dihydrate | Merck, Mumbai, India | 10 | Primary complexing agent |
Citric acid | Merck, Mumbai, India | 5 | Secondary complexing agent |
Sodium dodecyl sulfate (SDS) | Merck, Mumbai, India | 1 × CMC = 2.393 g·L−1 | Surfactant |
Titanium dioxide ultrapure nanopowder | SRL Pvt. Ltd., Mumbai, India. | 5 | Reinforcement agent |
Palladium chloride | Merck, Mumbai, India | Used in activation | Substrate surface activation |
Ammonia solution | Merck, Mumbai, India | - | Maintains the pH of the bath |
Element | Ni-W-P | Ni-W-P-NanoTiO2 | Ni-W-P-NanoTiO2 (400 °C) | |||
---|---|---|---|---|---|---|
Weight % | Atomic % | Weight % | Atomic % | Weight % | Atomic % | |
P | 4.1 | 7.8 | 5.0 | 8.5 | 2.82 | 4.56 |
Ni | 89.7 | 90.2 | 85.3 | 76.9 | 87.81 | 74.86 |
Ti | - | - | 1.9 | 2.1 | 2.0 | 2.09 |
O | - | - | 3.4 | 11.2 | 5.77 | 18.06 |
W | 6.2 | 2.0 | 4.4 | 1.3 | 1.60 | 0.44 |
Coatings | Vickers Microhardness (HV0.05) | |
---|---|---|
As-Plated | Annealed [Heat Treated (HT) at 400 °C] | |
Ni-W-P | 589 ± 20 | 1105 ± 33 |
Ni-W-P-nanoTiO2 | 728 ± 198 | 1323 ± 42 |
Coatings | Height Parameters (ISO 25178 [48]) | Amplitude Parameters-Roughness Profile (ISO 4287 [60]) | ||||
---|---|---|---|---|---|---|
Sa (µm) | Sq (µm) | Sku | Sz (µm) | Ra (µm) | Rq (µm) | |
Ni-W-P | 0.2810 | 0.5719 | 122.1 | 32.26 | 0.1480 | 0.5452 |
Ni-W-P-nanoTiO2 | 0.4369 | 0.8395 | 45.59 | 31.36 | 0.2467 | 0.8244 |
Coatings | Track Length | Ni | W | P | Ti | O | Fe |
---|---|---|---|---|---|---|---|
Ni-W-P-nanoTiO2 (400 °C) | 199 µm | 74.47 | 0.23 | 2.07 | 0.07 | 22.97 | 0.28 |
Ni-W-P-nanoTiO2 | 346 µm | 73.70 | 0.43 | 2.08 | 0.40 | 23.09 | 0.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mandal, B.B.; Kumar, V.; Sahoo, S.; Oraon, B.; Mukherjee, S. Nanoparticle-Reinforced Electroless Composite Coatings for Pipeline Steel: Synthesis and Characterization. Materials 2025, 18, 3949. https://doi.org/10.3390/ma18173949
Mandal BB, Kumar V, Sahoo S, Oraon B, Mukherjee S. Nanoparticle-Reinforced Electroless Composite Coatings for Pipeline Steel: Synthesis and Characterization. Materials. 2025; 18(17):3949. https://doi.org/10.3390/ma18173949
Chicago/Turabian StyleMandal, Biplab Baran, Vikash Kumar, Sovan Sahoo, Buddhadeb Oraon, and Sumanta Mukherjee. 2025. "Nanoparticle-Reinforced Electroless Composite Coatings for Pipeline Steel: Synthesis and Characterization" Materials 18, no. 17: 3949. https://doi.org/10.3390/ma18173949
APA StyleMandal, B. B., Kumar, V., Sahoo, S., Oraon, B., & Mukherjee, S. (2025). Nanoparticle-Reinforced Electroless Composite Coatings for Pipeline Steel: Synthesis and Characterization. Materials, 18(17), 3949. https://doi.org/10.3390/ma18173949