Corrosion Fatigue of a Nickel-Based Superalloy Disc Rotor with Salt in Air and Sulphur Dioxide Environments
Abstract
1. Introduction
2. Experimental Methods
2.1. Materials and Specimen Design
2.2. Salt Deposition Process
2.3. Testing
2.4. Post-Test Analysis
3. Results
3.1. Surface Observation After 50 h Fatigue Test in Air and in SO2
3.2. Fatigue Behavior
3.3. Fractography
3.4. Characterization of “Corrosion Damage” in SO2 and in Air
4. Discussion
5. Conclusions
- Fatigue strength is highly sensitive to both salt concentration and gas environment.
- Fatigue strength dropped up to 30% at 0.13 mg/cm2 salt loading in air. Higher salt level resulted in further deduction.
- For a given salt concentration, SO2 exposure caused severe degradation via low-temperature hot corrosion.
- Corrosion pits and fissures formed in air, while thick, porous, and non-protective oxide scales together with corrosion pits developed in the SO2 environment. The beneficial effects of shot peening were lost in SO2 due to surface degradation caused by molten salt attack.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Birks, N.; Meier, G.H.; Pettit, F.S. Introduction to the High Temperature Oxidation of Metals, 2nd ed.; Cambridge University Press: Cambridge, UK, 2006; p. 205. [Google Scholar]
- Luthra, K.L.; Shores, D.A. Mechanism of Na2SO4 induced corrosion at 600°–900°C. J. Electrochem. Soc. 1980, 127, 2202–2210. [Google Scholar] [CrossRef]
- Mira, A.K.; Whittle, D.P.; Worrell, W.L. Thermodynamic of molten sulphate mixtures. J. Electrochem. Soc. 1982, 129, 1480–1844. [Google Scholar]
- Child, D.J.; Meldrum, J.; Onwuarolu, P. Corrosion-fatigue testing of Ni-Based superalloy RR1000. Mater. Sci. Technol. 2017, 33, 1040–1047. [Google Scholar] [CrossRef]
- Hendery, M.L.; Whittaker, M.T.; Cockings, B.J.; Mignanelli, P.M. The effect of salt composition on the stress-free and corrosion-fatigue performance of a fine-grained nickel-based superallo. Corros. Sci. 2022, 198, 110113. [Google Scholar] [CrossRef]
- Li, Y.; Cockings, H.; Mignanelli, P.; Whittaker, M.; Cockings, B.; Buckingham, R.; Bache, M. High temperature corrosion-fatigue behavior of a shot peened nickel-based superalloy. Corros. Sci. 2022, 207, 110577. [Google Scholar] [CrossRef]
- Whitlow, G.A.; Johnson, R.L.; Pridemore, W.H.; Allen, J.M. Intermediate temperature low cycle fatigue behavior of coated and uncoated nickel base superalloys in air and corrosive sulphate environments. J. Eng. Mater. Technol. 1984, 106, 43–49. [Google Scholar] [CrossRef]
- Mahobia, G.; Paulose, N.; Mannan, S.; Sudhakar, R.; Chattopadhyay, K.; Srinivas, N.S.; Singh, V. Effect of Hot Corrosion on Low Cycle Fatigue Behavior of Superalloy in718. Int. J. Fatigue 2014, 59, 272–281. [Google Scholar] [CrossRef]
- Mahobia, G.S.; Sudhakar, R.G.; Antony, A.; Chattopadhyay, K.; Srinivas, N.C.S.; Vakil, S. Effect of salt coatings on low cycle fatigue behavior of Nickel base superalloy GTM-SU-718. Procedia Eng. 2013, 55, 830–834. [Google Scholar] [CrossRef]
- Li, S.; Yang, X.; Qi, H.; Song, J.; Shi, D. Low Temperature Hot Corrosion Effects on the Low-Cycle Fatigue Lifetime and Cracking Behaviors of a Powder Metallurgy Ni-Based Superalloy. Int. J. Fatigue 2018, 116, 334–343. [Google Scholar] [CrossRef]
- Gabb, T.P.; Telesman, J.; Hazel, B.; Mourer, D.P. The Effects of Hot Corrosion Pits on the Fatigue Resistance of a Disk Superalloy. J. Mater. Eng. Perform. 2010, 19, 77–89. [Google Scholar] [CrossRef]
- Telesman, J.; Gabb, T.P.; Yamada, Y.; Draper, S.L. Fatigue resistance of a Hot Corrosion Exposed Disk Superalloy at Varied Test Temperatures. Mater. High Temp. 2016, 33, 517–527. [Google Scholar] [CrossRef]
- Jiang, R.; Zhang, L.C.; Zhao, Y.; Chen, X.H.; Gan, B.; Hao, X.C.; Song, Y.D. Effects of Hot Corrosion on Fatigue Performance of GH4169 Alloy. J. Mater. Eng. Perform. 2021, 30, 2300–2308. [Google Scholar] [CrossRef]
- Hardy, M.C.; Argyrakis, C.; Kitaguchi, H.S.; Wilson, A.S.; Buckingham, R.C.; Severs, K.; Yu, S.; Jackson, C.; Pickering, E.J.; Llewelyn, S.C.H.; et al. Developing Alloy Compositions for Future High Temperature Disk Rotors. In Proceedings of the 14th International Symposium on Superalloys, Seven Springs, PA, USA, 13–17 September 2020; pp. 19–30. [Google Scholar]
- Kameswari, S. The application of DTA to hot corrosion studies of chromium and nickel powders and Nimonic 80A. J. Therm. Anal. 1986, 31, 813–824. [Google Scholar] [CrossRef]
- Kameswari, S. The role of NaCl in the hot corrosion of Nimonic alloy 90. Oxid. Met. 1986, 26, 33–44. [Google Scholar] [CrossRef]
- Conde, J.F.G. What are the separate and interacting roles of sulphur sodium and chloride in hot corrosion, In Proceedings of the AGARD Meeting, Lyngby, Denmark, 10–12 April 1972.
- Hurst, R.C.; Jhonson, J.B.; Davies, M.; Hancock, P. Deposition and Corrosion in Gas Turbines; Hart, A.B., Cultler, A.S.B., Eds.; Applied Science Publishers: London, UK, 1973; p. 143. [Google Scholar]
- Birbilis, N.; Buchheit, R.G. Measurement and of low-temperature hot corrosion damage accumulation upon nickel-based superalloy Rene 104. Met. Mater. Trans. A 2008, 39, 3224–3232. [Google Scholar] [CrossRef]
wt.% | Ni | Co | Cr | Fe | Mn | Mo | W | Ai | Ti | Ta | Nb | Si | C | B | Zr | Hf |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min. | Bal. | 14.60 | 11.50 | 0.80 | 0.20 | 2.00 | 3.30 | 2.90 | 2.60 | 3.50 | 1.20 | 0.10 | 0.02 | 0.01 | 0.05 | 0.000 |
Max. | Bal. | 15.90 | 13.00 | 1.20 | 0.60 | 2.40 | 3.70 | 3.30 | 3.10 | 5.10 | 1.80 | 0.60 | 0.06 | 0.03 | 0.11 | 0.045 |
Group | Surface Condition | Salt Amount (mg/cm2) | Gas Environment |
---|---|---|---|
1 | 110H-4A-125% | 0 | air |
2 | 110H-4A-125% | 0.13 | air |
3 | 110H-4A-125% | 13 | air |
4 | 110H-4A-125% | 0.13 | SO2 |
Salt Amount | Stress Level | Crack Initiation Site |
---|---|---|
0 (No salt) | Low | Sub-surface |
Medium | Sub-surface | |
High | Sub-surface | |
0.13 mg/cm2 | Low | Surface |
Medium | Surface | |
High | Surface | |
13 mg/cm2 | Low | Surface |
Medium | Surface | |
High | Surface |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Davies, H.; Hardy, M.; Jackson, C.; Whittaker, M. Corrosion Fatigue of a Nickel-Based Superalloy Disc Rotor with Salt in Air and Sulphur Dioxide Environments. Materials 2025, 18, 3819. https://doi.org/10.3390/ma18163819
Li Y, Davies H, Hardy M, Jackson C, Whittaker M. Corrosion Fatigue of a Nickel-Based Superalloy Disc Rotor with Salt in Air and Sulphur Dioxide Environments. Materials. 2025; 18(16):3819. https://doi.org/10.3390/ma18163819
Chicago/Turabian StyleLi, Yong, Helen Davies, Mark Hardy, Catherine Jackson, and Mark Whittaker. 2025. "Corrosion Fatigue of a Nickel-Based Superalloy Disc Rotor with Salt in Air and Sulphur Dioxide Environments" Materials 18, no. 16: 3819. https://doi.org/10.3390/ma18163819
APA StyleLi, Y., Davies, H., Hardy, M., Jackson, C., & Whittaker, M. (2025). Corrosion Fatigue of a Nickel-Based Superalloy Disc Rotor with Salt in Air and Sulphur Dioxide Environments. Materials, 18(16), 3819. https://doi.org/10.3390/ma18163819