Effect of Anodic Aluminium Oxide Structure on the Electroless Ni-P Distribution into Nanopores
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Influence of AAO Pore Size on the Morphology of Ni-ELD Coating
3.2. Distribution of Ni and P in the Depth of the Pores
3.3. Magnetic Test Results
- -
- Ni can be concentrated mainly in 5–7 μm tubes inside AAO95, as was supported by EDS;
- -
- Ni can be presented in both Ni-P film on the top of AAO as well as in the formed very short nanotubes/nanorods in AAO33;
- -
- Ni can be concentrated only in the top film layer in the case of using the AAO13.
4. Conclusions
- (1)
- Within 10 min of electroless deposition, the nanopores with a diameter of ~95 nm are conformally covered and remain open, while a compact Ni-P layer is formed on the templates with nanopore diameters of ~13 and ~33 nm. The average phosphorus content in the surface deposit on all AAO templates with different pore sizes is about 9.9 wt.%, which corresponds to medium–high phosphorous coatings.
- (2)
- At a diameter of about 95 nm, traces of nickel, phosphorus, and palladium are recorded at a depth of 30 μm at an aspect ratio of 300, but dense coverage of the pore walls observed to a depth of about 4–5 μm. As the pore diameter decreases, the Ni deposition occurs at a reduced depth and at a diameter of about 13 nm; electroless deposition occurs primarily on the surface of the oxide template (below 1 μm).
- (3)
- The composition of the Ni-P deposit changes along the pore depth and the nickel content gradually decreases along the pores of AAO such that the Ni/P ratio decreasing to about 1 at depths of 10 μm, 6 μm, and 2 μm at pore diameters of 95, 33, and 13 nm, respectively.
- (4)
- The different penetration depths of the Ni-P deposit are mainly attributed to spatial limitations in the diffusion processes in nanopores of both the reactants nickel and hypophosphite ions, as well as the products of the reaction and acidification of the electrolyte inside the pores. However, changing the deposit composition (the Ni/P ratio) suggests a more complex mechanism of action of the pore diameter and the charge of the oxide walls.
- (5)
- The magnetic properties of the resulting 3D configuration of the Ni-P deposit (flat plate and nanotubes arranged perpendicular to it) are determined primarily by the penetration depth of the Ni-P deposition process (the length of the nanotubes) rather than by its composition.
- (6)
- By varying the pore diameter of the nanostructured oxide layer, it is possible to control the depth of Ni penetration and hence obtain a sufficiently well-defined structure of the Ni-P@AAO/Al.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barati, Q.; Hadavi, S.M.M. Electroless Ni-B and composite coatings: A critical review on formation mechanism, properties, applications and future trends. Surf. Interface 2020, 21, 100702. [Google Scholar] [CrossRef]
- Muench, F. Electroless plating of metal nanomaterials. ChemElectroChem 2021, 8, 2993–3012. [Google Scholar] [CrossRef]
- Zhang, P.; Lv, Z.; Liu, X.; Xie, G.; Zhang, B. Electroless nickel plating on alumina ceramic activated by metallic nickel as electrocatalyst for oxygen evolution reaction. Catal. Commun. 2021, 149, 106238. [Google Scholar] [CrossRef]
- Fujii, S.; Hamasaki, H.; Takeoka, H.; Tsuruoka, T.; Akamatsu, K.; Nakamura, Y. Electroless nickel plating on polymer particles. J. Colloid Interface Sci. 2014, 430, 47–55. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, F.; Zhang, Z.; Li, G.; Fu, H.; Huang, J.; Wang, Y.; Lei, Z.; Qian, X.; Lai, Y. An electroless nickel plating fabric coated with photothermal Chinese ink for powerful passive anti-icing/icephobic and fast active deicing. Chem. Eng. J. 2022, 450, 138328. [Google Scholar] [CrossRef]
- Sudagar, J.; Lian, J.; Sha, W. Electroless nickel, alloy, composite and nano coatings—A critical review. J. Alloys Compd. 2013, 571, 183–204. [Google Scholar] [CrossRef]
- Çam, G.; İpekoğlu, G. Recent developments in joining of aluminum alloys. Int. J. Adv. Manuf. Technol. 2017, 91, 1851–1866. [Google Scholar] [CrossRef]
- Mallory, G.O. Chapter 1: The fundamental aspects of electroless nickel plating. In Electroless Plating: Fundamentals and Applications; Mallory, G.O., Hajdu, J.B., Eds.; Noyes publications/William Andrew Publishing, LLC: New York, NY, USA, 1990; pp. 1–57. [Google Scholar]
- Touri, S.; Monirvaghefi, S.M. Fabrication and characterization of functionally graded Ni-P electroless coating with variable properties along the surface of the coating. Mater. Today Commun. 2020, 24, 101203. [Google Scholar] [CrossRef]
- Sun, P.; Dong, Z.; Chen, Y.; Yan, H.; Luo, C.; Song, H.; Hu, Z. Characterization of Ni coating layer of Al2O3 particles and their wettability behavior in Al2O3@Ni/Al-10Si composites. Appl. Surf. Sci. 2020, 526, 146660. [Google Scholar] [CrossRef]
- Diaz, D.; Pingarrón, A.B.; Florez, J.; Parra, J.; Cabello, J.; Moncaleano, I.; Villar, A.; Gallegos, M. Effect of a Ni-P coating on the corrosion resistance of an additive manufacturing carbon steel immersed in a 0.1 M NaCl solution. Mater. Lett. 2020, 275, 128159. [Google Scholar] [CrossRef]
- Weil, R.; Parker, K. Chapter 4: The properties of electroless nickel. In Electroless Plating: Fundamentals and Applications; Mallory, G.O., Hajdu, J.B., Eds.; Noyes publications/William Andrew Publishing, LLC: New York, NY, USA, 1990; pp. 111–139. [Google Scholar]
- Wang, Y.; Shu, Y.; Wei, S.; Liu, C.; Gao, W.; Shakoor, R.A.; Kahraman, R. Duplex Ni-P-ZrO2/Ni-P electroless coating on stainless steel. J. Alloys Compd. 2015, 630, 189–194. [Google Scholar] [CrossRef]
- Gu, C.; Lian, J.; Li, G.; Niu, L.; Jiang, Z. High corrosion-resistant Ni-P/Ni/Ni-P multilayer coatings on steel. Surf. Coat. Tech. 2005, 197, 61–67. [Google Scholar] [CrossRef]
- Fetohi, A.E.; Hameed, R.M.A.; El-Khati, K.M. Development of electroless Ni-P modified aluminum substrates in a simulated fuel cell environment. J. Ind. Eng. Chem. 2015, 30, 239–248. [Google Scholar] [CrossRef]
- Gutiérrez, A.G.G.; Pech-Canul, M.A.; Sebastian, P.J. Zincating effect on corrosion resistance of electroless Ni-P coating on aluminum alloy 6061. Fuel Cells 2017, 17, 770–777. [Google Scholar] [CrossRef]
- Seshimo, M.; Ozawa, M.; Sone, M.; Sakurai, M.; Kameyama, H. Fabrication of a novel Pd/γ-alumina graded membrane by electroless plating on nanoporous γ-alumina. J. Membr. Sci. 2008, 324, 181–187. [Google Scholar] [CrossRef]
- Seshimo, M.; Hirai, T.; Rahman, M.M.; Ozawa, M.; Sone, M.; Sakurai, M.; Higo, Y.; Kameyama, H. Functionally graded Pd/γ-alumina composite membrane fabricated by electroless plating with emulsion of supercritical CO2. J. Membr. Sci. 2009, 342, 321–326. [Google Scholar] [CrossRef]
- Yu, Y.; Kant, K.; Shapter, J.G.; Addai-Mensah, J.; Losic, D. Gold nanotube membranes have catalytic properties. Micropor. Mesopor. Mater. 2012, 153, 131–136. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, H.; Wang, Y.; Fang, Y.; Xie, J.; Lei, Y. Evaluating the role of nanostructured current collectors in energy storage capability of supercapacitor electrodes with thick electroactive materials layers. Adv. Funct. Mater. 2017, 28, 1705107. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, J.; Qin, L.; Zhao, B.; Jiang, Z. Synthesis of ordered Ni/NiO nanocables for electrochemical capacitor application. J. Nanopart. Res. 2018, 20, 90. [Google Scholar] [CrossRef]
- Brzózka, A.; Fic, K.; Bogusz, J.; Brudzisz, A.M.; Marzec, M.M.; Gajewska, M.; Sulka, G.D. Polypyrrole-nickel hydroxide hybrid nanowires as future materials for energy storage. Nanomaterials 2019, 9, 307. [Google Scholar] [CrossRef]
- Andola, A.; Pandey, R.R.; Kashyap, Y.; Pandey, H.; Nakanishi, H.; Pandey, R.K. Core-shell Ni/Ni(OH)2 nanowire array for asymmetric supercapacitors. ACS Appl. Nano Mater. 2024, 7, 1701–1712. [Google Scholar] [CrossRef]
- Gong, Q.; Huang, X.; Liu, Y.; Zhang, S.; Yu, T. Nanostructure Integrated Electrode Based on Ni/NiO Coaxial Bilayer Nanotube Array with Large Specific Capacitance for Miniaturized Applications. Materials 2025, 18, 1286. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.T.; Choi, N.-S.; Park, S.; Cho, J. Optimization of carbon- and binder-free Au nanoparticle-coated Ni nanowire electrodes for lithium-oxygen batteries. Adv. Energy Mater. 2014, 1401030. [Google Scholar] [CrossRef]
- Xu, Y.; Zhou, M.; Wen, L.; Wang, C.; Zhao, H.; Mi, Y.; Liang, L.; Fu, Q.; Wu, M.; Lei, Y. Highly ordered three-dimensional Ni-TiO2 nanoarrays as sodium ion battery anodes. Chem. Mater. 2015, 27, 4274–4280. [Google Scholar] [CrossRef]
- Dou, P.; Cao, Z.; Zheng, J.; Wang, C.; Xu, X. Solid polymer electrolyte coating three-dimensional Sn/Ni bimetallic nanotube arrays for high performance lithium-ion battery anodes. J. Alloys Compds 2016, 685, 690–698. [Google Scholar] [CrossRef]
- Sulka, G.D. Chapter 1: Introduction to anodization of metals. In Nanostructured Anodic Metal Oxides; Sulka, G.D., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–34. [Google Scholar] [CrossRef]
- Martínez-Viademonte, M.P.; Abrahami, S.T.; Hack, T.; Terryn, H. A review on anodizing of aerospace aluminum alloys for corrosion protection. Coatings 2020, 10, 1106. [Google Scholar] [CrossRef]
- Nabavi, R.; Sarraf, S.; Soltanieh, M. Optimization of hard anodizing process parameters on 6061-T6 aluminum alloy using response surface methodology. J. Mater. Eng. Perform. 2023, 33, 10048–10061. [Google Scholar] [CrossRef]
- Georgieva, M.G.; Milusheva, V.S. Electroless and electrochemical copper deposition to form a conductive layer on anodized aluminum substrate. In Proceedings of the 2022 XXXI International Scientific Conference Electronics (ET), Sozopol, Bulgaria, 13–15 September 2022; IEEE: New York, NY, USA, 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Azizi, A.; Mohammadi, M.; Sadrnezhaad, S.K. End-closed NiCoFe-B nanotube arrays by electroless method. Mater. Lett. 2011, 65, 289–292. [Google Scholar] [CrossRef]
- Loto, C.A. Electroless nickel plating—A review. Silicon 2016, 8, 177–186. [Google Scholar] [CrossRef]
- Rocca, E.; Vantelon, D.; Reguer, S.; Mirambet, F. Structural evolution in nanoporous anodic aluminium oxide. Mater. Chem. Phys. 2012, 134, 905–911. [Google Scholar] [CrossRef]
- Montero, I.; Albella, J.M.; Ortega, C.; Siejka, J. Space charge and electret behaviour in anodic Ta2O5 films. Thin Solid Film. 1988, 167, 95–100. [Google Scholar] [CrossRef]
- Morgan, D.V.; Guile, A.E.; Bektore, Y. Stored charge in anodic aluminium oxide films. J. Phys. D Appl. Phys. 1980, 13, 307. [Google Scholar] [CrossRef]
- Lambert, J.; Guthmann, C.; Ortega, C.; Saint-Jean, M. Permanent polarization and charge injection in thin anodic alumina layers studied by electrostatic force microscopy. Appl. Phys. 2002, 91, 9161–9169. [Google Scholar] [CrossRef]
- Stefanov, B.I.; Milusheva, V.S.; Kolev, H.G.; Tzaneva, B.R. Photocatalytic activation of TiO2-functionalized anodic aluminium oxide for electroless copper deposition. Catal. Sci. Technol. 2022, 12, 7027–7037. [Google Scholar] [CrossRef]
- Chernyakova, K.; Tzaneva, B.; Vrublevsky, I.; Videkov, V. Effect of aluminum anode temperature on growth rate and structure of nanoporous anodic alumina. J. Electrochem. Soc. 2020, 167, 103506. [Google Scholar] [CrossRef]
- Tzaneva, B.; Vrublevsky, I.; Videkov, V.; Lushpa, N. Role of electrode temperature in anodic growth of sulfuric acid alumina films. J. Solid State Electrochem. 2025, 29, 1459–1465. [Google Scholar] [CrossRef]
- Lin, S.-C.; Lai, C.-H.; Wu, P.-W. Conformal deposition of Ni - P on anodic aluminum oxide template. Electrochem. Sol. State Lett. 2008, 11, D1. [Google Scholar] [CrossRef]
- Kumar, P.S.; Nair, P.K. Studies on crystallization of electroless Ni P deposits. J. Mater. Process. Technol. 1996, 56, 511–520. [Google Scholar] [CrossRef]
- Parkinson, R. Properties and Applications of Electroless Nickel; Nickel Development Institute: Toronto, Canada, 1997. [Google Scholar]
- Gasco-Owens, A.; Veys-Renaux, D.; Cartigny, V.; Rocca, E. Large-pores anodizing of 5657 aluminum alloy in phosphoric acid: An in-situ electrochemical study. Electrochim. Acta 2021, 382, 138303. [Google Scholar] [CrossRef]
- Cartigny, V.; Veys-Renaux, D.P.; Desenne, D.; Rocca, E. Rapid sealing of an alumina nanoporous network grown by anodizing and dye-filled. Surf. Coat. Technol. 2019, 364, 369–376. [Google Scholar] [CrossRef]
- Rocca, E.; Vantelon, D.; Gehin, A.; Augros, M.; Viola, A. Chemical reactivity of self-organized alumina nanopores in aqueous medium. Acta Mater. 2011, 59, 962–970. [Google Scholar] [CrossRef]
- Persson, I. Structure and size of complete hydration shells of metal ions and inorganic anions in aqueous solution. Dalton Trans. 2024, 53, 15517–15538. [Google Scholar] [CrossRef]
- Tansel, B.; Sager, J.; Rector, T.; Garland, J.; Strayer, R.F.; Levine, L.; Roberts, M.; Hummerick, M.; Bauer, J. Significance of hydrated radius and hydration shells on ionic permeability during nanofiltration in dead end and cross flow modes. Sep. Purif. Technol. 2006, 51, 40–47. [Google Scholar] [CrossRef]
- Mallory, G.O. Chapter 2: Composition and kinetics of electroless nickel plating. In Electroless Plating: Fundamentals and Applications; Mallory, G.O., Hajdu, J.B., Eds.; Noyes publications/William Andrew Publishing, LLC: New York, NY, USA, 1990; pp. 57–101. [Google Scholar]
- Vrublevsky, I.; Parkoun, V.; Schreckenbach, J. Analysis of porous oxide film growth on aluminum in phosphoric acid using re-anodizing technique. Appl. Surf. Sci. 2005, 242, 333–338. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, B.; Wayment, J.R.; Harris, J.M.; White, H.S. Electrostatic-gated transport in chemically modified glass nanopore electrodes. J. Am. Chem. Soc. 2006, 128, 7679–7686. [Google Scholar] [CrossRef]
- Song, Y.-Y.; Schmidt-Stein, F.; Bauer, S.; Schmuki, P. Amphiphilic TiO2 nanotube arrays: An actively controllable drug delivery system. J. Am. Chem. Soc. 2009, 131, 4230–4232. [Google Scholar] [CrossRef]
- McHenry, M.E.; Willard, M.A.; Laughlin, D.E. Amorphous and nanocrystalline materials for applications as soft magnets. Prog. Mater. Sci. 1999, 44, 291–433. [Google Scholar] [CrossRef]
- Huang, C.-C.; Lo, C.-C.; Tseng, Y.-C.; Liu, C.-M.; Chen, C. Magnetostructural phase transition in electroless-plated Ni nanoarrays. J. Appl. Phys. 2011, 109, 113905. [Google Scholar] [CrossRef]
- Ren, X.; Jiang, C.H.; Huang, X.M.; Li, D.D. Fabrication and magnetic behavior of chemical deposited Ni-P nanowire and nanotube arrays. Phys. E 2009, 41, 349–352. [Google Scholar] [CrossRef]
- Huajun, Z.; Jinhuan, Z.; Zhenghai, G.; Wei, W. Preparation and magnetic properties of Ni nanorod arrays. J. Magn. Magn. Mater. 2008, 320, 565–570. [Google Scholar] [CrossRef]
Name of Template | Used Acid | Applied Voltage, V | Temperature of Anodization, °C | AAO Pore Diameter, nm |
---|---|---|---|---|
AAO95 | 5% H3PO4 | 120 | 14 ± 1 | ~95 |
AAO33 | 4% (COOH)2 | 40 | 14 ± 1 | ~33 |
AAO13 | 10% H2SO4 | 20 | 6 ± 1 | ~13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tzaneva, B.; Okhay, O.; Milusheva, V.; Atanasova-Vladimirova, S.; Ventura, J.; Tkach, A. Effect of Anodic Aluminium Oxide Structure on the Electroless Ni-P Distribution into Nanopores. Materials 2025, 18, 3797. https://doi.org/10.3390/ma18163797
Tzaneva B, Okhay O, Milusheva V, Atanasova-Vladimirova S, Ventura J, Tkach A. Effect of Anodic Aluminium Oxide Structure on the Electroless Ni-P Distribution into Nanopores. Materials. 2025; 18(16):3797. https://doi.org/10.3390/ma18163797
Chicago/Turabian StyleTzaneva, Boriana, Olena Okhay, Vesselina Milusheva, Stela Atanasova-Vladimirova, João Ventura, and Alexander Tkach. 2025. "Effect of Anodic Aluminium Oxide Structure on the Electroless Ni-P Distribution into Nanopores" Materials 18, no. 16: 3797. https://doi.org/10.3390/ma18163797
APA StyleTzaneva, B., Okhay, O., Milusheva, V., Atanasova-Vladimirova, S., Ventura, J., & Tkach, A. (2025). Effect of Anodic Aluminium Oxide Structure on the Electroless Ni-P Distribution into Nanopores. Materials, 18(16), 3797. https://doi.org/10.3390/ma18163797