Study on Laser Drilling of Micro-Holes Using a Breakthrough Detection Method
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Setup and Materials
2.2. Experimental Parameters and Measurement Methods
2.3. Breakthrough Detection
3. Results
3.1. Experimental Results and Analysis for 304 Stainless Steel
3.1.1. Effect of Pulse Energy
3.1.2. Effect of the Defocus Amount
3.1.3. Effect of the Beam Expansion Ratio
3.2. Experimental Results and Analysis of Titanium Alloy TC4
3.2.1. Influence of Pulse Energy
3.2.2. Effect of Defocus Amount
3.2.3. Influence of Beam Expansion Ratio
3.3. Comparative Analysis of Stainless Steel 304 and Titanium Alloy TC4
3.3.1. Comparative Analysis of Through-Hole Quality
3.3.2. Comparative Analysis of Through-Hole Drilling Efficiency
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Antar, M.; Chantzis, D.; Marimuthu, S.; Hayward, P. High speed EDM and laser drilling of aerospace alloys. Procedia Cirp 2016, 42, 526–531. [Google Scholar] [CrossRef]
- Lv, J.; Dong, X.; Wang, K.; Duan, W.; Fan, Z.; Mei, X. Study on process and mechanism of laser drilling in water and air. Int. J. Adv. Manuf. Technol. 2016, 86, 1443–1451. [Google Scholar] [CrossRef]
- Salonitis, K.; Stournaras, A.; Tsoukantas, G.; Stavropoulos, P.; Chryssolouris, G. A theoretical and experimental investigation on limitations of pulsed laser drilling. J. Mater. Process. Technol. 2007, 183, 96–103. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, K.; Wang, Y.; Liu, B. Analysis of drilling response under ultra-high-speed diamond drilling: Theory and experiment. Geoenergy Sci. Eng. 2024, 243, 213239. [Google Scholar] [CrossRef]
- Xing, Y.; Yin, Y.; Wei, F.; Ma, X.; Zang, S.; Zhang, J.; Pan, S.; Yue, X. Electrochemistry-informed electrochemical machining (ECM) and microstructure-determined flattening mechanism of Inconel 738 superalloy. Int. J. Adv. Manuf. Technol. 2024, 133, 791–809. [Google Scholar] [CrossRef]
- Sarala Rubi, C.; Prakash, J.U.; Juliyana, S.J.; Čep, R.; Salunkhe, S.; Kouril, K.; Ramdas Gawade, S. Comprehensive review on wire electrical discharge machining: A non-traditional material removal process. Front. Mech. Eng. 2024, 10, 1322605. [Google Scholar] [CrossRef]
- Sharma, A.; Kalsia, M.; Uppal, A.S.; Babbar, A.; Dhawan, V. Machining of hard and brittle materials: A comprehensive review. Mater. Today Proc. 2022, 50, 1048–1052. [Google Scholar] [CrossRef]
- Alsoruji, G.; Muthuramalingam, T.; Moustafa, E.B.; Elsheikh, A. Investigation and TGRA based optimization of laser beam drilling process during machining of Nickel Inconel 718 alloy. J. Mater. Res. Technol. 2022, 18, 720–730. [Google Scholar] [CrossRef]
- Duan, W.; Mei, X.; Fan, Z.; Li, J.; Wang, K.; Zhang, Y. Electrochemical corrosion assisted laser drilling of micro-hole without recast layer. Optik 2020, 202, 163577. [Google Scholar] [CrossRef]
- Nasrollahi, V.; Penchev, P.; Batal, A.; Le, H.; Dimov, S.; Kim, K. Laser drilling with a top-hat beam of micro-scale high aspect ratio holes in silicon nitride. J. Mater. Process. Technol. 2020, 281, 116636. [Google Scholar] [CrossRef]
- Silvennoinen, M.; Kaakkunen, J.; Paivasaari, K.; Vahimaa, P. Water spray assisted ultrashort laser pulse ablation. Appl. Surf. Sci. 2013, 265, 865–869. [Google Scholar] [CrossRef]
- Yan, Y.; Ji, L.; Bao, Y.; Jiang, Y. An experimental and numerical study on laser percussion drilling of thick-section alumina. J. Mater. Process. Technol. 2012, 212, 1257–1270. [Google Scholar] [CrossRef]
- Ren, N.; Xia, K.; Yang, H.; Gao, F.; Song, S. Water-assisted femtosecond laser drilling of alumina ceramics. Ceram. Int. 2021, 47, 11465–11473. [Google Scholar] [CrossRef]
- Zhang, H.; Kang, M.; Ma, C.; Mao, Y.; Wang, X.; Zhang, Y. Experimental investigation and optimization of modification during backside-water-assisted laser drilling using flowing water. J. Manuf. Process. 2023, 101, 999–1012. [Google Scholar] [CrossRef]
- Xia, K.; Ren, N.; Lin, Q.; Yang, H. Femtosecond laser drilling in superalloy with water-based magnetic assistance. Opt. Commun. 2023, 527, 128902. [Google Scholar] [CrossRef]
- Fan, Z.; Pei, Z.; She, Z.; Wang, W.; Yan, Y.; Cui, J. Dual-directional ultrasonic vibration-assisted femtosecond laser drilling of film cooling holes. Opt. Laser Technol. 2025, 180, 111484. [Google Scholar] [CrossRef]
- Hou, J.; Ding, X.; Xiao, Y.; Lin, Q.; Wang, M.; Li, C.; Liu, S.; Zhang, W.; Wang, Y. Femtosecond laser drilling in nickel-based alloy assisted by ultrasonic vibration. In Proceedings of the Fourth International Computational Imaging Conference (CITA 2024), Xiamen, China, 20–22 September 2025; pp. 1112–1120. [Google Scholar]
- Wang, L.; Rong, Y.; Xu, L.; Wu, C.; Xia, K. Process Optimization on Trepanning Drilling in Titanium Alloy Using a Picosecond Laser via an Orthogonal Experiment. Micromachines 2025, 16, 846. [Google Scholar] [CrossRef]
- Chatterjee, S.; Mahapatra, S.S.; Bharadwaj, V.; Choubey, A.; Upadhyay, B.N.; Bindra, K.S. Quality evaluation of micro drilled hole using pulsed Nd: YAG laser: A case study on AISI 316. Lasers Manuf. Mater. Process. 2018, 5, 248–269. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, G.; He, X.; Li, S.; Ning, W. Driving mechanism of keyhole evolution during multi-pulse drilling with a millisecond laser. Sci. China Phys. Mech. Astron. 2019, 62, 104711. [Google Scholar] [CrossRef]
- Tanabe, R.; Nguyen, T.T.P.; Ito, Y. Dynamical studies on laser processes induced by short pulse lasers: From nanoseconds to milliseconds. Phys. Procedia 2016, 83, 83–92. [Google Scholar] [CrossRef]
- Marimuthu, S.; Dunleavey, J.; Liu, Y.; Smith, B.; Kiely, A.; Antar, M. Characteristics of hole formation during laser drilling of SiC reinforced aluminium metal matrix composites. J. Mater. Process. Technol. 2019, 271, 554–567. [Google Scholar] [CrossRef]
- Pattanayak, S.; Panda, S. Laser beam micro drilling—A review. Lasers Manuf. Mater. Process. 2018, 5, 366–394. [Google Scholar] [CrossRef]
- Zhang, Y.; Shen, Z.; Ni, X. Modeling and simulation on long pulse laser drilling processing. Int. J. Heat Mass Transf. 2014, 73, 429–437. [Google Scholar] [CrossRef]
- Marimuthu, S.; Antar, M.; Dunleavey, J. Characteristics of micro-hole formation during fibre laser drilling of aerospace superalloy. Precis. Eng. 2019, 55, 339–348. [Google Scholar] [CrossRef]
- Marimuthu, S.; Smith, B.; Kiely, A.; Liu, Y. Millisecond pulse laser machining of thermal barrier coatings. CIRP J. Manuf. Sci. Technol. 2020, 28, 107–117. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, L.; Zhang, C.; Chen, X.; Li, J. Physical study of spatter and melt pool dynamics during millisecond laser metals drilling. Opt. Commun. 2021, 482, 126627. [Google Scholar] [CrossRef]
Composition | Fe | C | Si | Mn |
Mass fraction/% | Allowance | 0.053 | 0.46 | 1.16 |
Composition | P | S | Cr | Ni |
Mass fraction/% | 0.033 | 0.008 | 18.15 | 8.08 |
Composition | Ti | Al | V | Fe |
Mass fraction/% | Allowance | 6.5~6.8 | 4.2~4.5 | 0.3 |
Composition | C | N | H | O |
Mass fraction/% | 0.1 | 0.05 | 0.015 | 0.2 |
Thermophysical Properties | |||
Stainless Steel 304 | 0.52 | 16.3 | 1400 |
Titanium Alloy TC4 | 0.612 | 6.7 | 1672 |
Pulse Energy/J | Defocus Amount/mm | Beam Expansion Ratio | Repetition Rate/Hz | Air Pressure/Mpa |
---|---|---|---|---|
2/2.2/2.4/2.6/2.8 | 0 | 3 | 50 | 0.3 |
Pulse Energy/J | Defocus Amount/mm | Beam Expansion Ratio | Repetition Rate/Hz | Air Pressure/Mpa |
---|---|---|---|---|
2 | −1/−0.5/0/0.5/1 | 3 | 50 | 0.3 |
Pulse Energy/J | Defocus Amount/mm | Beam Expansion Ratio | Repetition Rate/Hz | Air Pressure/Mpa |
---|---|---|---|---|
2 | 0 | 2/2.5/3/3.5/4 | 50 | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Rong, Y.; Xu, L.; Wu, C.; Xia, K. Study on Laser Drilling of Micro-Holes Using a Breakthrough Detection Method. Materials 2025, 18, 3764. https://doi.org/10.3390/ma18163764
Wang L, Rong Y, Xu L, Wu C, Xia K. Study on Laser Drilling of Micro-Holes Using a Breakthrough Detection Method. Materials. 2025; 18(16):3764. https://doi.org/10.3390/ma18163764
Chicago/Turabian StyleWang, Liang, Yefei Rong, Long Xu, Changjian Wu, and Kaibo Xia. 2025. "Study on Laser Drilling of Micro-Holes Using a Breakthrough Detection Method" Materials 18, no. 16: 3764. https://doi.org/10.3390/ma18163764
APA StyleWang, L., Rong, Y., Xu, L., Wu, C., & Xia, K. (2025). Study on Laser Drilling of Micro-Holes Using a Breakthrough Detection Method. Materials, 18(16), 3764. https://doi.org/10.3390/ma18163764