The Influence of Heat Treatment Process on the Residual Ferrite in 304L Austenitic Stainless Steel Continuous Casting Slab
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Equilibrium Solidification Process of 304L Slab
3.2. Morphology and Distribution of Residual Ferrite at the Mid-Width of Continuous Casting Slab
3.3. Distribution of Residual Ferrite in the Triangular Zone Region of Continuous Casting Slab
3.4. Distribution of Residual Ferrite in the Triangular Zone Region of Continuous Casting Slab
3.5. Actual Precipitation Behavior of α-Ferrite
4. Discussion
4.1. Morphology and Distribution Mechanism of Residual Ferrite in Continuous Casting Slab
4.2. Mechanism of the Effect of Heat Treatment on Residual Ferrite Content and Distribution Throughout the Slab Thickness
5. Conclusions
- This study investigated 304L austenitic stainless steel continuous casting slab. Along the thickness direction from surface to center, ferrite morphologies transition sequentially as long strip → skeletal/lathy → networked structures. In the width-center thickness direction, ferrite content varies within 3–13%, exhibiting an “M”-shaped distribution. Within the slab’s triangular zone, ferrite content ranges from 1.8% to 12.2%. The average residual ferrite along the thickness direction shows an “M”-shaped distribution, while along the width direction, the average ferrite content is lower at the edges (3.04%) and remains relatively consistent (8–10%) within the slab interior.
- Thermodynamic software calculations of the slab’s equilibrium solidification process confirmed that the solidification mode of the 304L continuously cast slab follows the ferrite–austenite (FA) mode. Based on these thermodynamic calculations, heat treatment experiments were designed across the entire slab thickness. The results revealed that at a heat treatment temperature of 1250 °C, ferrite content decreased most significantly. Prolonged holding time and reduced cooling rate both facilitated further reduction in residual ferrite content. However, at 1300 °C (where the equilibrium microstructure consists of high-temperature δ-ferrite and austenite), the reduction in residual ferrite was less pronounced compared to the 1250 °C condition. Moreover, after heat treatment under various parameters, the ferrite distribution within the slab retained the original “M”-shaped profile observed in the as-cast slab.
- Holding experiments at 600 °C confirmed no α-ferrite precipitation under actual cooling conditions. Moderately slow cooling below this temperature further promotes the transformation of high-temperature δ-ferrite into austenite.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lo, K.H.; Shek, C.H.; Lai, J.K.L. Recent developments in stainless steels. Mater. Sci. Eng. R Rep. 2009, 65, 39–104. [Google Scholar] [CrossRef]
- Yang, S.; Ma, J.Y.; Chen, C.; Zhang, C.L.; Ren, J.Y.; Jiang, Z.H.; Fan, G.W.; Han, P.D. Effects of B and Ce Grain Boundary Segregation on Precipitates in Super Austenitic Stainless Steel. Metals 2023, 13, 326. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Wang, J.; Chen, C.; Tian, H.Y.; Han, P.D. Effect of boron on the solidification characteristics and constitutive equation of S31254 superaustenitic stainless steel. Steel Res. Int. 2024, 95, 2400050. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, Z.F.; Zhang, Z. EBSD parameter assessment and constitutive models of crept HR3C austenitic steel. J. Iron Steel Res. Int. 2023, 30, 772–781. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Wang, C.J.; Liu, C. Effect of heat treatment on microstructure and mechanical properties of selective laser-melted PH13-8Mo stainless steel. J. Iron Steel Res. Int. 2024, 31, 945–955. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, C.; Ren, R.J.; Xue, Z.X.; Wang, H.Z.; Zhang, Y.Z.; Wang, J.X.; Wang, J.; Chen, L.; Mu, W.Z. Ferrite formation and decomposition in 316H austenitic stainless steel electro slag remelting ingot for nuclear power applications. Mater. Charact. 2024, 218, 114581. [Google Scholar] [CrossRef]
- Dong, C.; Qu, S.; Fu, C.M.; Zhang, Z.F. Failure analysis of crevice corrosion on 304 stainless steel tube heat exchanger. J. Iron Steel Res. Int. 2023, 30, 1490–1498. [Google Scholar] [CrossRef]
- Zhu, L.; Sun, C.Y.; Wang, B.Y.; Zhou, J. Cross wedge rolling deformation law and bonding mechanism of 304 stainless steel/Q235 carbon steel bimetallic shaft. J. Iron Steel Res. Int. 2024, 31, 2423–2437. [Google Scholar] [CrossRef]
- Guo, X.W.; Ren, Z.K.; Wu, H.; Chai, Z.; Zhang, Q.; Wang, T.; Huang, Q.X. Effect of annealing on microstructure and synergistic deformation of 304/TC4 composite plates with corrugated interface. J. Iron Steel Res. Int. 2024, 1–18. [Google Scholar] [CrossRef]
- Kujanpaa, V.; Suutala, N.; Takalo, T. Correlation between solidification cracking and microstructure in austenitic and austenitic-ferritic stainless steel welds. Weld. Res. Int. 1979, 9, 55–76. [Google Scholar]
- Rho, B.S.; Hong, H.U.; Nam, S.W. The effect of δ-ferrite on fatigue cracks in 304L steels. Int. J. Fatigue 2000, 22, 683–690. [Google Scholar] [CrossRef]
- Wang, Q.Y.; Chen, S.H.; Lv, X.; Jiang, H.C.; Rong, L.J. Role of δ-ferrite in fatigue crack growth of AISI 316 austenitic stainless steel. J. Mater. Sci. Technol. 2022, 114, 7–15. [Google Scholar] [CrossRef]
- Chen, S.H.; Wang, Q.Y.; Jiang, H.C.; Rong, L.J. Effect of δ-ferrite on Hot Deformation and Recrystallization of 316KD Austenitic Stainless Steel for Sodium-Cooled Fast Reactor Application. Acta Metall. Sin. 2024, 60, 367–376. [Google Scholar]
- Wang, Z.G.; Gao, F.; Cao, G.M.; Tang, S.; Liu, Z.Y. Elemental inter-diffusions for the transformation of δ/M23C6/γ phases during heat treatment processes in heavy gage 316H-type austenitic stainless steel. Metall. Mater. Trans. A 2022, 53, 2652–2664. [Google Scholar] [CrossRef]
- Dai, Z.X.; Jiang, S.L.; Ning, L.K.; Xu, X.D.; Li, S.; Duan, D.L. Effect of friction on corrosion behaviors of AISI 304 and Cr26Mo1 stainless steels in different solutions. J. Iron Steel Res. Int. 2023, 30, 2541–2556. [Google Scholar] [CrossRef]
- Chen, S.H.; Wang, Q.Y.; Xie, A.; Rong, L.J. Corrosion behavior of δ-ferrite in AISI 316 austenitic stainless steel exposed to oxygen-saturated lead-bismuth eutectic at 550 °C. Mater. Charact. 2024, 211, 113930. [Google Scholar] [CrossRef]
- Kumar, A.; Ganesh, P.; Sharma, V.K.; Manekar, M.; Gupta, R.K.; Singh, R.; Singh, M.K.; Mundra, G.; Kaul, R. Development of low-magnetic-permeability welds of 316L stainless steel. Weld. J. 2021, 100, 323–337. [Google Scholar] [CrossRef]
- Bharani Chandar, J.; Lenin, N.; Rathinasuriyan, C. Exploring surface integrity Experimental investigation into abrasive waterjet deep hole drilling on ss 316L for biomedical applications. J. Alloy. Metall. Syst. 2024, 8, 100109. [Google Scholar] [CrossRef]
- Myllykoski, L.; Suutala, N. Effect of solidification mode on hot ductility of austenitic stainless steels. Met. Technol. 1983, 10, 453–460. [Google Scholar] [CrossRef]
- Ma, J.C.; Yang, Y.S.; Tong, W.H.; Fang, Y.; Yu, Y.; Hu, Z.Q. Microstructural evolution in AISI 304 stainless steel during directional solidification and subsequent solid-state transformation. Mater. Sci. Eng. A 2007, 444, 64–68. [Google Scholar] [CrossRef]
- Fu, J.W.; Yang, Y.S.; Guo, J.J.; Ma, J.C.; Tong, W.H. Formation of a two-phase microstructure in Fe–Cr–Ni alloy during directional solidification. J. Cryst. Growth 2008, 311, 132–136. [Google Scholar] [CrossRef]
- Fu, J.W.; Yang, Y.S.; Guo, J.J. Formation of a blocky ferrite in Fe–Cr–Ni alloy during directional solidification. J. Cryst. Growth 2009, 311, 3661–3666. [Google Scholar] [CrossRef]
- Fu, J.W.; Yang, Y.S.; Guo, J.J.; Ma, J.C.; Tong, W.H. Formation of two-phase coupled microstructure in AISI 304 stainless steel during directional solidification. J. Mater. Res. 2009, 24, 2385–2390. [Google Scholar] [CrossRef]
- Fu, J.W.; Yang, Y.S. Orientational dependence of lathy ferrite in Fe–Cr–Ni alloy during directional solidification. Mater. Lett. 2012, 81, 177–180. [Google Scholar] [CrossRef]
- Lee, E.S.; Lee, J.M.; Kim, J.W. Improvement of surface quality for the HCR practice of 304 stainless steel slab. In Proceedings of the 58th Electric Furnace Conference and 17th Process Technology Conference, Orlando, FL, USA, 12–15 November 2000; pp. 867–873. [Google Scholar]
- Kim, J.J.; Kim, S.K.; Kim, J.W.; Shim, S.D.; Lee, Y.D. Application of mold thermal monitoring system for improving slab surface quality at POSCO stainless steel works. In Proceedings of the 58th Electric Furnace Conference and 17th Process Technology Conference, Orlando, FL, USA, 12–15 November 2000; pp. 1009–1018. [Google Scholar]
- Di, H.S.; Cui, G.Z.; Wang, G.D.; Liu, X.H. Hot Ductility of 304HC Stainless Steel and the Model of Resistance to Deformation. Acta Metall. Sin. 2003, 16, 97–103. [Google Scholar]
- Hou, Z.B.; Cheng, G.G.; Wu, C.C.; Chen, C. Time-Series Analysis Technologies Applied to the Study of Carbon Element Distribution along Casting Direction in Continuous-Casting Billet. Metall. Mater. Trans. B 2012, 43, 1517–1529. [Google Scholar] [CrossRef]
- Pang, J.C.; Qian, G.Y.; Pang, S.; Ma, W.H.; Cheng, G.G. Design of a submerged entry nozzle for optimizing continuous casting of stainless steel slab. J. Iron Steel Res. Int. 2023, 30, 2229–2241. [Google Scholar] [CrossRef]
- Lindenberg, H.U.; Knackstedt, W.; Koehler, H.J.; Biesterfeld, W.; Unger, K.D.; Thielmann, R. Metallurgie des Stranggießens nichtrostender Stähle. Stahl Eisen 1984, 104, 227–234. [Google Scholar]
- Wolf, M. Strand Surface Quality of Austenitic Stainless Steels: Part I—Macroscopic Shell Growth and Ferrite Distribution. Ironmak. Steelmak. 1986, 13, 248–257. [Google Scholar]
- Kim, S.K.; Shin, Y.K.; Kim, N.J. Distribution of δ ferrite content in continuously cast type 304 stainless steel slab. Ironmak. Steelmak. 1995, 22, 316–325. [Google Scholar]
- dos Santos, F.A.M.; Martorano, M.A.; Padilha, A.F. Delta ferrite formation and evolution during slab processing from an 80-ton industrial heat of AISI 304 austenitic stainless steel. REM Int. Eng. J. 2023, 76, 47–54. [Google Scholar] [CrossRef]
- Huang, F.X.; Wang, X.H.; Wang, W.J. Characteristics of residual ferrite in solidification structure of austenitic stainless steel. Iron Steel 2012, 47, 69–73. [Google Scholar] [CrossRef]
- Huang, F.X.; Wang, X.H.; Wang, W.J. Behavior of ferrite in AISI304 stainless steel strips. Chin. J. Eng. 2012, 34, 639–643. [Google Scholar] [CrossRef]
- Chen, C.; Cheng, G.G. Delta-ferrite distribution in a continuous casting slab of Fe-Cr-Mn austenitic stainless steel. Metall. Mater. Trans. B 2017, 48, 2324–2333. [Google Scholar] [CrossRef]
- Spaccarotella, A.; Ridolfi, M.R.; Picht, G.; Scheller, P.R. Control of δ-γ Transformation during Solidification of Stainless Steel slab in the Mould. Steel Res. Int. 2003, 74, 693–699. [Google Scholar] [CrossRef]
- Nhung, L.T.; Nam, N.D.; Khanh, P.M. Effect of Temperature on δ-Ferrite Morphology of Carbon Steel and Austenitic Stainless Steel Welds. Mater. Sci. Forum 2021, 1034, 23–32. [Google Scholar] [CrossRef]
- Kim, S.H.; Moon, H.K.; Kang, T.; Lee, C.S. Dissolution kinetics of delta ferrite in AISI 304 stainless steel produced by strip casting process. Mater. Sci. Eng. A 2003, 356, 390–398. [Google Scholar] [CrossRef]
- Fukumoto, S.; Iwasaki, Y.; Motomura, H.; Fukuda, Y. Dissolution Behavior of δ-ferrite in Continuously Cast slab of SUS304 during Heat Treatment. ISIJ Int. 2012, 52, 74–79. [Google Scholar] [CrossRef]
- Aghebatkheiri, F.; Mashreghi, A.R.; Hasani, S. Isothermal Kinetic Analysis of issolution of The Retained Delta Ferrite in AISI 304 Stainless Steel During Homogenization. Int. J. Iron Steel Soc. Iran. 2024, 21, 1–8. [Google Scholar] [CrossRef]
- Zargar, T.; Sadeghi, F.; Kim, J.W.; Lee, J.S.; Heo, Y.U.; Yim, C.H. Kinetic model to investigate the effect of cooling rate on δ-Ferrite behavior and its application in continuous casting of AISI 304 stainless steel. Metals Mater. Int. 2022, 28, 2263–2276. [Google Scholar] [CrossRef]
- Li, J.C.; Liu, Z.Y.; Wang, D.; Pan, J.X.; Zhao, M.Y.; Geng, S.L.; Cheng, Y.G. Hot Deformation Behavior of 301L Stainless Steel and Dissolution Behavior of δ-Ferrite During Heat Treatment. Steel Res. Int. 2023, 94, 2300181. [Google Scholar] [CrossRef]
- Wang, X.G.; Dumortier, C.; Riquier, Y. Simulation of Solidification Process and Prediction of δ-ferrite Distribution in Continuously Cast Austenitic Stainless Steels slab. In Proceedings of the 6th International Iron and Steel Congress, Nagoya, Japan, 21–26 October 1990; pp. 705–712. [Google Scholar]
- Niagaj, J.; Mazur, Ł. Review of methods for measurement of ferrite content in high alloyed steels and their welded joints. Weld. Int. 2014, 28, 345–353. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, C.; Yang, X.Y.; Zhang, Z.R.; Wang, J.; Li, Z.; Chen, L.; Mu, W.Z. Solidification modes and delta-ferrite of two types 316L stainless steels: A combination of as-cast microstructure and HT-CLSM research. J. Iron Steel Res. Int. 2025, 32, 426–436. [Google Scholar] [CrossRef]
- Wang, Q.C.; Ren, Y.B.; Yao, C.F.; Yang, K.; Misra, R.D.K. Residual ferrite and relationship between composition and microstructure in high-nitrogen austenitic stainless steels. Metall. Mater. Trans. A 2015, 46, 5537–5545. [Google Scholar] [CrossRef]
- Fu, J.W. Study on Microstructure Formation and Evolution of Sub-Rapid Solidification Austenitic Stainless Steel; Harbin Institute of Technology: Harbin, China, 2009. [Google Scholar]
- Hull, F.C. Delta ferrite and martnesite formation in stainless steels. Weld. J. 1973, 52, 193. [Google Scholar]
- Siegel, U.; Spies, H.-J.; Eckstein, H.-J. Effect of solidification conditions on the solidification sequence of austenitic chromium-nickel stainless steels. Steel Res. 1986, 57, 25–32. [Google Scholar] [CrossRef]
- Scheller, P.R.; Flesch, R.; Bleck, W. Solidification Morphology and Microstructure Properties at Increased Cooling Rates for 18-8 Cr-Ni Stainless Steel. Adv. Eng. Mater. 1999, 1, 209–214. [Google Scholar] [CrossRef]
- Padilha, A.F.; Tavares, C.F.; Martorano, M.A. Delta Ferrite Formation in Austenitic Stainless Steel Castings. Mater. Sci. Forum 2012, 730, 733–738. [Google Scholar] [CrossRef]
- Saied, M. Experimental and Numerical Modeling of the Dissolution of Delta Ferrite in the Fe-Cr-Ni System: Application to the Austenitic Stainless Steels; Université Grenoble Alpes: Saint-Martin-d’Hères, France, 2016. [Google Scholar]
- Chen, L.; Wang, Y.; Li, Y.F.; Zhang, Z.R.; Xue, Z.X.; Ban, X.Y.; Hu, C.H.; Li, H.X.; Tian, J.; Mu, W.Z.; et al. Effect of Nickel Content and Cooling Rate on the Microstructure of as Cast 316 Stainless Steels. Crystals 2025, 15, 168. [Google Scholar] [CrossRef]
C | Si | Mn | P | S | Cr | Ni | N |
---|---|---|---|---|---|---|---|
0.0154 | 0.3763 | 1.795 | 0.0318 | 0.0014 | 18.01 | 8.01 | 0.0696 |
Holding Time | 1000 °C | 1200 °C | 1250 °C | 1300 °C | |
---|---|---|---|---|---|
Water cooling | 32 min | 1 | 5 | 9 | 13 |
48 min | 2 | 6 | 10 | 14 | |
Air cooling | 32 min | 3 | 7 | 11 | 15 |
48 min | 4 | 8 | 12 | 16 |
Thickness Width | 10 | 20 | 40 | 60 | 80 | 100 | 120 | 140 | 160 | 180 | 200 | 220 | 240 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10 | 4.8 | 5.2 | 3.7 | 2.7 | 2.4 | 2.6 | 2.8 | 2.2 | 2.6 | 2.0 | 3.1 | 2.6 | 2.6 |
20 | 5.4 | 7.1 | 9.0 | 10.7 | 9.6 | 8.9 | 8.2 | 8.0 | 7.0 | 5.3 | 6.7 | 7.0 | 7.5 |
40 | 2.5 | 8.7 | 6.9 | 9.8 | 8.9 | 9.8 | 10.3 | 10.2 | 9.5 | 8.7 | 9.0 | 8.8 | 10.8 |
60 | 2.0 | 9.7 | 10.4 | 9.8 | 11.1 | 11.1 | 11.6 | 10.8 | 10.6 | 9.9 | 10.9 | 9.2 | 11.8 |
80 | 1.9 | 10.0 | 10.8 | 11.0 | 10.6 | 10.4 | 10.7 | 12.5 | 11.8 | 12.4 | 11.2 | 11.3 | 12.4 |
100 | 1.8 | 9.8 | 11.1 | 10.8 | 10.3 | 11.5 | 12.2 | 9.6 | 9.1 | 9.5 | 8.3 | 10.9 | 11.2 |
120 | 1.8 | 9.1 | 9.7 | 11.2 | 11.3 | 11.0 | 11.2 | 12.4 | 11.6 | 11.7 | 12.6 | 12.2 | 12.3 |
140 | 2.0 | 9.9 | 10.2 | 9.7 | 11.4 | 11.6 | 11.6 | 11.7 | 11.5 | 10.9 | 10.7 | 11.7 | 10.7 |
160 | 2.3 | 8.9 | 9.2 | 10.2 | 10.2 | 9.9 | 9.8 | 10.7 | 10.2 | 9.4 | 10.1 | 8.7 | 10.0 |
180 | 3.9 | 7.4 | 8.0 | 8.6 | 9.9 | 8.7 | 8.0 | 9.2 | 8.9 | 8.1 | 6.6 | 8.8 | 8.4 |
200 | 5.0 | 4.0 | 3.7 | 3.2 | 3.3 | 2.4 | 2.7 | 2.2 | 2.7 | 3.2 | 2.3 | 2.6 | 3.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, Z.; Yang, K.; Li, Y.; Pei, C.; Hou, D.; Zhao, Q.; Wang, Y.; Chen, L.; Chen, C.; Mu, W. The Influence of Heat Treatment Process on the Residual Ferrite in 304L Austenitic Stainless Steel Continuous Casting Slab. Materials 2025, 18, 3724. https://doi.org/10.3390/ma18163724
Xue Z, Yang K, Li Y, Pei C, Hou D, Zhao Q, Wang Y, Chen L, Chen C, Mu W. The Influence of Heat Treatment Process on the Residual Ferrite in 304L Austenitic Stainless Steel Continuous Casting Slab. Materials. 2025; 18(16):3724. https://doi.org/10.3390/ma18163724
Chicago/Turabian StyleXue, Zhixuan, Kun Yang, Yafeng Li, Chaochao Pei, Dongzhi Hou, Qi Zhao, Yang Wang, Lei Chen, Chao Chen, and Wangzhong Mu. 2025. "The Influence of Heat Treatment Process on the Residual Ferrite in 304L Austenitic Stainless Steel Continuous Casting Slab" Materials 18, no. 16: 3724. https://doi.org/10.3390/ma18163724
APA StyleXue, Z., Yang, K., Li, Y., Pei, C., Hou, D., Zhao, Q., Wang, Y., Chen, L., Chen, C., & Mu, W. (2025). The Influence of Heat Treatment Process on the Residual Ferrite in 304L Austenitic Stainless Steel Continuous Casting Slab. Materials, 18(16), 3724. https://doi.org/10.3390/ma18163724