Spin-Polarized DFT+U Study of Surface-Functionalized Cr3C2 MXenes: Tunable Electronic and Magnetic Behavior for Spintronics
Abstract
1. Introduction
2. Computing Method
3. Results and Discussion
3.1. Structural and Magnetic Properties
3.2. Curie Temperature and Magnetic Anisotropy Energy
3.3. Electronic Properties and Stability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Naguib, M.; Mashtalir, O.; Carle, J.; Presser, V.; Lu, J.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-Dimensional Transition Metal Carbides. ACS Nano 2012, 6, 1322–1331. [Google Scholar] [CrossRef]
- Naguib, M.; Come, J.; Dyatkin, B.; Presser, V.; Taberna, P.L.; Simon, P.; Barsoum, M.W.; Gogotsi, Y. MXene: A Promising Transition Metal Carbide Anode for Lithium-Ion Batteries. Electrochem. Commun. 2012, 16, 61–64. [Google Scholar] [CrossRef]
- Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti 3AlC 2. Adv. Mater. 2011, 23, 4248–4253. [Google Scholar] [CrossRef] [PubMed]
- Gogotsi, Y.; Anasori, B. The Rise of MXenes. ACS Nano 2019, 13, 8491–8494. [Google Scholar] [CrossRef]
- Ling, Z.; Ren, C.E.; Zhao, M.Q.; Yang, J.; Giammarco, J.M.; Qiu, J.; Barsoum, M.W.; Gogotsi, Y. Flexible and Conductive MXene Films and Nanocomposites with High Capacitance. Proc. Natl. Acad. Sci. USA 2014, 111, 16676–16681. [Google Scholar] [CrossRef]
- Anasori, B.; Lukatskaya, M.R.; Gogotsi, Y. 2D Metal Carbides and Nitrides (MXenes) for Energy Storage. Nat. Rev. Mater. 2017, 2, 677–722. [Google Scholar] [CrossRef]
- Lukatskaya, M.R.; Kota, S.; Lin, Z.; Zhao, M.Q.; Shpigel, N.; Levi, M.D.; Halim, J.; Taberna, P.L.; Barsoum, M.W.; Simon, P.; et al. Ultra-High-Rate Pseudocapacitive Energy Storage in Two-Dimensional Transition Metal Carbides. Nat. Energy 2017, 6, 723–743. [Google Scholar] [CrossRef]
- Soundiraraju, B.; George, B.K. Two-Dimensional Titanium Nitride (Ti 2 N) MXene: Synthesis, Characterization, and Potential Application as Surface-Enhanced Raman Scattering Substrate. ACS Nano 2017, 11, 8892–8900. [Google Scholar] [CrossRef]
- Halim, J.; Kota, S.; Lukatskaya, M.R.; Naguib, M.; Zhao, M.Q.; Moon, E.J.; Pitock, J.; Nanda, J.; May, S.J.; Gogotsi, Y.; et al. Synthesis and Characterization of 2D Molybdenum Carbide (MXene). Adv. Funct. Mater. 2016, 26, 3118–3127. [Google Scholar] [CrossRef]
- Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633–7644. [Google Scholar] [CrossRef]
- Yang, J.; Wang, A.; Zhang, S.; Wu, H.; Chen, L. Stability and Electronic Properties of Sulfur Terminated Two-Dimensional Early Transition Metal Carbides and Nitrides (MXene). Comput. Mater. Sci. 2018, 153, 303–308. [Google Scholar] [CrossRef]
- Yang, J.; Luo, X.; Zhou, X.; Zhang, S.; Liu, J.; Xie, Y.; Lv, L.; Chen, L. Tuning Magnetic Properties of Cr2M2C3T2 (M = Ti and V) Using Extensile Strain. Comput. Mater. Sci. 2017, 139, 313–319. [Google Scholar] [CrossRef]
- Hantanasirisakul, K.; Anasori, B.; Nemsak, S.; Hart, J.L.; Wu, J.; Yang, Y.; Chopdekar, R.V.; Shafer, P.; May, A.F.; Moon, E.J.; et al. Evidence of a Magnetic Transition in Atomically Thin Cr2TiC2T: XMXene. Nanoscale Horizons 2020, 5, 1557–1565. [Google Scholar] [CrossRef] [PubMed]
- Frey, N.C.; Kumar, H.; Anasori, B.; Gogotsi, Y.; Shenoy, V.B. Tuning Noncollinear Spin Structure and Anisotropy in Ferromagnetic Nitride MXenes. ACS Nano 2018, 12, 6319–6325. [Google Scholar] [CrossRef]
- Kumar, H.; Frey, N.C.; Dong, L.; Anasori, B.; Gogotsi, Y.; Shenoy, V.B. Tunable Magnetism and Transport Properties in Nitride MXenes. ACS Nano 2017, 11, 7648–7655. [Google Scholar] [CrossRef]
- Anasori, B.; Xie, Y.; Beidaghi, M.; Lu, J.; Hosler, B.C.; Hultman, L.; Kent, P.R.C.; Gogotsi, Y.; Barsoum, M.W. Two-Dimensional, Ordered, Double Transition Metals Carbides (MXenes). ACS Nano 2015, 9, 9507–9516. [Google Scholar] [CrossRef]
- Khazaei, M.; Ranjbar, A.; Arai, M.; Sasaki, T.; Yunoki, S. Electronic Properties and Applications of MXenes: A Theoretical Review. J. Mater. Chem. C 2017, 5, 2488–2503. [Google Scholar] [CrossRef]
- Khazaei, M.; Arai, M.; Sasaki, T.; Chung, C.Y.; Venkataramanan, N.S.; Estili, M.; Sakka, Y.; Kawazoe, Y. Novel Electronic and Magnetic Properties of Two-Dimensional Transition Metal Carbides and Nitrides. Adv. Funct. Mater. 2013, 23, 2185–2192. [Google Scholar] [CrossRef]
- Mashtalir, O.; Naguib, M.; Mochalin, V.N.; Dall’Agnese, Y.; Heon, M.; Barsoum, M.W.; Gogotsi, Y. Intercalation and Delamination of Layered Carbides and Carbonitrides. Nat. Commun. 2013, 4, 1716. [Google Scholar] [CrossRef]
- Sun, Q.; Fu, Z.; Yang, Z. Tunable Magnetic and Electronic Properties of the Cr-Based MXene (Cr2C) with Functional Groups and Doping. J. Magn. Magn. Mater. 2020, 514, 167141. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, Y.; Wang, Z.; Li, X.; Liang, Y.; Yan, H.; Wu, F. Theoretical Prediction of Two-Dimensional Cr3C2 Monolayer and Its Derivatives as Potential Electrode of Li-Ion Batteries. Comput. Mater. Sci. 2023, 226, 112201. [Google Scholar] [CrossRef]
- Zhang, S.; Zhou, Y.; Liang, X.; Wang, Y.; Wang, T.; Yang, J.; Lv, L. Tuning the Magnetic Properties of Cr2TiC2Tx through Surface Terminations: A Theoretical Study. Nanomaterials 2022, 12, 4364. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Chang, Z.; Liu, Z.; Zhou, N. Functionalized M2CT2 (M = Ti, V, Cr, Mn; T = O, S, Se) MXenes as Anchoring Materials for Lithium-Sulfur Batteries. Appl. Surf. Sci. 2022, 602, 154375. [Google Scholar] [CrossRef]
- Geng, J.; Wu, R.; Bai, H.; Chan, I.N.; Ng, K.W.; Ip, W.F.; Pan, H. Design of Functionalized Double-Metal MXenes (M2M’C2T2: M = Cr, Mo, M’ = Ti, V) for Magnetic and Catalytic Applications. Int. J. Hydrogen Energy 2022, 47, 18725–18737. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab Initio Molecular-Dynamics Simulation of the Liquid-Metalamorphous- Semiconductor Transition in Germanium. Phys. Rev. B 1994, 49, 14251–14269. [Google Scholar] [CrossRef]
- Vargas-Hernández, R.A. Bayesian Optimization for Calibrating and Selecting Hybrid-Density Functional Models. J. Phys. Chem. A 2020, 124, 4053–4061. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1997, 78, 1396. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Pack, J.D.; Monkhorst, H.J. “special Points for Brillouin-Zone Integrations”-a Reply. Phys. Rev. B 1977, 16, 1748–1749. [Google Scholar] [CrossRef]
- He, J.; Lyu, P.; Sun, L.Z.; Morales García, Á.; Nachtigall, P. High Temperature Spin-Polarized Semiconductivity with Zero Magnetization in Two-Dimensional Janus MXenes. J. Mater. Chem. C 2016, 4, 6500–6509. [Google Scholar] [CrossRef]
- Du, Z.X.; Bi, M.H.; Zhu, L.C.; Zhao, Z.B.; Wang, J.; Liu, M.X.; Wu, F. Investigation on electronic and magnetic properties of Cr3C2 monolayer and its derivatives by first-principles calculation. Mater. Today Commun. 2025, 46, 112889. [Google Scholar] [CrossRef]
- Dudarev, S.; Botton, G. Electron-Energy-Loss Spectra and the Structural Stability of Nickel Oxide: An LSDA+U Study. Phys. Rev. B Condens. Matter Mater. Phys. 1998, 57, 1505–1509. [Google Scholar] [CrossRef]
- Togo, A.; Oba, F.; Tanaka, I. First-Principles Calculations of the Ferroelastic Transition between Rutile-Type and CaCl2-Type SiO2 at High Pressures. Phys. Rev. B Condens. Matter Mater. Phys. 2008, 78, 134106. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, X.; Luo, X.; Zhang, S.; Chen, L. Tunable Electronic and Magnetic Properties of Cr2M′C2T2 (M′ = Ti or V.; T = O, OH or F). Appl. Phys. Lett. 2016, 109, 203109. [Google Scholar] [CrossRef]
- Yang, J.H.; Zhang, S.Z.; Ji, J.L.; Wei, S.H. Adsorption Activities of O, OH, F and Au on Two-Dimensional Ti2C and Ti3C2 Surfaces. Wuli Huaxue Xuebao/Acta Phys. Chim. Sin. 2015, 31, 369–376. [Google Scholar] [CrossRef]
- Drude, P. Zur Elektronentheorie Der Metalle. Ann. Phys. 1900, 306, 566–613. [Google Scholar] [CrossRef]
- Biswas, K.; He, J.; Zhang, Q.; Wang, G.; Uher, C.; Dravid, V.P.; Kanatzidis, M.G. Strained Endotaxial Nanostructures with High Thermoelectric Figure of Merit. Nat. Chem. 2011, 3, 160–166. [Google Scholar] [CrossRef] [PubMed]
Ground State | Spin-Down Band Gap (E > 0) (eV) | ∠Cr1-C1-Cr2 (°) | ∠Cr2-C2-Cr3 (°) | |
---|---|---|---|---|
Cr3C2 | FM | 0.50 | 170.77 | 170.77 |
FIM1 | 0.65 | 170.13 | 170.13 | |
FIM2 | … | 168.26 | 174.99 | |
AFM1 | … | 170.84 | 170.84 | |
AFM2 | … | 174.26 | 169.77 | |
Cr3C2O2 | FM | … | 176.30 | 176.30 |
FIM1 | … | 175.86 | 175.86 | |
FIM2 | … | 176.93 | 175.38 | |
AFM1 | … | 174.73 | 174.73 | |
AFM2 | … | 176.00 | 176.58 | |
Cr3C2F2 | FM | 0.53 | 177.42 | 177.42 |
FIM1 | … | 178.29 | 178.29 | |
FIM2 | 1.46 | 174.66 | 179.05 | |
AFM1 | … | 176.91 | 177.34 | |
AFM2 | 0.18 | 177.87 | 176.78 | |
Cr3C2(OH)2 | FM | 0.25 | 178.01 | 177.73 |
FIM1 | … | 179.07 | 178.86 | |
FIM2 | 0.37 | 174.67 | 179.67 | |
AFM1 | … | 177.77 | 177.50 | |
AFM2 | 0.07 | 177.94 | 177.66 |
Ground State | Nearest | Next-Nearest | Next-Next-Nearest | ||||||
---|---|---|---|---|---|---|---|---|---|
Upper Layer | Middle Layer | Bottom Layer | Upper Layer | Middle Layer | Bottom Layer | Upper Layer | Middle Layer | Bottom Layer | |
FM | 6/0 | 6/0 | 6/0 | 3/0 | 6/0 | 3/0 | 3/0 | 6/0 | 3/0 |
FIM1 | 6/0 | 6/0 | 6/0 | 0/3 | 0/6 | 0/3 | 0/3 | 0/6 | 0/3 |
FIM2 | 6/0 | 6/0 | 6/0 | 3/0 | 3/3 | 0/3 | 3/0 | 3/3 | 0/3 |
AFM1 | 2/4 | 2/4 | 2/4 | 1/2 | 3/3 | 2/1 | 3/0 | 3/3 | 0/3 |
AFM2 | 2/4 | 2/4 | 2/4 | 2/1 | 4/2 | 2/1 | 0/3 | 0/6 | 0/3 |
Ground State | M (µB) | Lattice Parameters (Å) | MAE (μeV) | J1 (meV) | J2 (meV) | J3 (meV) | TC (K) | |
---|---|---|---|---|---|---|---|---|
Cr3C2 | FIM1 | 13.71 | 3.14 | 22.01 | 30.7 | 2.8 | −4.4 | 461 |
Cr3C2O2 | FM | 25.59 | 2.95 | 54.70 | 10.3 | 11.1 | −1.8 | 270 |
Cr3C2F2 | FIM2 | 8.47 | 3.06 | −33.57 | 14.2 | −14.2 | 6.3 | 337 |
Cr3C2(OH)2 | FIM2 | 8.43 | 3.07 | −83.26 | 12.4 | 2.1 | −10 | 272 |
Material Properties | Optimal Device Architecture | Device Advantages | |
---|---|---|---|
Cr3C2 | Perpendicular magnetic anisotropy (MAE = +22.01 μ eV) Half-metal High Curie temperature (TC = 461 K) | Spin Valve | Magnetic anisotropy: simplified control of magnetic moment direction; High spin polarization: realize efficient spin current transmission; High operating temperature: TC of 461 K ensures the stability of the device in high-temperature environments |
Cr3C2O2 | Strong perpendicular magnetic anisotropy (MAE = +54.7 μ eV) Metallic High Curie temperature (TC = 270 K) | MRAM storage cell | High vertical anisotropy: improves storage density and thermal stability; Metallic: low contact resistance; TC Approaching room temperature: Suitable for embedded storage |
Cr3C2F2 | In-plane magnetic anisotropy (MAE = −33.57 μ eV) Narrow bandgap semiconductor TC = 337 K | Spin wave guide/Spin logic device Spin-FET channel | In-plane anisotropy: supports low-loss spin wave propagation; Semiconductor properties: gate voltage regulation of spin transport; Higher TC: room temperature operation |
Cr3C2(OH)2 | Strong in-plane magnetic anisotropy (MAE = −83.26 μ eV) Narrow bandgap Flexible interface compatibility | Flexible Spin Sensor Low-Power Spin-FET | High in-plane anisotropy: high magnetic resistance response sensitivity; Narrow bandgap: low driving voltage; OH terminal hydrophilicity: adaptation to flexible substrates |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, Z.; Suo, Y.; Zhang, S.; Yang, J. Spin-Polarized DFT+U Study of Surface-Functionalized Cr3C2 MXenes: Tunable Electronic and Magnetic Behavior for Spintronics. Materials 2025, 18, 3709. https://doi.org/10.3390/ma18153709
Tong Z, Suo Y, Zhang S, Yang J. Spin-Polarized DFT+U Study of Surface-Functionalized Cr3C2 MXenes: Tunable Electronic and Magnetic Behavior for Spintronics. Materials. 2025; 18(15):3709. https://doi.org/10.3390/ma18153709
Chicago/Turabian StyleTong, Zixiang, Yange Suo, Shaozheng Zhang, and Jianhui Yang. 2025. "Spin-Polarized DFT+U Study of Surface-Functionalized Cr3C2 MXenes: Tunable Electronic and Magnetic Behavior for Spintronics" Materials 18, no. 15: 3709. https://doi.org/10.3390/ma18153709
APA StyleTong, Z., Suo, Y., Zhang, S., & Yang, J. (2025). Spin-Polarized DFT+U Study of Surface-Functionalized Cr3C2 MXenes: Tunable Electronic and Magnetic Behavior for Spintronics. Materials, 18(15), 3709. https://doi.org/10.3390/ma18153709