Development and Simulation-Based Validation of Biodegradable 3D-Printed Cog Threads for Pelvic Organ Prolapse Repair
Abstract
1. Introduction
2. Materials and Methods
2.1. Commercial Cog Threads
2.2. Cog Thread Cutting Tool
2.3. PCL Threads and Printing Machine
2.4. Uniaxial Tensile Testing of Cog Threads
2.5. Computational Models
2.5.1. Cog Thread Computational Model
2.5.2. Pelvic Cavity Computational Model
2.5.3. Ball Burst Test
3. Results
3.1. Uniaxial Tensile Testing of Cog Threads
3.2. Numerical Simulation of Anterior Vaginal Wall
3.3. Bull Burst Test
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CAD | Computer-Aided Design |
CLs | Cardinal ligaments |
FDA | Food and Drug Administration |
LAMs | Levator ani muscles |
MEW | Melt Electrowriting |
MRCs | Mesh-related complications |
PCL | Polycaprolactone |
PDO | Polydioxanone |
PLA | Polylactic acid |
PLLA | Poly-L-lactic acid |
POP | Pelvic organ prolapse |
USLs | Uterosacral ligaments |
Strain | |
Stress |
References
- Mudalige, T.; Pathiraja, V.; Delanerolle, G.; Cavalini, H.; Wu, S.; Taylor, J.; Kurmi, O.; Elliot, K.; Hinchliff, S.; Atkinson, C.; et al. Systematic review and meta-analysis of the pelvic organ prolapse and vaginal prolapse among the global population. BJUI Compass 2025, 6, e464. [Google Scholar] [CrossRef]
- Sanchez, E.J.; Chen, J.; Zapata, I.; Brooks, B.D. Pelvic organ prolapse (POP) symptom progression and treatment satisfaction from the patients’ perspective. BMC Women’s Health 2025, 25, 173. [Google Scholar] [CrossRef]
- Zumrutbas, A.E. Understanding Pelvic Organ Prolapse: A Comprehensive Review of Etiology, Epidemiology, Comorbidities, and Evaluation. SociéTé Int. d’Urologie J. 2025, 6, 6. [Google Scholar] [CrossRef]
- Molina, R.A.P.; Martínez, A.H.; Vázquez, S.M.; Galiano, J.M.M. Influence of pelvic floor disorders on quality of life in women. Front. Public Health 2023, 11, 1180907. [Google Scholar] [CrossRef]
- Kalkan, U.; Yoldemir, T.; Ozyurek, E.S.; Daniilidis, A. Native tissue repair versus mesh repair in pelvic organ prolapse surgery. Climacteric 2017, 20, 510–517. [Google Scholar] [CrossRef]
- Goh, Y.M.; Lim, S.H.; Chua, H.L.; Han, H.C.; Lee, J.C. Long-Term Outcomes of Restorelle® Direct Fix Anterior Mesh in the Treatment of Pelvic Organ Prolapse. Cureus 2024, 16, e63513. [Google Scholar] [CrossRef] [PubMed]
- Food, U.; Administration, D. FDA Orders Mesh Manufacturers to Stop Selling Devices for Transvaginal Repair of Pelvic Organ Prolapse. 2021. Available online: https://www.fda.gov/medical-devices/implants-and-prosthetics/urogynecologic-surgical-mesh-implants (accessed on 10 January 2025).
- Wang, B.; Chen, Y.; Zhu, X.; Wang, T.; Li, M.; Huang, Y.; Xue, L.; Zhu, Q.; Gao, X.; Wu, M. Global burden and trends of pelvic organ prolapse associated with aging women: An observational trend study from 1990 to 2019. Front. Public Health 2022, 10, 975829. [Google Scholar] [CrossRef]
- Myung, Y.; Jung, C. Mini-midface Lift Using Polydioxanone Cog Threads. Plast. Reconstr. Surg.-Glob. Open 2020, 8, e2920. [Google Scholar] [CrossRef]
- Greenberg, J.A.; Goldman, R.H. Barbed suture: A review of the technology and clinical uses in obstetrics and gynecology. Rev. Obstet. Gynecol. 2013, 6, 107–115. [Google Scholar] [PubMed]
- Soares, C.; Martins, P.; Silva, E.; Hympanova, L.; Rynkevic, R. Cog Threads for Transvaginal Prolapse Repair: Ex-Vivo Studies of a Novel Concept. Surgeries 2022, 3, 101–110. [Google Scholar] [CrossRef]
- Hong, G.W.; Kim, S.B.; Park, S.Y.; Wan, J.; Yi, K.H. Thread Lifting Materials: A Review of Its Difference in Terms of Technical and Mechanical Perspective. Clin. Cosmet. Investig. Dermatol. 2024, 17, 999–1006. [Google Scholar] [CrossRef]
- Ferreira, N.M.; Silva, M.E.T.; Parente, M.P.L.; Pinheiro, F.; Mascarenhas, T.; Fernandes, A.A. Evaluation of mechanical biocompatibility of cog threads for prolapse repair. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2025, 239, 155–164. [Google Scholar] [CrossRef]
- Pinheiro, F.; Fernandes, A.A.; Maurício, A.C.; Alves, N.; Silva, E. In vivo Assessment of PCL Cog Thread Reinforcement using an Intravaginal Force Measurement Device. Preprints 2025. [Google Scholar] [CrossRef]
- 3D4MAKERS. Facilan PCL 100 Filament. 2025. Available online: https://www.3d4makers.com/products/facilan-pcl-100-filament?srsltid=AfmBOoqh2GF13LjmLSYLYZNlzXbn5gFqD9eooc1owKQlcZtOmkDYcOMB (accessed on 4 July 2025).
- Silva, M.E.T.; Bessa, J.N.M.; Rynkevic, R.; Parente, M.P.L.; da Quinta Costa Mascarenhas Saraiva, M.T.; Jorge, R.M.N.; Fernandes, A.A. Simulation of vaginal uterosacral ligament suspension damage, mimicking a mesh-augmented apical prolapse repair. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2022, 236, 573–582. [Google Scholar] [CrossRef] [PubMed]
- Bergström, J. Elasticity/Hyperelasticity; Elsevier: Amsterdam, The Netherlands, 2015; Chapter 5; pp. 209–307. [Google Scholar] [CrossRef]
- Belyadi, H.; Fathi, E.; Belyadi, F. Rock Mechanical Properties and In Situ Stresses; Elsevier: Amsterdam, The Netherlands, 2019; Chapter 13; pp. 215–231. [Google Scholar] [CrossRef]
- Brandão, S.; Parente, M.; Mascarenhas, T.; da Silva, A.R.; Ramos, I.; Jorge, R.N. Biomechanical study on the bladder neck and urethral positions: Simulation of impairment of the pelvic ligaments. J. Biomech. 2015, 48, 217–223. [Google Scholar] [CrossRef]
- Silva, M.E.; Bessa, J.N.; Parente, M.P.; Mascarenhas, T.; Jorge, R.M.N.; Fernandes, A.A. Effect of mesh anchoring technique in uterine prolapse repair surgery: A finite element analysis. J. Biomech. 2021, 127, 110649. [Google Scholar] [CrossRef]
- Silva, M.E.T.; Pinheiro, F.A.T.; Ferreira, N.M.; Brandão, F.S.Q.S.; Martins, P.A.L.S.; Parente, M.P.L.; e Costa Mascarenhas Saraiva, M.T.Q.; Fernandes, A.A.; Jorge, R.M.N. An estimation of the biomechanical properties of the continent and incontinent woman bladder via inverse finite element analysis. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2024, 238, 598–607. [Google Scholar] [CrossRef] [PubMed]
- Howard, D.; Miller, J.M.; Delancey, J.O.L.; Ashton-Miller, J.A. Differential Effects of Cough, Valsalva, and Continence Status on Vesical Neck Movement. Obstet. Gynecol. 2000, 95, 535–540. [Google Scholar] [PubMed]
- Islam, S.; Zhalmuratova, D.; Chung, H.J.; Kim, C.I. A model for hyperelastic materials reinforced with fibers resistance to extension and flexure. Int. J. Solids Struct. 2020, 193–194, 418–433. [Google Scholar] [CrossRef]
- Stansfield, E.; Kumar, K.; Mitteroecker, P.; Grunstra, N.D.S. Biomechanical trade-offs in the pelvic floor constrain the evolution of the human birth canal. Proc. Natl. Acad. Sci. USA 2021, 118, e2022159118. [Google Scholar] [CrossRef]
- Rosen, D.P.; Jiang, J. A comparison of hyperelastic constitutive models applicable to shear wave elastography (SWE) data in tissue-mimicking materials. Phys. Med. Biol. 2019, 64, 055014. [Google Scholar] [CrossRef] [PubMed]
- Martins, P.A.L.S.; Jorge, R.M.N.; Ferreira, A.J.M. A Comparative Study of Several Material Models for Prediction of Hyperelastic Properties: Application to Silicone-Rubber and Soft Tissues. Strain 2006, 42, 135–147. [Google Scholar] [CrossRef]
Printing Bed Voltage (kV) | Nozzle-to-Bed Distance (mm) | Nozzle Diameter (µm) | Extrusion Speed (mm/min) |
---|---|---|---|
4.2 | 1 | 600 | 1000 |
Structures | Model | ||
---|---|---|---|
Vagina and Uterus | Ogden (N = 3) | ||
Antero-Posterior Displacement of the Anterior Vaginal Wall (mm) | |||||
---|---|---|---|---|---|
Healthy | Vaginal Canal with Damage | ||||
Without Cog | Cog Thread 90° | Cog Thread 75° | Cog Thread 60° | Cog Thread 45° | |
7.489 | 7.857 | 7.078 | 7.072 | 7.073 | 7.071 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, A.T.; Ferreira, N.M.; Bastos, H.L.; Vaz, M.F.; Martins, J.P.; Pinheiro, F.; Fernandes, A.A.; Silva, E. Development and Simulation-Based Validation of Biodegradable 3D-Printed Cog Threads for Pelvic Organ Prolapse Repair. Materials 2025, 18, 3638. https://doi.org/10.3390/ma18153638
Silva AT, Ferreira NM, Bastos HL, Vaz MF, Martins JP, Pinheiro F, Fernandes AA, Silva E. Development and Simulation-Based Validation of Biodegradable 3D-Printed Cog Threads for Pelvic Organ Prolapse Repair. Materials. 2025; 18(15):3638. https://doi.org/10.3390/ma18153638
Chicago/Turabian StyleSilva, Ana Telma, Nuno Miguel Ferreira, Henrique Leon Bastos, Maria Francisca Vaz, Joana Pinheiro Martins, Fábio Pinheiro, António Augusto Fernandes, and Elisabete Silva. 2025. "Development and Simulation-Based Validation of Biodegradable 3D-Printed Cog Threads for Pelvic Organ Prolapse Repair" Materials 18, no. 15: 3638. https://doi.org/10.3390/ma18153638
APA StyleSilva, A. T., Ferreira, N. M., Bastos, H. L., Vaz, M. F., Martins, J. P., Pinheiro, F., Fernandes, A. A., & Silva, E. (2025). Development and Simulation-Based Validation of Biodegradable 3D-Printed Cog Threads for Pelvic Organ Prolapse Repair. Materials, 18(15), 3638. https://doi.org/10.3390/ma18153638