Impact of Co-Substrates on the Production of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Burkholderia thailandensis E264
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strain and Fermentation Conditions
2.2. Determination of Dry Biomass
2.3. Analysis of Substrate Consumption
PHA Quantification
2.4. PHA Characterization
2.4.1. PHA Recovery
2.4.2. Thermal Analysis
2.4.3. Mechanical Testing
PHA Film Formation
Tensile Test
2.4.4. Fourier Transform Infrared Spectroscopy with Attenuated Total Reflectance (FTIR-ATR) Analysis
2.4.5. X-Ray Diffraction Analysis
2.4.6. Nuclear Magnetic Resonance (NMR) Analysis
3. Results and Discussion
3.1. BtE264 Growth and Substrate–Co-Substrate Consumption in BMP, BMP + LA, BMP + VA, and BMP + SPr
3.2. Production of PHBV by BtE264 in BPM, BPM + LA, BPM + VA, and BPM + SPr Culture Media
Bacterial Strain | Substrate | Time (h) | Cell Dry Weight (g·L−1) | PHA Production (g·L−1) | 3HV (mol %) | PHA Volumetric Productivity (g·L−1∙h−1) | Product Yield YP/X (gP∙g−1X) | Reference |
---|---|---|---|---|---|---|---|---|
BtE264 | Glycerol | 336 | 4.85 ± 0.15 | 2.51 ± 0.18 | N/A | 0.007 ± 0.0006 | 0.52 ± 0.04 | [45] |
Ralstonia eutropha | Glucose + LA | 72 | 4.39 ± 0.44 | 3.18 ± 0.25 | 21 | 0.04 ± 0.003 | 0.72 | [47] |
Burkholderia Sacchari | Xylose + LA | 72 | 3.3 | 1.5 | 43 | 0.02 | 0.45 | [25] |
Azotobacter vinelandii | Sucrose + AV | 64 | 4.5 ± 0.8 | 2.8 ± 0.7 | 27 | 0.04 ± 0.01 | 0.61 ± 0.05 | [52] |
Ralstonia eutropha | SPr | 96 | 0.87 ± 0.03 | 0.55 ± 0.05 | 92 | 0.005 ± 0.005 | 0.63 ± 0.07 | [22] |
BtE264 | Glycerol | 144 | 8.4 ± 0.16 A | 4.22 ± 0.24 A | N/A | 0.03 ± 0.002 A | 0.53 ± 0.04 A | This study * |
BtE264 | Glycerol + LA | 120 | 8.4 ± 0.04 A | 3.91 ± 0.37 A | 22 | 0.03 ± 0.003 A | 0.47 ± 0.03 A | This study * |
BtE2 64 | Glycerol + VA | 72 | 5.3 ± 0.24 B | 1.53 ± 0.10 B | 41 | 0.02 ± 0.001 B | 0.33 ± 0.01 B | This study * |
BtE264 | Glycerol + SPr | 48 | 1.0 ± 0.002 C | 0.13 ± 0.04 C | 29 | 0.003 ± 0.0008 C | 0.16 ± 0.05 C | This study * |
3.3. Characterization of Thermal Properties by DSC and TGA
DSC | TGA | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Microorganism | PHA | Tg (°C) | Tm (°C) | ∆Hm (J·g−1) | Tc (°C) | ∆Hc (J·g−1) | Xc % | Td (°C) | Weight Lost (%) | Reference |
BtE264 | PHB | −1.5 | 79.8 | 166.4 | 48.5 | 42.4 | 55 | 279 | N/A | [59] |
BtE264 | PHB | −7.9 | 170 | N/A | N/A | N/A | N/A | 294 | N/A | [45] |
Goodfellow | PHB | N/A | 163–169 | 76.9 | 111.7 | 62.9 | 52 | N/A | N/A | [56] |
Methylocystis sp. | PHBV (25% mol 3HV) | −4.8 | 163.9 | 41.9 | 67.6 | N/A | 38 | N/A | N/A | [55] |
Burkholderia sacchari | PHBV (88% mol 3HV) | −14 | 99.7 | 43.7 | 52.4 | -42 | 40 | N/A | N/A | [25] |
Azotobacter vinelandii OP | PHBV (33% mol 3HV) | 0.64 | 166 | 68.46 | 52.8 | 70.6 | 63 | 295 | 96.07 | [58] |
BtE264 | PHB | N/A | 157–168 | 46–38 | 94 | 59 | 57 | 285 | 95.57 | This study |
Sigma-Aldrich | PHBV-STD (8% mol 3HV) | N/A | 148–156 | 69–7 | 102 | 57 | 69 | 269 | 97.86 | This study |
BtE264 | PHBV (24% mol 3HV) | −7 | 129–141 | 13–10 | 85 | 24 | 21 | 276 | 97.94 | This study |
3.4. Stress–Strain Diagram of PHB, PHBV-STD, and PHBV Films
3.5. Analysis of Fourier Transform Infrared Spectroscopy with Attenuated Total Reflectance (FTIR-ATR)
3.6. Diffraction Analysis in PHB, PHBV-STD, and PHBV Samples
3.7. Nuclear Magnetic Resonance (1H NMR) Analysis of PHB, PHBV-STD, and PHBV Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BtE264 | Burkholderia thailandensis E264 |
% Xc | percentage of crystallization |
∆Hc | crystallization enthalpy |
∆Hm | melting enthalpy |
3HB | 3-hydroxy butyrate |
3HV | 3-hydroxy valerate |
ATCC | American Type Culture Collection |
BPM | base production medium |
BPM + LA | base production medium + levulinic acid |
BPM + SPr | base production medium + sodium propionate |
BPM + VA | base production medium + valeric acid |
DSC | differential scanning calorimeter |
EF | Erlenmeyer flask |
FTIR-ATR | Fourier Transform Infrared Spectroscopy with Attenuated Total Reflectance |
GC | gas chromatography |
HPLC | high-performance liquid chromatography |
LA | levulinic acid |
NMR | Nuclear Magnetic Resonance |
PDA | photodiode array detector |
PHAs | polyhydroxyalkanoates |
PHB | polyhydroxybutyrate |
PHBV | poly (3-hydroxybutyrate-co-3-hydroxyvalerate) |
PHBV-STD | poly (3-hydroxybutyrate-co-3-hydroxyvalerate)-Standard |
RID | refractive index detector |
SPr | sodium propionate |
Tc | crystallization temperature |
Td | degradation temperature |
Tg | glass transition temperature |
TGA | thermogravimetric analyzer |
Tm | melting temperature |
VA | valeric acid |
XRD | X-ray diffraction |
ΔH0m | calculated melting enthalpy |
References
- Goswami, S.; Samanta, P.; Adhikari, M.D. Micro- and Nano-plastics, the Globally Emerging Environmental and Public Health Crisis. In Micro-Nano Plastics Exposure, Environmental Degradation and Public Health Crisis: Perspectives and Concerns for Sustainable Development; Goswami, S., Choudhury, M., Samanta, P., Eds.; Springer Nature: Singapore, 2025; pp. 1–15. [Google Scholar]
- Idris, S.N.; Amelia, T.S.M.; Bhubalan, K.; Lazim, A.M.M.; Zakwan, N.A.M.A.; Jamaluddin, M.I.; Santhanam, R.; Amirul, A.-A.A.; Vigneswari, S.; Ramakrishna, S. The degradation of single-use plastics and commercially viable bioplastics in the environment: A review. Environ. Res. 2023, 231, 115988. [Google Scholar] [CrossRef]
- Qiu, G.; Wang, Q.; Wang, T.; Zhang, S.; Song, N.; Yang, X.; Zeng, Y.; Sun, Z.; Wu, G.; Yu, H. Microplastic risk assessment and toxicity in plants: A review. Environ. Chem. Lett. 2024, 22, 209–226. [Google Scholar] [CrossRef]
- Wu, X.; Hou, H.; Liu, Y.; Yin, S.; Bian, S.; Liang, S.; Wan, C.; Yuan, S.; Xiao, K.; Liu, B.; et al. Microplastics affect rice (Oryza sativa L.) quality by interfering metabolite accumulation and energy expenditure pathways: A field study. J. Hazard. Mater. 2022, 422, 126834. [Google Scholar] [CrossRef]
- Wang, M.; Wu, Y.; Li, G.; Xiong, Y.; Zhang, Y.; Zhang, M. The hidden threat: Unraveling the impact of microplastics on reproductive health. Sci. Total Environ. 2024, 935, 173177. [Google Scholar] [CrossRef]
- Liu, T.; Hou, B.; Zhang, Y.; Wang, Z. Determination of biological and molecular attributes related to polystyrene microplastic-induced reproductive toxicity and Its reversibility in male mice. Int. J. Environ. Res. Public Health 2022, 19, 14093. [Google Scholar] [CrossRef]
- Dube, E.; Okuthe, G.E. Plastics and Micro/Nano-Plastics (MNPs) in the Environment: Occurrence, Impact, and Toxicity. Int. J. Environ. Res. Public Health 2023, 20, 6667. [Google Scholar] [CrossRef]
- Kumar, K.; Umapathi, R.; Ghoreishian, S.M.; Tiwari, J.N.; Hwang, S.K.; Huh, Y.S.; Venkatesu, P.; Shetti, N.P.; Aminabhavi, T.M. Microplastics and biobased polymers to combat plastics waste. Chemosphere 2023, 341, 140000. [Google Scholar] [CrossRef]
- Yeo, J.C.C.; Muiruri, J.K.; Fei, X.; Wang, T.; Zhang, X.; Xiao, Y.; Thitsartarn, W.; Tanoto, H.; He, C.; Li, Z. Innovative biomaterials for food packaging: Unlocking the potential of polyhydroxyalkanoate (PHA) biopolymers. Biomater. Adv. 2024, 163, 213929. [Google Scholar] [CrossRef]
- Saravanan, K.; Umesh, M.; Kathirvel, P. Microbial polyhydroxyalkanoates (PHAs): A review on biosynthesis, Properties, fermentation strategies and its prospective applications for sustainable future. J. Polym. Environ. 2022, 30, 4903–4935. [Google Scholar] [CrossRef]
- Abbasi, M.; Pokhrel, D.; Coats, E.R.; Guho, N.M.; McDonald, A.G. Effect of 3-hydroxyvalerate content on thermal, mechanical, and rheological properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) biopolymers produced from fermented dairy manure. Polymers 2022, 14, 4140. [Google Scholar] [CrossRef]
- Alfano, S.; Doineau, E.; Perdrier, C.; Preziosi-Belloy, L.; Gontard, N.; Martinelli, A.; Grousseau, E.; Angellier-Coussy, H. Influence of the 3-Hydroxyvalerate Content on the Processability, Nucleating and Blending Ability of Poly(3-Hydroxybutyrate-co-3-hydroxyvalerate)-Based Materials. ACS Omega 2024, 9, 29360–29371. [Google Scholar] [CrossRef]
- Apicella, A.; Scarfato, P.; Incarnato, L. Study on 3D printability of PLA/PBAT/PHBV biodegradable blends for packaging applications. Polym. Test. 2025, 145, 108748. [Google Scholar] [CrossRef]
- Dalgic, A.D.; Koman, E.; Karatas, A.; Tezcaner, A.; Keskin, D. Natural origin bilayer pullulan-PHBV scaffold for wound healing applications. Biomater. Adv. 2022, 134, 112554. [Google Scholar] [CrossRef]
- de Carvalho, L.T.; da Silva, M.B.; Vieira, T.A.; Maia, L.S.; de Macedo, E.F.; Tada, D.B.; Rosa, D.S.; Mulinari, D.R.; Medeiros, S.F. Unveiling the potential of pullulan in enhancing ketoprofen release from PHBV filaments. Int. J. Biol. Macromol. 2025, 294, 139421. [Google Scholar] [CrossRef]
- Jamal, M.; Sharif, F.; Shozab Mehdi, M.; Fakhar-E-Alam, M.; Asif, M.; Mustafa, W.; Bashir, M.; Rafiq, S.; Bustam, M.A.; Saif Ur, R.; et al. Development of Biocompatible Electrospun PHBV-PLLA Polymeric Bilayer Composite Membranes for Skin Tissue Engineering Applications. Molecules 2024, 29, 2049. [Google Scholar] [CrossRef]
- Jo, S.Y.; Lim, S.H.; Lee, J.Y.; Son, J.; Choi, J.-I.; Park, S.J. Microbial production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate), from lab to the shelf: A review. Int. J. Biol. Macromol. 2024, 274, 133157. [Google Scholar] [CrossRef]
- Policastro, G.; Panico, A.; Fabbricino, M. Improving biological production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) co-polymer: A critical review. Rev. Environ. Sci. Bio/Technol. 2021, 20, 479–513. [Google Scholar] [CrossRef]
- Rahimalimamaghani, A.; Pacheco Tanaka, D.A.; Llosa Tanco, M.A.; Gallucci, F. Tailoring the properties of carbon molecular sieves membranes for the separation of propionic acid from aqueous solutions. J. Membr. Sci. 2025, 713, 123316. [Google Scholar] [CrossRef]
- Jamal, G.; Parveen, R.; Khan, M.A.; Srivastava, V.; Mustafa, S.; Ahmad, S.; Husain, S.A. A Review on Valeriana wallichii: Chemical Composition and Pharmacological Research. Curr. Tradit. Med. 2023, 9, 55–71. [Google Scholar] [CrossRef]
- Bazoti, S.F.; Bonatto, C.; Scapini, T.; Camargo, A.F.; Treichel, H.; De Oliveira, D. Recent advances, perspectives and challenges on levulinic acid production from residual biomass. Biofuels Bioprod. Biorefining 2023, 17, 1068–1084. [Google Scholar] [CrossRef]
- Bhatia, S.K.; Gurav, R.; Choi, T.-R.; Jung, H.-R.; Yang, S.-Y.; Song, H.-S.; Jeon, J.-M.; Kim, J.-S.; Lee, Y.-K.; Yang, Y.-H. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) production from engineered Ralstonia eutropha using synthetic and anaerobically digested food waste derived volatile fatty acids. Int. J. Biol. Macromol. 2019, 133, 1–10. [Google Scholar] [CrossRef]
- Kökpınar, Ö.; Altun, M. Evaluation of different nutrient limitation strategies for the efficient production of poly(hydroxybutyrate-co-hydroxyvalerate) from waste frying oil and propionic acid in high cell density fermentations of Cupriavidus necator H16. Prep. Biochem. Biotechnol. 2023, 53, 532–541. [Google Scholar] [CrossRef]
- Aljuraifani, A.A.; Berekaa, M.M.; Ghazwani, A.A. Bacterial biopolymer (polyhydroxyalkanoate) production from low-cost sustainable sources. MicrobiologyOpen 2019, 8, e00755. [Google Scholar] [CrossRef] [PubMed]
- Ashby, R.D.; Solaiman, D.K.Y.; Nuñez, A.; Strahan, G.D.; Johnston, D.B. Burkholderia sacchari DSM 17165: A source of compositionally-tunable block-copolymeric short-chain poly(hydroxyalkanoates) from xylose and levulinic acid. Bioresour. Technol. 2018, 253, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Mendonça, T.T.; Gomez, J.G.C.; Buffoni, E.; Sánchez Rodriguez, R.J.; Schripsema, J.; Lopes, M.S.G.; Silva, L.F. Exploring the potential of Burkholderia sacchari to produce polyhydroxyalkanoates. J. Appl. Microbiol. 2014, 116, 815–829. [Google Scholar] [CrossRef] [PubMed]
- Tao, F.; Song, H.; Chou, L. Catalytic conversion of cellulose to chemicals in ionic liquid. Carbohydr. Res. 2011, 346, 58–63. [Google Scholar] [CrossRef]
- Juengert, J.R.; Bresan, S.; Jendrossek, D. Determination of polyhydroxybutyrate (PHB) content in Ralstonia eutropha using gas chromatography and Nile red staining. Bio-Protocol 2018, 8, e2748. [Google Scholar] [CrossRef]
- Cha, D.; Ha, H.S.; Lee, S.K. Metabolic engineering of Pseudomonas putida for the production of various types of short-chain-length polyhydroxyalkanoates from levulinic acid. Bioresour. Technol. 2020, 309, 123332. [Google Scholar] [CrossRef]
- Zhang, Y.-Z.; Liu, G.-M.; Weng, W.-Q.; Ding, J.-Y.; Liu, S.-J. Engineering of Ralstonia eutropha for the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose. J. Biotechnol. 2015, 195, 82–88. [Google Scholar] [CrossRef]
- Dhania, S.; Bernela, M.; Rani, R.; Parsad, M.; Kumar, R.; Thakur, R. Polyhydroxybutyrate (PHB) in nanoparticulate form improves physical and biological performance of scaffolds. Int. J. Biol. Macromol. 2023, 236, 123875. [Google Scholar] [CrossRef]
- Zhao, H.; Yu, S.; Zhang, Y.; Zhao, G. Mechanical properties and structure of injection moldedpoly(hydroxybutyrate-co-hydroxyvalerate)/poly(butyleneadipate-co-terephthalate) (PHBV/PBAT) blends. J. Appl. Polym. Sci. 2023, 140, e53880. [Google Scholar] [CrossRef]
- Esmizadeh, E.; Gupta, A.; Asrat, S.; Mekonnen, T.H. Crystallization and performance evolution of PHBV nanocomposites through annealing: The role of surface modification of CNCs. Polymer 2024, 308, 127352. [Google Scholar] [CrossRef]
- Gao, Y.; Kong, L.; Zhang, L.; Gong, Y.; Chen, G.; Zhao, N.; Zhang, X. Improvement of mechanical properties of poly(dl-lactide) films by blending of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Eur. Polym. J. 2006, 42, 764–775. [Google Scholar] [CrossRef]
- ASTM-D882-10; Standard Test Method for Tensile Properties of Thin Plastic Sheeting. ASTM International: West Conshohocken, PA, USA, 2010.
- Díaz-Montes, E.; Yáñez-Fernández, J.; Castro-Muñoz, R. Dextran/chitosan blend film fabrication for bio-packaging of mushrooms (Agaricus bisporus). J. Food Process. Preserv. 2021, 45, e15489. [Google Scholar] [CrossRef]
- Saratale, G.D.; Oh, M.-K. Characterization of poly-3-hydroxybutyrate (PHB) produced from Ralstonia eutropha using an alkali-pretreated biomass feedstock. Int. J. Biol. Macromol. 2015, 80, 627–635. [Google Scholar] [CrossRef] [PubMed]
- El-Taweel, S.H.; Al-Hamdi, A. Starch as a successful biodegradable nucleating agent in biodegradable PHBV/PHO blends. J. Therm. Anal. Calorim. 2024, 149, 1351–1364. [Google Scholar] [CrossRef]
- Mandragutti, T.; Jarso, T.S.; Godi, S.; Begum, S.S.; Beulah, K. Physicochemical characterization of polyhydroxybutyrate (PHB) produced by the rare halophile Brachybacterium paraconglomeratum MTCC 13074. Microb. Cell Factories 2024, 23, 59. [Google Scholar] [CrossRef] [PubMed]
- Kachrimanidou, V.; Kopsahelis, N.; Papanikolaou, S.; Kookos, I.K.; De Bruyn, M.; Clark, J.H.; Koutinas, A.A. Sunflower-based biorefinery: Poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production from crude glycerol, sunflower meal and levulinic acid. Bioresour. Technol. 2014, 172, 121–130. [Google Scholar] [CrossRef]
- Loo, C.-Y.; Sudesh, K. Biosynthesis and native granule characteristics of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in Delftia acidovorans. Int. J. Biol. Macromol. 2007, 40, 466–471. [Google Scholar] [CrossRef]
- Yin, J.; Yang, J.; Yu, X.; Chen, T.; He, S. Enhanced poly(3-hydroxybutyrateco-3-hydroxyvalerate) production from high-concentration propionate by a novel halophile Halomonas sp. YJ01: Detoxification of the 2-methylcitrate cycle. Bioresour. Technol. 2023, 388, 129738. [Google Scholar] [CrossRef]
- Yang, J.; Wang, J.; Yu, X.; Chen, T.; Yin, J.; Tang, X. Enhanced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production from volatile fatty acids by Halomonas sp. YJ01 with 2-methylcitrate cycle. J. Environ. Manag. 2025, 373, 123902. [Google Scholar] [CrossRef]
- Montiel-Corona, V.; Puyol, D.; Buitrón, G. Light–dark cycles improve the 3HV molar fraction in PHBV produced by photoheterotrophic bacteria from odd-chain fatty acids and cheese whey. J. Chem. Technol. Biotechnol. 2025, 100, 369–378. [Google Scholar] [CrossRef]
- Blunt, W.; Blanchard, C.; Doyle, C.; Vasquez, V.; Ye, M.; Adewale, P.; Liu, Y.; Morley, K.; Monteil-Rivera, F. The potential of Burkholderia thailandensis E264 for co-valorization of C5 and C6 sugars into multiple value-added bio-products. Bioresour. Technol. 2023, 387, 129595. [Google Scholar] [CrossRef] [PubMed]
- Priya, A.; Hathi, Z.; Haque, M.A.; Kumar, S.; Kumar, A.; Singh, E.; Lin, C.S.K. Effect of levulinic acid on production of polyhydroxyalkanoates from food waste by Haloferax mediterranei. Environ. Res. 2022, 214, 114001. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, R.; Cai, J.; Liu, Z.; Zheng, Y.; Wang, H.; Li, Q.; He, N. Biosynthesis and thermal properties of PHBV produced from levulinic acid by Ralstonia eutropha. PLoS ONE 2013, 8, e60318. [Google Scholar] [CrossRef] [PubMed]
- Xue, M.; Huang, R.; Liu, W.; Cheng, J.; Liu, Y.; Zhang, J.; Wang, L.; Liu, D.; Jiang, H. Identification and characterization of a potential strain for the production of polyhydroxyalkanoate from glycerol. Front. Microbiol. 2024, 15, 1413120. [Google Scholar] [CrossRef]
- Aramvash, A.; Hajizadeh-Turchi, S.; Moazzeni-zavareh, F.; Gholami-Banadkuki, N.; Malek-sabet, N.; Akbari-Shahabi, Z. Effective enhancement of hydroxyvalerate content of PHBV in Cupriavidus necator and its characterization. Int. J. Biol. Macromol. 2016, 87, 397–404. [Google Scholar] [CrossRef]
- Amabile, C.; Abate, T.; Muñoz, R.; Chianese, S.; Musmarra, D. Production of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from methane and volatile fatty acids: Properties, metabolic routes and current trend. Sci. Total Environ. 2024, 927, 172138. [Google Scholar] [CrossRef]
- Urbina, L.; Rovira-Cal, E.; Nafarrate, I.; Urkiaga, A.; Berganza, J.; Aymerich, E.; Suárez, M.J. Acidogenic fermentation of dairy by-products for the utilization of volatile fatty acids IN PHBV production by Haloferax mediterranei. Sustain. Food Technol. 2025, 3, 300–310. [Google Scholar] [CrossRef]
- Urtuvia, V.; Maturana, N.; Peña, C.; Díaz-Barrera, A. Accumulation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Azotobacter vinelandii with different 3HV fraction in shake flasks and bioreactor. Bioprocess Biosyst. Eng. 2020, 43, 1469–1478. [Google Scholar] [CrossRef]
- Khanna, S.; Srivastava, A.K. Production of poly(3-hydroxybutyric-co-3-hydroxyvaleric acid) having a high hydroxyvalerate content with valeric acid feeding. J. Ind. Microbiol. Biotechnol. 2007, 34, 457–461. [Google Scholar] [CrossRef]
- Zhu, C.; Tang, Y.; Ren, D.; Ren, W.; Xue, Y.; Suthaparan, A.; Li, J.; Wang, Y.; Xu, L.; Zhu, P. Propionate poses antivirulence activity against Botrytis cinerea via regulating its metabolism, infection cushion development and overall pathogenic factors. Food Chem. 2023, 410, 135443. [Google Scholar] [CrossRef] [PubMed]
- Lee, O.K.; Kang, S.G.; Choi, T.-R.; Yang, Y.-H.; Lee, E.Y. Production and characterization of a biodegradable polymer, poly(3-hydroxybutyrate-co-3-hydroxyvalerate), using the type II methanotroph, Methylocystis sp. MJC1. Bioresour. Technol. 2023, 389, 129853. [Google Scholar] [CrossRef] [PubMed]
- Pracella, M.; Mura, C.; Galli, G. Polyhydroxyalkanoate nanocomposites with cellulose nanocrystals as biodegradable coating and packaging materials. ACS Appl. Nano Mater. 2021, 4, 260–270. [Google Scholar] [CrossRef]
- D’Arienzo, L.; Acierno, S.; Patti, A.; Di Maio, L. Cellulose/polyhydroxybutyrate (PHB) composites as a sustainable bio-based feedstock to 3D-printing applications. Materials 2024, 17, 916. [Google Scholar] [CrossRef]
- Urtuvia, V.; Ponce, B.; Andler, R.; Díaz-Barrera, A. Relation of 3HV fraction and thermomechanical properties of poly(3–hydroxybutyrate–co–3–hydroxyvalerate) produced by Azotobacter vinelandii OP. Int. J. Biol. Macromol. 2023, 253, 127681. [Google Scholar] [CrossRef] [PubMed]
- Yeo, J.C.C.; Muiruri, J.K.; Thitsartarn, W.; Li, Z.; He, C. Recent advances in the development of biodegradable PHB-based toughening materials: Approaches, advantages and applications. Mater. Sci. Eng. C 2018, 92, 1092–1116. [Google Scholar] [CrossRef]
- García-Chumillas, S.; Guerrero-Murcia, T.; Nicolás-Liza, M.; Monzó, F.; Simica, A.; Simó-Cabrera, L.; Martínez-Espinosa, R.M. PHBV cycle of life using waste as a starting point: From production to recyclability. Front. Mater. 2024, 11, 1405483. [Google Scholar] [CrossRef]
- Singh, S.; Mohanty, A.K.; Sugie, T.; Takai, Y.; Hamada, H. Renewable resource based biocomposites from natural fiber and polyhydroxybutyrate-co-valerate (PHBV) bioplastic. Compos. Part A Appl. Sci. Manuf. 2008, 39, 875–886. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Z.; Chen, X.; Pan, J.; Xu, K. Miscibility, crystallization kinetics, and mechanical properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)(PHBV)/poly(3-hydroxybutyrate-co-4-hydroxybutyrate)(P3/4HB) blends. J. Appl. Polym. Sci. 2010, 117, 838–848. [Google Scholar] [CrossRef]
- Erceg, T.; Rackov, S.; Terek, P.; Pilić, B. Preparation and Characterization of PHBV/PCL-Diol Blend Films. Polymers 2023, 15, 4694. [Google Scholar] [CrossRef]
- Martínez-Rubio, P.M.; Avilés, M.D.; Pamies, R.; Benítez-Benítez, S.J.; Arribas, A.; Carrión-Vilches, F.J.; Bermúdez, M.D. In-Depth Analysis of the Complex Interactions Induced by Nanolayered Additives in PHBV Nanocomposites. Macromol. Mater. Eng. 2024, 309, 2400016. [Google Scholar] [CrossRef]
- Trakunjae, C.; Boondaeng, A.; Apiwatanapiwat, W.; Kosugi, A.; Arai, T.; Sudesh, K.; Vaithanomsat, P. Enhanced polyhydroxybutyrate (PHB) production by newly isolated rare actinomycetes Rhodococcus sp. strain BSRT1-1 using response surface methodology. Sci. Rep. 2021, 11, 1896. [Google Scholar] [CrossRef]
- Cai, F.; Sun, X.; Cui, K.; Jin, Y.; Liu, G.; Chen, C. A novel approach for poly(hydroxybutyrate-co-hydroxyvalerate) production from vegetable wastes and pig manure: Potential in economy, environment and sustainability. Resour. Conserv. Recycl. 2024, 209, 107789. [Google Scholar] [CrossRef]
Origin | PHA | Young’s Module (MPa) | Tensile Strength (MPa) | Break Elongation (%) |
---|---|---|---|---|
BtE264 | PHB | 1194 ± 42 A | 10 ± 3.1 A | 0.9 ± 0.1 B |
Sigma-Aldrich | PHBV-STD (8% mol 3HV) | 359 ± 48 B | 3.5 ± 1.2 B | 1.1 ± 0.1 B |
BtE264 | PHBV (24% mol 3HV) | 160 ± 47 B | 3.1 ± 0.9 B | 3.1 ± 0.7 A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Alonso, J.U.; Pichardo-Sánchez, M.A.; Huerta-Ochoa, S.; Román-Guerrero, A.; Rodríguez-Fernández, O.; Vásquez-Torres, H.; Olayo-González, R.; Olayo-Valles, R.; Rodríguez-Durán, L.V.; Prado-Barragán, L.A. Impact of Co-Substrates on the Production of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Burkholderia thailandensis E264. Materials 2025, 18, 3577. https://doi.org/10.3390/ma18153577
Hernández-Alonso JU, Pichardo-Sánchez MA, Huerta-Ochoa S, Román-Guerrero A, Rodríguez-Fernández O, Vásquez-Torres H, Olayo-González R, Olayo-Valles R, Rodríguez-Durán LV, Prado-Barragán LA. Impact of Co-Substrates on the Production of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Burkholderia thailandensis E264. Materials. 2025; 18(15):3577. https://doi.org/10.3390/ma18153577
Chicago/Turabian StyleHernández-Alonso, Jonathan Uriel, María Alejandra Pichardo-Sánchez, Sergio Huerta-Ochoa, Angélica Román-Guerrero, Oliverio Rodríguez-Fernández, Humberto Vásquez-Torres, Roberto Olayo-González, Roberto Olayo-Valles, Luis Víctor Rodríguez-Durán, and Lilia Arely Prado-Barragán. 2025. "Impact of Co-Substrates on the Production of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Burkholderia thailandensis E264" Materials 18, no. 15: 3577. https://doi.org/10.3390/ma18153577
APA StyleHernández-Alonso, J. U., Pichardo-Sánchez, M. A., Huerta-Ochoa, S., Román-Guerrero, A., Rodríguez-Fernández, O., Vásquez-Torres, H., Olayo-González, R., Olayo-Valles, R., Rodríguez-Durán, L. V., & Prado-Barragán, L. A. (2025). Impact of Co-Substrates on the Production of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Burkholderia thailandensis E264. Materials, 18(15), 3577. https://doi.org/10.3390/ma18153577