Preparation and Performance Study of Graphene Oxide Doped Gallate Epoxy Coatings
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of MG
2.3. Preparation of Anti-Rust Coating
2.4. Preparation of Coating Film
2.5. SEM/LSCM/XRD Analysis
2.6. AC Impedance and Polarization Analysis
2.7. SVET Measurements
3. Results
3.1. SEM Analysis
3.2. LCSM Analysis
3.3. Electrochemical Analysis
3.3.1. Tafel Polarization Curve Analysis
3.3.2. Electrochemical Impedance Analysis (EIS)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MG | methyl gallate |
EP | epoxy |
GO | graphene oxide |
PDP | potentiodynamic polarization |
OCP | open-circuit potential |
EIS | electrochemical impedance spectroscopy |
SEM | scanning electron microscopy |
LSCM | aser scanning confocal microscope |
SVET | scanning vibration electrode technique |
icorr | corrosion current density |
References
- ISO8501-1; Preparation of Steel Substrates Before Application of Paints and Related Products—Visual Assessment of Surface Cleanliness. International Organization for Standardization: Geneva, Switzerland, 2007.
- Xiao, M.; Zhang, Y.; Xiao, X.; Dai, L.; Wu, Q.-Y.; Liu, S.; Gu, L. Visualizing the macroscale dispersion of graphene based sheets in epoxy anticorrosive coatings by fluorescence quenching. Chem. Eng. J. 2025, 515, 163504. [Google Scholar] [CrossRef]
- Feng, L.; Yuan, P. Corrosion protection mechanism of aluminum triphosphate modified by organic acids as a rust converter. Prog. Org. Coat. 2020, 140, 105508. [Google Scholar] [CrossRef]
- Yuan, S.; Zhao, X.; Jin, Z.; Zhao, Q.; Fan, L.; Deng, J.; Duan, J.; Hou, B. Design and realization of versatile durable fluorine-free anti-corrosive coating with robust superhydrophobicity. Electrochim. Acta 2024, 495, 144428. [Google Scholar] [CrossRef]
- Chang, J.; Wang, Z.; Han, E.-H.; Liang, X.; Wang, G.; Yi, Z.; Li, N. Corrosion resistance of tannic acid, d-limonene and nano-ZrO2 modified epoxy coatings in acid corrosion environments. J. Mater. Sci. Technol. 2021, 65, 137–150. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, Z.; Fan, X. Enhanced corrosion and UV resistance of double-layer structural epoxy coatings reinforced with graphene oxide/carbon nanotubes hybrids. Constr. Build. Mater. 2025, 490, 142409. [Google Scholar] [CrossRef]
- Lamprakou, Z.; Bi, H.; Weinell, C.E.; Dam-Johansen, K. Tannin-based inhibitive pigment for sustainable epoxy coatings formulation. Prog. Org. Coat. 2022, 167, 106841. [Google Scholar] [CrossRef]
- Li, Y.; Lei, B.; Guo, X. Influence of Phosphoric Acid on the Adhesion Strength Between Rusted Steel and Epoxy Coating. Coatings 2021, 11, 246. [Google Scholar] [CrossRef]
- Beraldo, C.H.M.; Spinelli, A.; Scharnagl, N.; da Conceição, T.F. Phosphorylated PVA coatings for corrosion protection of Mg AZ31 alloy. J. Coat. Technol. Res. 2024, 21, 243–253. [Google Scholar] [CrossRef]
- Qi, C.; Li, Z.; Bi, H.; Dam-Johansen, K. Towards sustainable steel corrosion protection: Expanding the applicability of natural hydrolyzable tannin in epoxy coatings via metal complexation. Electrochim. Acta 2024, 497, 144546. [Google Scholar] [CrossRef]
- Koerner, C.M.; Hopkinson, D.P.; Ziomek-Moroz, M.E.; Rodriguez, A.; Xiang, F. Environmentally Friendly Tannic Acid Multilayer Coating for Reducing Corrosion of Carbon Steel. Ind. Eng. Chem. Res. 2021, 60, 243–250. [Google Scholar] [CrossRef]
- Wang, N.; Yin, X.; Zhang, J.; Gao, H.; Diao, X.; Yao, H. Preparation and Anti-Corrosive Properties of Waterborne Epoxy Composite Coating Containing Graphene Oxide Grafted with Sodium Tripolyphosphate. Coatings 2020, 10, 307. [Google Scholar] [CrossRef]
- Liu, J.; Wu, Y.; Yan, F.; Yan, Y.; Wang, F.; Zhang, G.; Zeng, L.; Ma, Y.; Guo, J.; Li, Y. Enhancing corrosion resistance of Q355B steel in marine environments using graphene doped inorganic zinc-rich coatings. Int. J. Electrochem. Sci. 2024, 19, 100872. [Google Scholar] [CrossRef]
- Li, S.; Xu, Y.; Xiang, F.; Liu, P.; Wang, H.; Wei, W.; Dong, S. Enhanced corrosion resistance of self-healing waterborne polyurethane coating based on tannic acid modified cerium-montmorillonites composite fillers. Prog. Org. Coat. 2023, 178, 107454. [Google Scholar] [CrossRef]
- Liu, J.; Wu, Y.; Yan, F.; Yan, Y.; Wang, F.; Zhang, G.; Zeng, L.; Ma, Y.; Guo, J.; Li, Y.; et al. Graphene-based anticorrosion coatings for steel: Fundamental mechanism, recent progress and future perspectives. Prog. Org. Coat. 2025, 200, 108966. [Google Scholar] [CrossRef]
- Cheng, L.; Hou, P.; Liu, C. Tannic acid-copper metal-organic frameworks decorated graphene oxide for reinforcement of the corrosion protection of waterborne epoxy coatings. Mater. Corros. 2022, 73, 1666–1675. [Google Scholar] [CrossRef]
- Jaén, J.A.; De Obaldía, J.; Rodríguez, M.V. Application of Mössbauer spectroscopy to the study of tannins inhibition of iron and steel corrosion. Hyperfine Interact. 2011, 202, 25–38. [Google Scholar] [CrossRef]
- Favre, M.; Landolt, D. The influence of gallic acid on the reduction of rust on painted steel surfaces. Corros. Sci. 1993, 34, 1481–1494. [Google Scholar] [CrossRef]
- Collazo, A.; Nóvoa, X.; Pérez, C.; Puga, B. EIS study of the rust converter effectiveness under different conditions. Electrochim. Acta 2007, 53, 7565–7574. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, G.; Du, J.; Chen, W.; Liu, R.; Hou, F. Preparation and Properties of gallate/Modified styrene propyl anticorrosive transfer emulsion. Paint. Coat. Ind. 2024, 54, 45–52. (In Chinese) [Google Scholar] [CrossRef]
- Zhou, S.; Wu, Y.; Zhao, W.; Yu, J.; Jiang, F.; Wu, Y.; Ma, L. Designing reduced graphene oxide/zinc rich epoxy composite coatings for improving the anticorrosion performance of carbon steel substrate. Mater. Des. 2019, 169, 107694. [Google Scholar] [CrossRef]
- Bagherzadeh, M.; Ghahfarokhi, Z.S.; Yazdi, E.G. Electrochemical and surface evaluation of the anti-corrosion properties of reduced graphene oxide. RSC Adv. 2016, 6, 22007–22015. [Google Scholar] [CrossRef]
- Souto, L.F.C.; Soares, B.G.; Henriques, R.R.; Santos, J. Enhancing anticorrosive performance of epoxy-based coatings using magnetite/graphene hybrids modified with ionic liquids. Prog. Org. Coat. 2024, 190, 108412. [Google Scholar] [CrossRef]
- Ding, R.; Chen, S.; Lv, J.; Zhang, W.; Zhao, X.-D.; Liu, J.; Wang, X.; Gui, T.-J.; Li, B.-J.; Tang, Y.-Z.; et al. Study on graphene modified organic anti-corrosion coatings: A comprehensive review. J. Alloys Compd. 2019, 806, 611–635. [Google Scholar] [CrossRef]
- Ding, R.; Li, W.; Wang, X.; Gui, T.; Li, B.; Han, P.; Tian, H.; Liu, A.; Wang, X.; Liu, X.; et al. A brief review of corrosion protective films and coatings based on graphene and graphene oxide. J. Alloys Compd. 2018, 764, 1039–1055. [Google Scholar] [CrossRef]
- Ji, D.; Wen, X.; Foller, T.; You, Y.; Wang, F.; Joshi, R. Chemical Vapour Deposition of Graphene for Durable Anticorrosive Coating on Copper. Nanomaterials 2020, 10, 2511. [Google Scholar] [CrossRef] [PubMed]
- Kulyk, B.; Freitas, M.A.; Santos, N.F.; Mohseni, F.; Carvalho, A.F.; Yasakau, K.; Fernandes, A.J.S.; Bernardes, A.; Figueiredo, B.; Silva, R.; et al. A critical review on the production and application of graphene and graphene-based materials in anti-corrosion coatings. Crit. Rev. Solid State Mater. Sci. 2021, 47, 309–355. [Google Scholar] [CrossRef]
- Li, J.; Zheng, H.; Liu, L.; Meng, F.; Cui, Y.; Wang, F. Modification of graphene and graphene oxide and their applications in anticorrosive coatings. J. Coat. Technol. Res. 2021, 18, 311–331. [Google Scholar] [CrossRef]
- Li, L.; Li, T.; Zhang, Z.; Chen, Z.; Chen, C.; Chen, F. Superhydrophobic graphene/hydrophobic polymer coating on a microarc oxidized metal surface. J. Coat. Technol. Res. 2022, 19, 1449–1456. [Google Scholar] [CrossRef]
- Monetta, T.; Acquesta, A.; Carangelo, A.; Bellucci, F. Considering the effect of graphene loading in water-based epoxy coatings. J. Coat. Technol. Res. 2018, 15, 923–931. [Google Scholar] [CrossRef]
- Mu, J.; Gao, F.; Cui, G.; Wang, S.; Tang, S.; Li, Z. A comprehensive review of anticorrosive graphene-composite coatings. Prog. Org. Coat. 2021, 157, 106321. [Google Scholar] [CrossRef]
- GB/T 1591-2018; High Strength Low Alloy Structural Steels. National Standard of the People’s Republic of China: Beijing, China, 2018.
- Janneck, R.; Heremans, P.; Genoe, J.; Rolin, C. Influence of the Surface Treatment on the Solution Coating of Single-Crystalline Organic Thin-Films. Adv. Mater. Interfaces 2018, 5, 1800147. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Tran, B.A.; Vu, K.O.; Nguyen, A.S.; Trinh, A.T.; Pham, G.V.; To, T.X.H.; Phan, M.V.; Phan, T.T. Corrosion protection of carbon steel using hydrotalcite/graphene oxide nanohybrid. J. Coat. Technol. Res. 2018, 16, 585–595. [Google Scholar] [CrossRef]
- Rajabi, M.; Rashed, G.R.; Zaarei, D. Assessment of graphene oxide/epoxy nanocomposite as corrosion resistance coating on carbon steel. Corros. Eng. Sci. Technol. 2014, 50, 509–516. [Google Scholar] [CrossRef]
- Stankovich, S.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 2006, 44, 3342–3347. [Google Scholar] [CrossRef]
- Su, Y.; Kravets, V.G.; Wong, S.L.; Waters, J.; Geim, A.K.; Nair, R.R. Impermeable barrier films and protective coatings based on reduced graphene oxide. Nat. Commun. 2014, 5, 4843. [Google Scholar] [CrossRef] [PubMed]
- ASTM D1141; Standard Practice for Preparation of Substitute Ocean Water. American Society for Testing and Materials: West Conshohocken, PA, USA, 2021.
- Sun, P.Z.; Yang, Q.; Kuang, W.J.; Stebunov, Y.V.; Xiong, W.Q.; Yu, J.; Nair, R.R.; Katsnelson, M.I.; Yuan, S.J.; Grigorieva, I.V.; et al. Limits on gas impermeability of graphene. Nature 2020, 579, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Yapici, K.; Peker, S. Rheological properties and anticorrosion performance of graphene oxide- and reduced graphene oxide-based nanocomposites. J. Coat. Technol. Res. 2019, 17, 193–205. [Google Scholar] [CrossRef]
- Zhang, R.; Cui, G.; Su, X.; Yu, X.; Li, Z. A novel functionally graded Ni-graphene coating and its corrosion resistance. J. Alloys Compd. 2020, 829, 154495. [Google Scholar] [CrossRef]
- Sheikholeslami, S.; Williams, G.; McMurray, H.N.; Gommans, L.; Morrison, S.; Ngo, S.; Williams, D.E.; Gao, W. Cut-edge corrosion behavior assessment of newly developed environmental-friendly coating systems using the Scanning Vibrating Electrode Technique (SVET). Corros. Sci. 2021, 192, 109813. [Google Scholar] [CrossRef]
- Souto, R.M.; Cristoforetti, A.; Izquierdo, J.; Deflorian, F.; Fedel, M.; Rossi, S. In-situ measurement of electrochemical activity related to filiform corrosion in organic coated steel by scanning vibrating electrode technique and scanning micropotentiometry. Corros. Sci. 2024, 227, 111669. [Google Scholar]
- Bastos, A.C.; Quevedo, M.C.; Karavai, O.V.; Ferreira, M.G.S. Review—On the Application of the Scanning Vibrating Electrode Technique (SVET) to Corrosion Research. J. Electrochem. Soc. 2017, 164, C973–C990. [Google Scholar] [CrossRef]
- Zafar, S.; Kahraman, R.; Shakoor, R.A. Recent developments and future prospective of polyurethane coatings for corrosion protection—A focused review. Eur. Polym. J. 2024, 220, 113421. [Google Scholar] [CrossRef]
- Ikeuba, A.I. Bimetallic corrosion evaluation of the π-Al8Mg3FeSi6 phase/Al couple in acidic, neutral and alkaline aqueous solutions using the scanning vibrating electrode technique. Electrochim. Acta 2023, 449, 142240. [Google Scholar] [CrossRef]
- Siva, T.; Kumari, S.S.; Sathiyanarayanan, S. Dendrimer like mesoporous silica nano container (DMSN) based smart self healing coating for corrosion protection performance. Prog. Org. Coat. 2021, 154, 106201. [Google Scholar] [CrossRef]
- Nardeli, J.V.; Fugivara, C.S.; Taryba, M.; Montemor, M.F.; Ribeiro, S.J.; Benedetti, A.V. Novel healing coatings based on natural-derived polyurethane modified with tannins for corrosion protection of AA2024-T3. Corros. Sci. 2020, 162, 108213. [Google Scholar] [CrossRef]
- Macdonald, D.D. Reflections on the history of electrochemical impedance spectroscopy. Electrochim. Acta 2006, 51, 1376–1388. [Google Scholar] [CrossRef]
Time, Days | i (A/m2) | OCP (mV) | ba |
---|---|---|---|
1 | 2.190 ± 0.021 | −622 ± 5 | 5.162 ± 0.043 |
7 | 0.023 ± 0.001 | −584 ± 4 | 4.861 ± 0.031 |
14 | 0.015 ± 0.0007 | −556 ± 4 | 4.445 ± 0.026 |
21 | 0.008 ± 0.0003 | −539 ± 3 | 4.445 ± 0.025 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Wu, Y.; Yan, Y.; Wang, F.; Zhang, G.; Zeng, L.; Ma, Y.; Li, Y. Preparation and Performance Study of Graphene Oxide Doped Gallate Epoxy Coatings. Materials 2025, 18, 3536. https://doi.org/10.3390/ma18153536
Liu J, Wu Y, Yan Y, Wang F, Zhang G, Zeng L, Ma Y, Li Y. Preparation and Performance Study of Graphene Oxide Doped Gallate Epoxy Coatings. Materials. 2025; 18(15):3536. https://doi.org/10.3390/ma18153536
Chicago/Turabian StyleLiu, Junhua, Ying Wu, Yu Yan, Fei Wang, Guangchao Zhang, Ling Zeng, Yin Ma, and Yuchun Li. 2025. "Preparation and Performance Study of Graphene Oxide Doped Gallate Epoxy Coatings" Materials 18, no. 15: 3536. https://doi.org/10.3390/ma18153536
APA StyleLiu, J., Wu, Y., Yan, Y., Wang, F., Zhang, G., Zeng, L., Ma, Y., & Li, Y. (2025). Preparation and Performance Study of Graphene Oxide Doped Gallate Epoxy Coatings. Materials, 18(15), 3536. https://doi.org/10.3390/ma18153536