Suppressing the Phase Transformation in Cubic Prussian Blue Analogues via a High-Entropy Strategy for Efficient Zinc-Ion Storage
Abstract
1. Introduction
2. Experimental Section
2.1. Material Preparations
2.1.1. Materials
2.1.2. Synthesis of High-Entropy Precursor Sample
2.1.3. Synthesis of Medium-Entropy and Low-Entropy Samples
2.2. Material Characterization
2.3. Electrochemical Tests
2.4. Calculation Method
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, B.; Pan, Z.F.; Su, X.Y.; An, L. Recycling of lithium-ion batteries: Recent advances and perspectives. J. Power Sources 2018, 399, 274–286. [Google Scholar] [CrossRef]
- Degen, F.; Winter, M.; Bendig, D.; Tübke, J. Energy consumption of current and future production of lithium-ion and post lithium-ion battery cells. Nat. Energy 2023, 8, 1284–1295. [Google Scholar] [CrossRef]
- Dunn, B.; Kamath, H.; Tarascon, J.M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935. [Google Scholar] [CrossRef] [PubMed]
- Bello, I.T.; Raza, H.; Michael, A.T.; Muneeswara, M.; Tewari, N.; Bingsen, W.; Cheung, Y.N.; Choi, Z.; Boles, S.T. Charging Ahead: The Evolution and Reliability of Nickel-Zinc Battery Solutions. EcoMat 2024, 7, e12505. [Google Scholar] [CrossRef]
- Wu, K.; Liu, X.Y.; Ning, F.H.; Subhan, S.; Xie, Y.H.; Lu, S.G.; Xia, Y.Y.; Yi, J. Engineering of charge density at the anode/electrolyte interface for long-life Zn anode in aqueous zinc ion battery. ChemSusChem 2025, 18, e202401251. [Google Scholar] [CrossRef]
- Liu, J.; Shen, Z.; Lu, C.-Z. Research progress of prussian blue and its analogues for cathodes of aqueous zinc ion batteries. J. Mater. Chem. A 2024, 12, 2647–2672. [Google Scholar] [CrossRef]
- Zhang, X.K.; Xia, M.T.; Liu, T.T.; Peng, N.; Yu, H.X.; Zheng, R.T.; Zhang, L.Y.; Shui, M.; Shu, J. Copper hexacyanoferrate as ultra-high rate host for aqueous ammonium ion storage. Chem. Eng. J. 2021, 421, 127767. [Google Scholar] [CrossRef]
- Yuan, G.; Su, Y.; Zhang, X.; Gao, B.; Hu, J.; Sun, Y.; Li, W.; Zhang, Z.; Shakouri, M.; Pang, H. Charged organic ligands inserting/supporting the nanolayer spacing of vanadium oxides for high-stability/efficiency zinc-ion batteries. Natl. Sci. Rev. 2024, 11, nwae336. [Google Scholar] [CrossRef]
- Li, G.J.; Sun, L.; Zhang, S.L.; Zhang, C.F.; Jin, H.Y.; Davey, K.; Liang, G.M.; Liu, S.L.; Mao, J.F.; Guo, Z.P. Developing cathode materials for aqueous zinc ion batteries: Challenges and practical prospects. Adv. Funct. Mater. 2024, 34, 2301291. [Google Scholar] [CrossRef]
- Guo, S.; Qin, L.; Zhang, T.; Zhou, M.; Zhou, J.; Fang, G.; Liang, S. Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion batteries. Energy Storage Mater. 2021, 34, 545–562. [Google Scholar] [CrossRef]
- Wang, J.Y.; Hu, Z.W.; Qi, Y.J.; Han, C.; Zhang, K.; Li, W.J. Prussian blue analogues for aqueous zinc-ion batteries: Recent process and perspectives. J. Mater. Sci. Technol. 2025, 221, 302–320. [Google Scholar] [CrossRef]
- Cui, X.S.; Zhang, Y.X.; Zhang, J.L.; Xie, E.; Fu, J.C. Insight on the energy storage mechanism and kinetic dynamic of manganese oxide-based aqueous zinc-ion batteries. Adv. Mater. Technol. 2023, 8, 2300321. [Google Scholar] [CrossRef]
- Zhou, A.; Cheng, W.; Wang, W.; Zhao, Q.; Xie, J.; Zhang, W.; Gao, H.; Xue, L.; Li, J. Hexacyanoferrate-type prussian blue analogs: Principles and advances toward high-performance sodium and potassium ion batteries. Adv. Energy Mater. 2020, 11, 2000943. [Google Scholar] [CrossRef]
- Jia, X.; Liu, C.; Neale, Z.G.; Yang, J.; Cao, G. Active materials for aqueous zinc ion batteries: Synthesis, crystal structure, morphology, and electrochemistry. Chem. Rev. 2020, 120, 7795–7866. [Google Scholar] [CrossRef]
- Tan, Y.C.; Yang, H.; Miao, C.L.; Zhang, Y.M.; Chen, D.; Li, G.S.; Han, W. Hydroxylation strategy unlocking multi-redox reaction of manganese hexacyanoferrate for aqueous zinc-ion battery. Chem. Eng. J. 2023, 457, 141323. [Google Scholar] [CrossRef]
- Wang, W.; Gang, Y.; Hu, Z.; Yan, Z.; Li, W.; Li, Y.; Gu, Q.-F.; Wang, Z.; Chou, S.-L.; Liu, H.-K.; et al. Reversible structural evolution of sodium-rich rhombohedral prussian blue for sodium-ion batteries. Nat. Commun. 2020, 11, 980. [Google Scholar] [CrossRef] [PubMed]
- Alowasheeir, A.; Nara, H.; Eguchi, M.; Yamauchi, Y. Ni–Fe nanoframes via a unique structural formation induced by sonochemical etching. Chem. Commun. 2022, 58, 12588–12591. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wan, J.; Huang, L.; Xu, J.; Ou, M.; Liu, Y.; Sun, X.; Li, S.; Fang, C.; Li, Q.; et al. Dual redox-active copper hexacyanoferrate nanosheets as cathode materials for advanced sodium-ion batteries. Energy Storage Mater. 2020, 33, 432–441. [Google Scholar] [CrossRef]
- Paolella, A.; Faure, C.; Timoshevskii, V.; Marras, S.; Bertoni, G.; Guerfi, A.; Vijh, A.; Armand, M.; Zaghib, K. A review on hexacyanoferrate-based materials for energy storage and smart windows: Challenges and perspectives. J. Mater. Chem. A 2017, 5, 18919–18932. [Google Scholar] [CrossRef]
- Zeng, Y.; Xu, J.; Wang, Y.; Li, S.; Luan, D.; Lou, X.W. Formation of CuMn prussian blue analog double-shelled nanoboxes toward long-life Zn-ion batteries. Angew. Chem. Int. Ed. 2022, 61, e202212031. [Google Scholar] [CrossRef]
- Ma, Y.; Ma, Y.; Dreyer, S.L.; Wang, Q.; Wang, K.; Goonetilleke, D.; Omar, A.; Mikhailova, D.; Hahn, H.; Breitung, B.; et al. High-entropy metal-organic frameworks for highly reversible sodium storage. Adv. Mater. 2021, 33, 2101342. [Google Scholar] [CrossRef]
- Zampardi, G.; La Mantia, F. Prussian blue analogues as aqueous Zn-ion batteries electrodes: Current challenges and future perspectives. Curr. Opin. Electrochem. 2020, 21, 84–92. [Google Scholar] [CrossRef]
- Ruo, H.; Chen, L.; Huang, J.L.; Lv, C.H.; Bai, J.J.; Xu, S.D.; Chen, J.Q.; Zhang, D.; Yang, H.M. Constructing low-cost stable zinc-ion batteries with sodium-rich monoclinic manganese hexacyanoferrate cathode. Surf. Interfaces 2024, 51, 104594. [Google Scholar] [CrossRef]
- Xing, J.; Zhang, Y.; Jin, Y.; Jin, Q. Active cation-integration high-entropy Prussian blue analogues cathodes for efficient Zn storage. Nano Res. 2022, 16, 2486–2494. [Google Scholar] [CrossRef]
- Peng, J.; Ou, M.; Yi, H.; Sun, X.; Zhang, Y.; Zhang, B.; Ding, Y.; Wang, F.; Gu, S.; López, C.A.; et al. Defect-free-induced Na+ disordering in electrode materials. Energy Environ. Sci. 2021, 14, 3130–3140. [Google Scholar] [CrossRef]
- Su, Y.; Hu, J.; Yuan, G.; Zhang, G.; Wei, W.; Sun, Y.; Zhang, X.; Liu, Z.; Suen, N.T.; Chen, H.C.; et al. Regulating intramolecular electron transfer of nickel-based coordinations through ligand engineering for aqueous batteries. Adv. Mater. 2023, 35, 2307003. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Wen, Q.; Yang, Y.; Liu, Y.; Yang, Y.; Wu, M.; Wei, Y.; Mei, B.; Liu, Y.; Li, H.; et al. Directional reconstruction to highly active tandem sites for superior acidic CO2 electroreduction. Adv. Mater. 2024, 37, 2414642. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.L.; Xing, Z.; Ren, H.P.; Wang, Q.L.; Gao, X.R.; Nie, C.H.; Ju, Z.C. MnFe prussian blue analogue open cages for sodium-ion batteries: Simultaneous evolution of structure, morphology, and energy storage properties. Small 2024, 20, 2402072. [Google Scholar] [CrossRef] [PubMed]
- Xie, B.X.; Wang, L.G.; Li, H.F.; Huo, H.; Cui, C.; Sun, B.Y.; Ma, Y.L.; Wang, J.J.; Yin, G.P.; Zuo, P.J. An interface-reinforced rhombohedral Prussian blue analogue in semi-solid state electrolyte for sodium-ion battery. Energy Storage Mater. 2021, 36, 99–107. [Google Scholar] [CrossRef]
- Joos, M.; Kang, X.; Merkle, R.; Maier, J. Water uptake of solids and its impact on ion transport. Nat. Mater. 2025, 24, 821–834. [Google Scholar] [CrossRef]
- Li, M.; Maisuradze, M.; Sciacca, R.; Hasa, I.; Giorgetti, M. A Structural Perspective on Prussian Blue Analogues for Aqueous Zinc-Ion Batteries. Batteries Supercaps 2023, 6, e202300340. [Google Scholar] [CrossRef]
- Zhang, F.; Gao, T.; Zhang, Y.; Sun, K.; Qu, X.; Luo, Y.; Song, Y.; Fang, F.; Sun, D.; Wang, F.; et al. High-entropy metal sulfide nanocrystal libraries for highly reversible sodium storage. Adv. Mater. 2025, 37, 2418890. [Google Scholar] [CrossRef]
- Yeh, J.-W. Alloy design strategies and future trends in high-entropy alloys. JOM 2013, 65, 1759–1771. [Google Scholar] [CrossRef]
- Sarkar, A.; Breitung, B.; Hahn, H. High entropy oxides: The role of entropy, enthalpy and synergy. Scr. Mater. 2020, 187, 43–48. [Google Scholar] [CrossRef]
- Hof, S.; Kioumourtzoglou, S.; Nováková, J.; Görlin, M.; Sá, J. Continuous flow synthesis of prussian blue and analogues assisted by AI. Adv. Mater. Technol. 2025, 10, 2401566. [Google Scholar] [CrossRef]
- Liu, S.; Sun, Z.W.; Li, B.G.; Liu, X.J.; Xue, C.G. Innovative cobalt manganese-based prussian blue analogue/polyaniline cathode materials with double layered hollow nanocube structure for high performance aqueous zinc ion battery. J. Energy Storage 2025, 111, 115310. [Google Scholar] [CrossRef]
- Syed, W.A.; Kakarla, A.K.; Bandi, H.; Shanthappa, R.; Yu, J.S. Copper substituted manganese prussian blue analogue composite nanostructures for efficient aqueous zinc-ion batteries. J. Energy Storage 2024, 99, 113325. [Google Scholar] [CrossRef]
- Miao, T.; Zhang, J.; Wang, Y.; Fang, K.; Wang, Z.; Zhan, K.; Zhao, B. Composite cathode with low-defect NiFe prussian blue analogue on reduced graphene oxide for aqueous sodium-ion hybrid supercapacitors. J. Colloid Interface Sci. 2023, 648, 768–777. [Google Scholar] [CrossRef]
- Oliver-Tolentino, M.; Ramos-Sánchez, G.; Guzmán, G.; Avila, M.; González, I.; Reguera, E. Water effect on sodium mobility in zinc hexacyanoferrate during charge/discharge processes in sodium ion-based battery. Solid State Ionics 2017, 312, 67–72. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, J.; Jiang, W.; Yang, K.; Wang, T.; Hu, C.J.; Pan, L.M.; Li, Q.; Yang, J. Ultrafine Fe2VO4 nanoparticles anchored on Ti3C2Tx nanosheets (Fe2VO4@Ti3C2Tx) as high-energy anode for lithium-ion storage. J. Alloys Compd. 2023, 960, 170603. [Google Scholar] [CrossRef]
- Chen, T.; Wang, F.; Cao, S.; Bai, Y.; Zheng, S.; Li, W.; Zhang, S.; Hu, S.X.; Pang, H. In situ synthesis of MOF-74 family for high areal energy density of aqueous nickel–zinc batteries. Adv. Mater. 2022, 34, 2201779. [Google Scholar] [CrossRef]
- Niragatti, S.C.R.; Madhukar, S.T.V.; Kim, J.; Yoo, K. Highly stable polyvinylpyrrolidone-encapsulated potassium-rich manganese hexacyanoferrate as cathode materials for aqueous zinc ion batteries. J. Power Sources 2024, 613, 234852. [Google Scholar] [CrossRef]
- Bockelmann, M.; Becker, M.; Reining, L.; Kunz, U.; Turek, T. Passivation of Zinc anodes in alkaline electrolyte: Part I. determination of the starting point of passive film formation. J. Electrochem. Soc. 2018, 165, A3048–A3055. [Google Scholar] [CrossRef]
- Wang, S.; Li, Z.; Wang, G.; Wang, Y.; Ling, Z.; Li, C. Freestanding Ti3C2Tx MXene/prussian blue analogues films with superior ion uptake for efficient capacitive deionization by a dual pseudocapacitance effect. ACS Nano 2021, 16, 1239–1249. [Google Scholar] [CrossRef]
- Xue, Y.; Shen, X.; Zhou, H.; Cao, J.; Pu, J.; Ji, Z.; Kong, L.; Yuan, A. Vanadium hexacyanoferrate nanoparticles connected by cross-linked carbon nanotubes conductive networks for aqueous zinc-ion batteries. Chem. Eng. J. 2022, 448, 137657. [Google Scholar] [CrossRef]
- Chen, M.; Li, X.; Yan, Y.; Yang, Y.; Xu, Q.; Liu, H.; Xia, Y. Polypyrrole-coated K2Mn[Fe(CN)6] stabilizing its interfaces and inhibiting irreversible phase transition during the zinc storage process in aqueous batteries. ACS Appl. Mater. Interfaces 2021, 14, 1092–1101. [Google Scholar] [CrossRef]
- Luo, L.; Liu, Y.; Shen, Z.X.; Wen, Z.R.; Chen, S.; Hong, G. High-voltage and stable manganese hexacyanoferrate/zinc batteries using gel electrolytes. ACS Appl. Mater. Interfaces 2023, 15, 29032–29041. [Google Scholar] [CrossRef]
- Cao, J.Y.; Xue, Y.T.; Ji, Z.Y.; Pu, J.R.; Shen, X.P.; Kong, L.R.; Yuan, A.H. CoNi hexacyanoferrate nanoparticles anchored on carbon nanotubes as superior cathode materials for rechargeable aqueous zinc-ion batteries. J. Energy Storage 2024, 86, 111413. [Google Scholar] [CrossRef]
- Zhang, D.P.; Wang, D.; Mao, X.L.; Zhou, Z.Y.; Zhang, J.H.; Ma, T.F.; Zhang, Y.H.; Yan, T.J. Titanium hexacyanoferrate/carbon nanotube composites as the cathode material for aqueous sodium/zinc ion batteries. J. Power Sources 2024, 613, 234929. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, Y.; Wang, Z.; Zhang, Q.; Hu, Z.; Feng, Y.; Li, Y.; Chen, K.; Qin, N.; Liu, J.; et al. Co/Mn ratio-regulated hexacyanoferrates as a long-life and high-rate cathode for aqueous Zn-ion batteries. J. Alloys Compd. 2024, 976, 173158. [Google Scholar] [CrossRef]
- Hu, B.B.; Li, D.S.; Li, M.X.; Jiang, J.Y.; Zou, Y.; Deng, Y.; Zhou, Z.D.; Pu, H.; Ma, G.Q.; Li, Z. Conductive network enhanced self-assembled diphasic prussian blue analogs for aqueous zinc-ion batteries. J. Mater. Chem. C 2025, 13, 6736–6744. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.; Liu, H.; Wang, Y.; Li, Y.; Li, Q. Suppressing the Phase Transformation in Cubic Prussian Blue Analogues via a High-Entropy Strategy for Efficient Zinc-Ion Storage. Materials 2025, 18, 3409. https://doi.org/10.3390/ma18143409
Huang H, Liu H, Wang Y, Li Y, Li Q. Suppressing the Phase Transformation in Cubic Prussian Blue Analogues via a High-Entropy Strategy for Efficient Zinc-Ion Storage. Materials. 2025; 18(14):3409. https://doi.org/10.3390/ma18143409
Chicago/Turabian StyleHuang, Hongwei, Haojun Liu, Yang Wang, Yi Li, and Qian Li. 2025. "Suppressing the Phase Transformation in Cubic Prussian Blue Analogues via a High-Entropy Strategy for Efficient Zinc-Ion Storage" Materials 18, no. 14: 3409. https://doi.org/10.3390/ma18143409
APA StyleHuang, H., Liu, H., Wang, Y., Li, Y., & Li, Q. (2025). Suppressing the Phase Transformation in Cubic Prussian Blue Analogues via a High-Entropy Strategy for Efficient Zinc-Ion Storage. Materials, 18(14), 3409. https://doi.org/10.3390/ma18143409