Changes in the Structure and Mechanical Properties of the SAV-1 Alloy and Structural Fe-Cr-Ni Steels After Long-Term Service as Core Materials in Nuclear Reactors
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Irradiation Conditions
2.2. Mechanical Tests
3. Results and Discussion
3.1. SAV-1
3.2. BN-350 Structural Steels
4. Conclusions
4.1. SAV-1 Alloy—A Structural Material for Research Nuclear Reactors
4.2. Fe-Cr-Ni Steels—A Material for the Ducts of Fuel Assemblies of the BN-350 Fast Reactor
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Viehrig, H.-W.; Houska, M.; Altstadt, E. Radiation and annealing response of WWER 440 beltline welding seams. J. Nucl. Mater. 2015, 456, 334–343. [Google Scholar] [CrossRef]
- Katona, T.J.; Biro, Á.; Rátkai, S. Feasibility of Safe Operation of WWER-440-Type Nuclear Power Plants for Up to 60–70 Years. Energies 2023, 16, 4170. [Google Scholar] [CrossRef]
- The IAEA Research Reactor Database (RRDB). Available online: https://nucleus.iaea.org/rrdb/#/home (accessed on 11 June 2025).
- Tatangelo, M.; Audisio, L.; D’Amato, M.; Gigliotti, R.; Braga, F. A new reliability-based procedure for life-cycle management of new and existing constructions. Structures 2024, 70, 107837. [Google Scholar] [CrossRef]
- Li, Q.; Wang, C.; Ellingwood, B.R. Time-dependent reliability of aging structures in the presence of non-stationary loads and degradation. Struct. Saf. 2015, 52, 132–141. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. Guidelines for the Review of Research Reactor Safety Reference Document for IAEA Integrated Safety Assessment of Research Reactors (INSARR), IAEA. In Guidelines for the Review of Research Reactor Safety; IAEA: Vienna, Austria, 2024. [Google Scholar]
- Jedlan, Š.; Ševeček, M.; Hodek, J.; Brázda, M.; Prantl, A.; Šoltés, J.; Sovadina, M.; Klaisnerova, J.; Krivsky, L. Qualification of L-DED 316L for Nuclear Reactor Core Applications–Material Characteristics Before and After Neutron Irradiation. Nucl. Eng. Technol. 2025, 57, 103765. [Google Scholar] [CrossRef]
- Taller, S.; Chen, Y.; Song, R.; Chen, W.Y.; Jokisaari, A. An approach to combine neutron and ion irradiation data to accelerate material qualification for nuclear reactors. J. Nucl. Mater. 2025, 603, 155385. [Google Scholar] [CrossRef]
- Was, G.S. Fundamentals of Radiation Materials Science; Springer: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Shaimerdenov, A.; Gizatulin, S.; Dyussambayev, D.; Askerbekov, S.; Kenzhina, I. The WWR-K Reactor Experimental Base for Studies of the Tritium Release from Materials Under Irradiation. Fusion Sci. Technol. 2020, 76, 304–313. [Google Scholar] [CrossRef]
- Shaimerdenov, A.; Sairanbayev, D.; Gizatulin, S.; Nessipbay, A.; Bugubay, Z.; Nugumanov, D.; Sakhiyev, S. WWR-K reactor LEU core design optimization for improving the experimental characteristics. Ann. Nucl. Energy 2024, 195, 110174. [Google Scholar] [CrossRef]
- Shaimerdenov, A.A.; Nakipov, D.A.; Arinkin, F.M.; Gizatulin, S.K.; Chakrov, P.V.; Kenzhin, Y.A. The 50th Anniversary of the WWR-K Research Reactor. Phys. At. Nucl. 2018, 81, 1408–1411. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. Material Properties Database for Irradiated Core Structural Components for Lifetime Management for Long Term Operation of Research Reactors Report of a Coordinated Research Project (2014–2018); IAEA: Vienna, Austria, 2019. [Google Scholar]
- Maksimkin, O.P.; Tsai, K.V.; Rofman, O.V.; Sil’nyagina, N.S. Effect of neutron irradiation and postradiation annealing on the microstructure and properties of an Al–Mg–Si alloy. Phys. Met. Metallogr. 2016, 117, 955–961. [Google Scholar] [CrossRef]
- Tsay, K.V.; Rofman, O.V.; Kudryashov, V.V.; Yarovchuk, A.V.; Maksimkin, O.P. Influence of neutron irradiation and ageing on behavior of SAV-1 reactor alloy. Nucl. Eng. Technol. 2021, 53, 3398–3405. [Google Scholar] [CrossRef]
- Nosov, Y.V.; Rovneiko, A.V.; Tashlykov, O.L.; Shcheklein, S.E. Decommissioning Features of BN-350, -600 Fast Reactors. At. Energy 2019, 125, 219–223. [Google Scholar] [CrossRef]
- Garner, F.A. Radiation Damage in Austenitic Steels, Comprehensive Nuclear Materials; Elsevier: Amsterdam, The Netherlands, 2012; pp. 33–95. [Google Scholar] [CrossRef]
- Goorley, T.; James, M.; Booth, T.; Brown, F.; Bull, J.; Cox, L.J.; Durkee, J.; Elson, J.; Fensin, M.; Forster, R.A.; et al. Initial MCNP6 Release Overview, Initial MCNP6 Release Overview. Nucl. Technol. 2012, 180, 298–315. [Google Scholar] [CrossRef]
- Palmiotti, G. ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data. Nucl. Data Sheets 2011, 112, 2887–2996. [Google Scholar] [CrossRef]
- Cetnar, J.; Stanisz, P.; Oettingen, M. Linear Chain Method for Numerical Modelling of Burnup Systems. Energies 2021, 14, 2021. [Google Scholar] [CrossRef]
- Nordlund, K.; Zinkle, S.J.; Sand, A.E.; Granberg, F.; Averback, R.S.; Stoller, R.; Suzudo, T.; Malerba, L.; Banhart, F.; Weber, W.J.; et al. Improving atomic displacement and replacement calculations with physically realistic damage models. Nat. Commun. 2018, 9, 1084. [Google Scholar] [CrossRef] [PubMed]
- Konobeev, A.Y.; Leichtle, D. Arc-dpa and NRT Displacement Cross-Sections for Neutron Irradiation of Materials from Be to Bi Calculated Using JEFF-4T1, ENDF/B-VIII, JENDL-5, and TENDL-2021 Data; Karlsruher Institut für Technologie: Karlsruher, Germany, 2022. [Google Scholar] [CrossRef]
- Dikov, A.; Kislitsin, S.; Chernov, I. Effect of Test Temperature on Mechanical Properties of Austenitic 0.12C18Cr10NiTi and 0.08C16Cr11Ni3Mo Steels Irradiated by Fast Neutrons in the BN-350 Reactor. In Defect and Diffusion Forum; Trans Tech Publications: Bäch, Switzerland, 2017; Volume 375, pp. 134–138. [Google Scholar] [CrossRef]
- Maksimkin, O.P.; Tivanova, O.V. Influence of neutron irradiation on temperature-velocity changes in the strength and plasticity characteristics of the alloy 0.3C20Cr45Ni4MoNbBZr and steel 0.12C18Cr10NiTi. Probl. At. Sci. Technol. (PAST) Ser. Phys. Radiat. Damage Radiat. Mater. Sci. 2003, 3, 83. Available online: https://vant.kipt.kharkov.ua/ARTICLE/VANT_2003_3/article_2003_3_35.pdf (accessed on 11 June 2025).
- Shcherbakov, E.N.; Kozlov, A.V.; Yagovitin, P.I.; Evseev, M.V.; Kinev, E.A.; Panchenko, V.L.; Isobe, I.; Sagisaka, M.; Okita, T.; Sekimura, N.; et al. Influence of damage rate on physical and mechanical properties and swelling of 18Cr–9Ni austenitic steel in the range of 3 × 10−9 to 4 × 10−8 dpa/s. J. Nucl. Mater. 2009, 386–388, 152–156. [Google Scholar] [CrossRef]
- Kalin, B.A.; Platonov, Y.P.A.; Tuzov, V. Textbook for universities, Structural materials for nuclear engineering. In Physical Material Science; NRNU MEPhI: Moscow, Russia, 2012. [Google Scholar]
- Kadyrzhanov, K.K.; Kislitsin, S.B.; Maksimkin, O.P.; Romanenko, O.G.; Turkebaev, T.E. Degradation in Mechanical Properties of Stainless Steels C0.12Cr18Ni10Ti and C0.08Cr16Ni11Mo3—Materials for Hexagonal Ducts of Spent Fuel Assemblies from the BN-350 Fast Neutron Reactor. NATO Science for Peace and Security Series C: Environmental Security; Springer: Dordrecht, The Netherlands, 2007; pp. 329–349. [Google Scholar] [CrossRef]
- Panin, V.E.; Polyakov, V.V.; Syrov, G.V.; Fadeev, A.V. Evolution of mechanisms of plastic deformation in porous metals. Russ. Phys. J. 1996, 39, 92–96. [Google Scholar] [CrossRef]
- Firsova, V.; Kislitsin, S.; Dikova, L.; Dikov, A. Changes in the Structure of Irradiated Steel 0.12C18Cr10NiTi Caused by Plastic Deformation at Different Temperatures. In Proceedings of the 2020 7th International Congress on Energy Fluxes and Radiation Effects (EFRE), Tomsk, Russia, 14–16 September 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 959–963. [Google Scholar] [CrossRef]
- Vodopivec, F.; Jenko, M.; Vojvodič-Tuma, J. Stability of MC carbide particles size in creep resisting steel. Metalurgija 2006, 45, 147–153. [Google Scholar]
- Yarovchuk, A.V.; Maksimkin, O.P.; Turubarova, L.G. Electrochemical Behavior and Corrosion Resistance of 12Cr18Ni10Ti Austenitic Steel after Thermal and Neutron Exposure. Inorg. Mater. Appl. Res. 2021, 12, 592–600. [Google Scholar] [CrossRef]
- Maksimkin, O.P. Corrosion of Aluminium Alloy SAV-1 and Austenitic Stainless Steels 12Cr18Ni10Ti and 08Cr16Ni11Mo3—Core Structural Materials for WWR-K and BN-350 Reactors, NATO Science for Peace and Security Series C: Environmental Security; Springer: Dordrecht, The Netherlands, 2007; pp. 267–279. [Google Scholar] [CrossRef]
Element | Al | Si | Mg | Rest |
---|---|---|---|---|
Content | Base | 0.7–1.2 | 0.045–0.9 | ≤0.3 |
Element | Fe | C | Cr | Ni | Ti | Mo |
---|---|---|---|---|---|---|
0.12C18Cr10NiTi | Base | 0.12 | 17.0 | 10.66 | 0.5 | - |
0.08C16Cr11Ni3Mo | 0.08 | 16.0 | 11.1 | - | 2.7 |
Material | Irradiation Dose, dpa | Mark, mm from AZ Center | Dose Rate × 10−8, s−1 | Irradiation Temperature, °C |
---|---|---|---|---|
0.12C18Cr10NiTi | 2–3 | +900 | 0.5 | 400 |
0.08C16Cr11Ni3Mo | 6 | +500 | 1.9 | 365 |
Irradiation Dose, dpa | Irradiation Temperature, °C | ϬB, MPa | Ϭ0.2, MPa | δ, % |
---|---|---|---|---|
0 | 90 | 150 ± 5 | 90 ± 5 | 18 |
~3 | 90 | 77 ± 5 | 68 ± 5 | 15 ± 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dikov, A.; Kislitsin, S.; Ivanov, B.; Kiryanov, R.; Maksimkin, E. Changes in the Structure and Mechanical Properties of the SAV-1 Alloy and Structural Fe-Cr-Ni Steels After Long-Term Service as Core Materials in Nuclear Reactors. Materials 2025, 18, 3391. https://doi.org/10.3390/ma18143391
Dikov A, Kislitsin S, Ivanov B, Kiryanov R, Maksimkin E. Changes in the Structure and Mechanical Properties of the SAV-1 Alloy and Structural Fe-Cr-Ni Steels After Long-Term Service as Core Materials in Nuclear Reactors. Materials. 2025; 18(14):3391. https://doi.org/10.3390/ma18143391
Chicago/Turabian StyleDikov, Alexey, Sergey Kislitsin, Boris Ivanov, Ruslan Kiryanov, and Egor Maksimkin. 2025. "Changes in the Structure and Mechanical Properties of the SAV-1 Alloy and Structural Fe-Cr-Ni Steels After Long-Term Service as Core Materials in Nuclear Reactors" Materials 18, no. 14: 3391. https://doi.org/10.3390/ma18143391
APA StyleDikov, A., Kislitsin, S., Ivanov, B., Kiryanov, R., & Maksimkin, E. (2025). Changes in the Structure and Mechanical Properties of the SAV-1 Alloy and Structural Fe-Cr-Ni Steels After Long-Term Service as Core Materials in Nuclear Reactors. Materials, 18(14), 3391. https://doi.org/10.3390/ma18143391