Investigation into the Strength, Hydration, and Microstructural Characteristics of Clinker-Free Cement Composed of Phosphorus Slag, Fluidized Bed Combustion Bottom Ash, and Lime
Abstract
1. Introduction
- (1)
- To develop PSCMs with a strength grade of 42.5 using phosphorus slag and fluidized bed combustion bottom ash;
- (2)
- To evaluate the freeze–thaw resistance and sulfate resistance of concrete prepared with the developed PSCMs;
- (3)
- To investigate the relationship between the performance and microstructure of the hardened paste of the developed PSCMs through microstructural analysis.
2. Experimental Programs
2.1. Materials
2.2. Mix Proportions and Samples Preparation
2.3. Methods
2.3.1. Determination of the Setting Time and Strength of PSCMs
2.3.2. Determination of PSCM Concrete Performance
2.3.3. Microstructure Examination
3. Experimental Results and Discussion
3.1. Effect of Activator on the Strength of PSCM
3.1.1. Effect of the Water Glass Dosage
3.1.2. Effect of the Sodium Sulfate Dosage
3.2. Effect of Retarder Dosage on the Setting Time and Strength of PSCMs
3.3. Freeze–Thaw Resistance and Sulfate Attack Resistance of PSCM Concrete
3.3.1. Freeze–Thaw Resistance
3.3.2. Sulfate Attack Resistance
3.4. Microstructural Investigation on PSCM
3.4.1. XRD Analysis
3.4.2. FTIR Analysis
3.4.3. TG-DTG Analysis
3.4.4. SEM-EDS Analysis
3.5. Cost Analysis for the Optimal Formulation of PSCMs
4. Conclusions
- (a)
- When the mass ratio of precursor components for PSCM, i.e., granulated electric furnace phosphorus slag (PS), fluidized bed combustion bottom ash (BA), and lime (L), is 80:15:5, the optimal dosages of water glass (WG), sodium sulfate (SS), and retarder (KF) are 7%, 3%, and 1%, respectively. The designed PSCM exhibits an initial setting time of 50 min and a final setting time of 70 min, with flexural strengths of 3.5 MPa at 3 days and 7.5 MPa at 28 days, and compressive strengths of 19.0 MPa at 3 days and 64.1 MPa at 28 days. These setting times and strength values comply with the requirements for P.PS 42.5-grade Phosphorous Slag Portland Cement specified in the Chinese standard JC/T 740-2006 [25];
- (b)
- The durability evaluation results indicate that PSCM concrete prepared using the optimized PSCM formulation exhibited superior sulfate resistance and freeze–thaw resistance compared to ordinary Portland cement (OPC) concrete of the same strength grade. Under the test conditions employed in this study, the sulfate resistance grades of PSCM-C30 and PSCM-C50 both exceeded KS90, whereas those of OPC-C30 and OPC-C50 were KS30 and KS60, respectively. Additionally, the freeze–thaw resistance grades of PSCM-C30 and OPC-C30 were F100 and F50, respectively, while those of PSCM-C50 and OPC-C50 were F175 and F150, respectively
- (c)
- The microstructural investigation demonstrates that the primary hydration products of the designed PSCM are calcium aluminosilicate hydrate (C-A-S-H) and sodium aluminosilicate hydrate (N-A-S-H) gels, with no detectable crystalline phases such as ettringite, gypsum, or calcium aluminate hydrates. FTIR and TG-DTG analyses confirm that the hydration reaction of PSCM continues to progress as the curing time increases, leading to the formation of additional C-A-S-H and N-A-S-H gels. SEM observations reveal that the microstructure of the hardened PSCM paste becomes progressively denser with extended curing time. This can be attributed to the ongoing hydration reaction of PSCM, which results in the formation of additional hydration products, thereby significantly improving the microstructure of the hardened paste, and enhancing both its mechanical strength and its durability.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, Y.; Li, Z.; Liu, P. A co-production system of cement and methanol: Unveiling its advancements and potential. J. Clean. Prod. 2024, 473, 143523. [Google Scholar] [CrossRef]
- IEA Cement [WWW Document]. Available online: https://www.iea.org/energy-system/industry/cement (accessed on 26 May 2023).
- Pitre, V.; La, H.; Bergerson, J.A. Impacts of alternative fuel combustion in cement manufacturing: Life cycle greenhouse gas, biogenic carbon, and criteria air contaminant emissions. J. Clean. Prod. 2024, 475, 143717. [Google Scholar] [CrossRef]
- Van Oss, H.G.; Padovani, A.C. Cement manufacture and the environment part II: Environmental challenges and opportunities. J. Ind. Ecol. 2023, 7, 93–126. [Google Scholar] [CrossRef]
- Cement Sustainability Initiative. Guidelines for the Selection and Use of Fuels and Raw Materials in the Cement Manufacturing Process. World Business Council for Sustainable Development. December 2005. pp. 1–38. Available online: www.wbcsd.org (accessed on 19 November 2019).
- Shubbar, A.A.; Jafer, H.; Dulaimi, A.; Hashim, K.; Atherton, W.; Sadique, M. The development of a low carbon binder produced from the ternary blending of cement, ground granulated blast furnace slag and high calcium fly ash. Constr. Build. Mater. 2018, 187, 1051–1060. [Google Scholar] [CrossRef]
- Tang, J.; Zhou, W.; Cai, X.; Zhang, D. Feasibility of upcycling red mud for low-CO2 cement via calcination: A comparative study with FA and GGBFS based in China. J. Clean. Prod. 2024, 476, 143734. [Google Scholar] [CrossRef]
- Liu, J.; Hao, B.; Yu, J.; Xu, Y.; Cao, Y. Research progress on clinker-free alkali-activated binding materials. Mater. Rep. 2014, 1, 351–354. [Google Scholar]
- Sun, Z.; Lin, X.; Liu, P.; Wang, D.; Vollpracht, A.; Oeser, M. Study of alkali-activated slag as alternative pavement binder. Constr. Build. Mater. 2018, 186, 626–634. [Google Scholar] [CrossRef]
- Gong, C.; Yang, N. Effect of phosphate on the hydration of alkali-activated red mud-slag cementitious material. Cem. Concr. Res. 2000, 30, 1013–1016. [Google Scholar] [CrossRef]
- Smirnova, O.; Kazanskaya, L.; Koplík, J.; Tan, H.; Gu, X. Concrete based on clinker-free cement: Selecting the functional unit for environmental assessment. Sustainability 2021, 13, 135. [Google Scholar] [CrossRef]
- Liu, Z.; Ni, W.; Li, Y.; Ba, H.; Li, N.; Ju, Y.; Zhao, B.; Jia, G.; Hu, W. The mechanism of hydration reaction of granulated blast furnace slag-steel slag-refining slag-desulfurization gypsum-based clinker-free cementitious materials. J. Build. Eng. 2021, 44, 103289. [Google Scholar] [CrossRef]
- Wang, K.; Surendra, P.S.; Alexander, M. Effects of curing temperature and NaOH addition on hydration and strength development of clinker-free CKD-fly ash binders. Cem. Concr. Res. 2004, 34, 299–309. [Google Scholar] [CrossRef]
- Zhang, M.; Ma, Q.; Guo, R.; Shi, T.; Huang, L.; Lin, Z.; Yan, F. Utilization of phosphorus slag in cement concrete. Bull. Chin. Ceram. Soc. 2019, 38, 2464. [Google Scholar]
- Lin, S.; Rao, F.; Zheng, Y.; Li, J. Research progress on resource utilization of phosphorus tailings, phosphogypsum and yellow phosphorus slag by geological polymerization. Conserv. Util. Miner. Resour. 2021, 41, 150–156. [Google Scholar]
- Peng, Y.; Zhang, J.; Liu, J.; Ke, J.; Wang, F. Properties and microstructure of reactive powder concrete having a high content of phosphorus slag powder and silica fume. Constr. Build. Mater. 2015, 101, 482–487. [Google Scholar] [CrossRef]
- Chen, X.; Fang, K.; Yang, H.; Peng, H. Hydration kinetics of phosphorus slag cement paste. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2011, 26, 142–146. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Q.; Yang, J. Hydration mechanisms of composite binders containing phosphorus slag at different temperatures. Constr. Build. Mater. 2017, 147, 720–732. [Google Scholar] [CrossRef]
- Allahverdi, A.; Mahinroosta, M. Mechanical activation of chemically activated high phosphorus slag content cement. Powder Technol. 2013, 245, 182–188. [Google Scholar] [CrossRef]
- Yong, C.L.; Mo, K.H.; Koting, S. Phosphorus slag in supplementary cementitious and alkali activated materials: A review on activation methods. Constr. Build. Mater. 2022, 352, 129028. [Google Scholar] [CrossRef]
- Allahverdi, A.; Pilehvar, S.; Mahinroosta, M. Influence of curing conditions on the mechanical and physical properties of chemically-activated phosphorus slag cement. Powder Technol. 2016, 288, 132–139. [Google Scholar] [CrossRef]
- Yang, J.; Huang, J.; He, X.; Su, Y.; Oh, S.K. Shrinkage properties and microstructure of high volume ultrafine phosphorus slag blended cement mortars with superabsorbent polymer. J. Build. Eng. 2020, 29, 101121. [Google Scholar] [CrossRef]
- Shi, C.; Li, Y. Investigation on some factors affecting the characteristics of alkali-phosphorus slag cement. Cem. Concr. Res. 1989, 19, 527–533. [Google Scholar]
- Allahverdi, A.; Abadi, M.; Hossain, K.; Lachemi, M. Resistance of chemically-activated high phosphorus slag content cement against freeze-thaw cycles. Cold Reg. Sci. Technol. 2014, 103, 107–114. [Google Scholar] [CrossRef]
- JC/T 740-2006; Portland Phosphorous Slag Cement. China Construction Science & Technology Press: Beijing, China, 2011.
- Mehdizadeh, H.; Kani, E.N. Rheology and apparent activation energy of alkali-activated phosphorus slag. Constr. Build. Mater. 2018, 171, 197–204. [Google Scholar] [CrossRef]
- Wang, Q.; Huang, Z.; Wang, D. Influence of high-volume electric furnace nickel slag and phosphorus slag on the properties of massive concrete. J. Therm. Anal. Calorim. 2017, 131, 873–885. [Google Scholar] [CrossRef]
- Peng, Y.; Xiao, J.; Zhan, B.; Wei, L.; Xu, G.; Zhang, J. Preparation of phosphorus slag-based rapid repairing materials and properties of its concrete. Concrete 2017, 11, 173–177. [Google Scholar]
- Kumar, S.; Kumar, R.; Bandopadhyay, A.; Alex, T.C.; Kumar, B.R.; Das, S.K.; Mehrotra, S.P. Mechanical activation of granulated blast furnace slag and its effect on the properties and structure of Portland slag cement. Cem. Concr. Compos. 2008, 30, 679–685. [Google Scholar] [CrossRef]
- Li, D.; Wu, X.; Shen, J.; Wang, Y. The influence of compound admixtures on the properties of high-content slag cement. Cem. Concr. Res. 2000, 30, 45–50. [Google Scholar] [CrossRef]
- Xie, F.; Liu, Z.; Zhang, D.; Wang, J.; Wang, D.; Ni, J. The effect of NaOH content on rheological properties, microstructures and interfacial characteristic of alkali activated phosphorus slag fresh pastes. Constr. Build. Mater. 2020, 252, 119132. [Google Scholar] [CrossRef]
- Tang, J.; Min, D.; Wang, A.; Xie, L. Influence of the cement fineness on strengths of cement pastes containing high phosphorus slag. J. Mater. Civ. Eng. 2015, 27, 04015047. [Google Scholar]
- Sun, B.; Ye, G.; De Schutter, G. A review: Reaction mechanism and strength of slag and fly ash-based alkali-activated materials. Constr. Build. Mater. 2022, 326, 126843. [Google Scholar]
- Palacios, M.; Alonso, M.M.; Varga, C.; Puertas, F. Influence of the alkaline solution and temperature on the rheology and reactivity of alkali-activated fly ash pastes. Cem. Concr. Compos. 2019, 95, 277–284. [Google Scholar] [CrossRef]
- Wianglor, K.; Sinthupinyo, S.; Piyaworapaiboon, M.; Chaipanich, A. Effect of alkali-activated metakaolin cement on compressive strength of mortars. Appl. Clay Sci. 2017, 141, 272–279. [Google Scholar] [CrossRef]
- Deng, X.; Guo, H.; Tan, H.; Nie, K.; He, X.; Yang, J.; Wang, Y.; Zhang, J. Effect of organic alkali on hydration of GGBS-FA blended cementitious material activated by sodium carbonate. Ceram. Int. 2022, 48, 1611–1621. [Google Scholar] [CrossRef]
- Yang, R.; Yu, R.; Shui, Z.; Gao, X.; Xie, X.; Zhang, X.; Wang, Y.; He, Y. Low carbon design of an ultra-high performance concrete (UHPC) incorporating phosphorus slag. J. Clean. Prod. 2019, 240, 118157. [Google Scholar] [CrossRef]
- Hu, J. Comparison between the effects of superfine steel slag and superfine phosphorus slag on the long-term performances and durability of concrete. J. Therm. Anal. Calorim. 2017, 128, 1251–1263. [Google Scholar] [CrossRef]
- Li, D.; Shen, J.; Mao, L.; Wu, X. The influence of admixtures on the properties of phosphorus slag cement. Cem. Concr. Res. 2000, 30, 1169–1173. [Google Scholar] [CrossRef]
- Gao, P.; Lu, X.; Yang, C.; Li, X.; Shi, N.; Jin, S. Microstructure and pore structure of concrete mixed with superfine phosphorus slag and superplasticizer. Constr. Build. Mater. 2008, 22, 837–840. [Google Scholar] [CrossRef]
- Shi, C.; Qu, B.; Provis, J.L. Recent progress in low-carbon binders. Cem. Concr. Res. 2019, 122, 227–250. [Google Scholar] [CrossRef]
- Liu, D. Effect of phosphorus slag and fly ash on anti-corrosion property of high belite cement. Appl. Mech. Mater. 2012, 117–119, 1231–1234. [Google Scholar] [CrossRef]
- Soleimani, M.A.; Naghizadeh, R.; Mirhabibi, A.; Golestanifard, F. The influence of phosphorus slag addition on microstructure and mechanical properties of metakaolin-based geopolymer pastes. Ceram.-Silik. 2013, 57, 33–38. [Google Scholar]
- Vafaei, M.; Allahverdi, A.; Dong, P.; Bassim, N.; Mahinroosta, M. Resistance of red clay brick waste/phosphorus slag-based geopolymer mortar to acid solutions of mild concentration. J. Build. Eng. 2021, 34, 102066. [Google Scholar] [CrossRef]
- Shi, C.; He, F.; Angel, P. Classification and characteristics of alkali-activated cement. J. Chin. Ceram. Soc. 2012, 40, 69–75. [Google Scholar]
- Shi, C.; Li, Y.; Tang, X. A preliminary study on the mechanism of activation of phosphorus slag. J. Southeast Univ. (Nat. Sci. Ed.) 1989, 19, 141–145. [Google Scholar]
- Mehdizadeh, H.; Kani, E.N.; Sanchez, A.P.; Fernandez-Jimenez, A. Rheology of activated phosphorus slag with lime and alkaline salts. Cem. Concr. Res. 2018, 113, 121–129. [Google Scholar] [CrossRef]
- Jia, R.; Wang, Q.; Luo, T. Understanding the workability of alkali-activated phosphorus slag pastes: Effects of alkali dose and silicate modulus on early-age hydration reactions. Cem. Concr. Compos. 2022, 133, 104649. [Google Scholar] [CrossRef]
- Jia, R.; Wang, Q.; Luo, T. Mechanisms and differences between sodium and magnesium sulfate attacks on alkali-activated phosphorus slag. Constr. Build. Mater. 2023, 403, 133117. [Google Scholar] [CrossRef]
- Huang, Z.; Deng, L.; Che, D. Development and technical progress in large-scale circulating fluidized bed boiler in China. Front. Energy 2020, 14, 699–714. [Google Scholar] [CrossRef]
- GB/T 17671-2021; Test Method of Cement Mortar Strength (ISO Method). Standards Press of China: Beijing, China, 2021.
- GB/T 1346-2024; Test Methods for Water Requirement of Standard Consistency, Setting Time and Soundness of the Portland Cement. Standards Press of China: Beijing, China, 2024.
- GB/T 50081-2019; Standard for Test Methods of Concrete Physical and Mechanical Properties. China Architecture & Building Press: Beijing, China, 2019.
- GB/T 50082-2024; Standard for Test Methods of Long-Term Performance and Durability of Ordinary Concrete. China Architecture & Building Press: Beijing, China, 2024.
- Yang, N. Physical and chemical basis of alkali-activated materials formation (I). J. Chin. Ceram. Soc. 1996, 24, 209–215. [Google Scholar]
- Yang, N. Physical and chemical basis of alkali-activated materials formation (II). J. Chin. Ceram. Soc. 1996, 24, 459–465. [Google Scholar]
- Cong, P.; Du, R.; Gao, H.; Chen, Z. Comparison and assessment of carbon dioxide emissions between alkali-activated materials and OPC cement concrete. J. Traffic Transp. Eng. (Engl. Ed.) 2024, 11, 918–938. [Google Scholar] [CrossRef]
- Cong, P.; Cheng, Y.; Ge, W.; Zhang, A. Mechanical, microstructure and reaction process of calcium carbide slag-waste red brick powder based alkali-activated materials (CWAAMs). J. Clean. Prod. 2022, 331, 129845. [Google Scholar] [CrossRef]
- Duxson, P.; Provis, J.L.; Lukey, G.C.; Van Deventer, J.S. The role of inorganic polymer technology in the development of ‘green concrete’. Cem. Concr. Res. 2007, 37, 1590–1597. [Google Scholar] [CrossRef]
- Palomo, A.; Grutzeck, M.W.; Blanco, M.T. Alkali-activated fly ashes: A cement for the future. Cem. Concr. Res. 1999, 29, 1323–1329. [Google Scholar] [CrossRef]
- Qin, X.; Wang, P.; Liu, L.; Wang, M.; Xin, J. Sensitivity analysis of microstructure parameters and mechanical strength during consolidation of cemented paste backfill. Math. Probl. Eng. 2018, 2018, 5170721. [Google Scholar] [CrossRef]
- Lei, D.; Guo, L.; Sun, W.; Liu, J.; Miao, C. Study on properties of untreated FGD gypsum-based high-strength building materials. Constr. Build. Mater. 2017, 153, 765–773. [Google Scholar] [CrossRef]
- Feng, Y.; Xue, Z.; Zhang, B.; Xie, J.; Chen, C.; Tan, J.; Zhao, C. Effects of phosphogypsum substitution on the performance of ground granulated blast furnace slag/fly ash-based alkali-activated binders. J. Build. Eng. 2023, 70, 106387. [Google Scholar] [CrossRef]
- Kurdowski, W. Cement and Concrete Chemistry; Springer Science: Dordrecht, The Netherlands, 2014. [Google Scholar]
- Yang, N.; Yue, W. The Handbook of Inorganic Metalloid Materials Atlas; Wuhan University of Technology Press: Wuhan, China, 2000. [Google Scholar]
- Li, N.; Farzadnia, N.; Shi, C. Microstructural changes in alkali-activated slag mortars induced by accelerated carbonation. Cem. Concr. Res. 2017, 100, 214–226. [Google Scholar] [CrossRef]
- Shao, Y.; Rostami, V.; He, Z.; Boyd, A.J. Accelerated carbonation of Portland limestone cement. J. Mater. Civ. Eng. 2014, 26, 117–124. [Google Scholar] [CrossRef]
- Legodi, M.; De Waal, D.; Potgieter, J. Quantitative determination of CaCO3 in cement blends by FT-IR. Appl. Spectrosc. 2001, 55, 361–365. [Google Scholar] [CrossRef]
- Peng, Y.; Liu, Y.; Zhan, B.; Xu, G. Preparation of autoclaved aerated concrete by using graphite tailings as an alternative silica source. Constr. Build. Mater. 2021, 267, 121792. [Google Scholar] [CrossRef]
- Bernal, S.A.; de Gutiérrez, R.M.; Pedraza, A.L.; Provis, J.L.; Rodriguez, E.D.; Delvasto, S. Effect of binder content on the performance of alkali-activated slag concretes. Cem. Concr. Res. 2011, 41, 1–8. [Google Scholar] [CrossRef]
- Walkley, B.; Nicolas, R.S.; Sani, M.A.; Rees, G.J.; Hanna, J.V.; van Deventer, J.S.J.; Provis, J.L. Phase evolution of C-(N)-A-S-H/N-A-S-H gel blends investigated via alkali-activation of synthetic calcium aluminosilicate precursors. Cem. Concr. Res. 2016, 89, 120–135. [Google Scholar] [CrossRef]
- Bernal, S.A.; Provis, J.L.; Rose, V. Evolution of binder structure in sodium silicate-activated slag-metakaolin blends. Cem. Concr. Compos. 2011, 33, 46–54. [Google Scholar] [CrossRef]
- Vafaei, M.; Allahverdi, A. Strength development and acid resistance of geopolymer based on waste clay brick powder and phosphorus slag. Struct. Concr. 2019, 20, 1596–1606. [Google Scholar] [CrossRef]
- Palacios, M.; Gismera, S.; Alonso, M.M.; De Lacaillerie, J.D.E.; Lonthenbach, B.; Favier, A.; Brumaud, C.; Puertas, F. Early reactivity of sodium silicate-activated slag pastes and its impact on rheological properties. Cem. Concr. Res. 2021, 140, 106302. [Google Scholar] [CrossRef]
- Peng, Y.; Hu, S.; Ding, Q. Preparation of reactive powder concrete using fly ash and steel slag powder. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2010, 25, 349–354. [Google Scholar] [CrossRef]
- Bernal, S.A.; Rodríguez, E.D.; Mejía de Gutiérrez, R.; Gordillo, M.; Provis, J.L. Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends. J. Mater. Sci. 2011, 46, 5477–5486. [Google Scholar] [CrossRef]
- Alarcon-Ruiz, L.; Platret, G.; Massieu, E.; Ehrlacher, A. The use of thermal analysis in assessing the effect of temperature on a cement paste. Cem. Concr. Res. 2005, 35, 609–613. [Google Scholar] [CrossRef]
- Bernal, S.A.; de Gutierrez, R.M.; Provis, J.L.; Rose, V. Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags. Cem. Concr. Res. 2010, 40, 898–907. [Google Scholar] [CrossRef]
- Available online: http://zj.yichang.gov.cn/content-62527-985084-1.html (accessed on 4 June 2025).
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | K2O | Na2O | SO3 | P2O5 | Loss on Ignition | |
---|---|---|---|---|---|---|---|---|---|---|
PS | 38.09 | 3.85 | 0.33 | 43.64 | 1.98 | 3.05 | 0.37 | 1.27 | 4.21 | 0.52 |
BA | 55.74 | 27.52 | 3.85 | 2.26 | 1.59 | 1.36 | 0.51 | 1.35 | 0.22 | 3.69 |
L | 0.44 | 0.18 | 0.07 | 93.4 | 0.95 | / | / | 0.79 | / | 4.10 |
Mixture No. | Cementitious Component (%) | Activator a | Retarder a (i.e., KF) (%) | |||
---|---|---|---|---|---|---|
PS | BA | Lime (L) | Water Glass (WG) (Na2O wt. %) | Sodium Sulfate (SS) (wt. %) | ||
BA0-WG5 | 95 | 0 | 5.0 | 5.0 | 0 | 1.0 |
BA0-WG6 | 95 | 0 | 5.0 | 6.0 | 0 | 1.0 |
BA0-WG7 | 95 | 0 | 5.0 | 7.0 | 0 | 1.0 |
BA0-WG8 | 95 | 0 | 5.0 | 8.0 | 0 | 1.0 |
BA15-WG5 | 80 | 15 | 5.0 | 5.0 | 0 | 1.0 |
BA15-WG6 | 80 | 15 | 5.0 | 6.0 | 0 | 1.0 |
BA15-WG7 | 80 | 15 | 5.0 | 7.0 | 0 | 1.0 |
BA15-WG8 | 80 | 15 | 5.0 | 8.0 | 0 | 1.0 |
BA0-WG7-SS1 | 95 | 0 | 5.0 | 7.0 | 1.0 | 1.0 |
BA0-WG7-SS3 | 95 | 0 | 5.0 | 7.0 | 3.0 | 1.0 |
BA0-WG7-SS5 | 95 | 0 | 5.0 | 7.0 | 5.0 | 1.0 |
BA15-WG7-SS1 | 80 | 15 | 5.0 | 7.0 | 1.0 | 1.0 |
BA15-WG7-SS3 | 80 | 15 | 5.0 | 7.0 | 3.0 | 1.0 |
BA15-WG7-SS5 | 80 | 15 | 5.0 | 7.0 | 5.0 | 1.0 |
BA15-WG7-SS3-KF0 | 80 | 15 | 5.0 | 7.0 | 3.0 | 0.0 |
BA15-WG7-SS3-KF0.5 | 80 | 15 | 5.0 | 7.0 | 3.0 | 0.5 |
BA15-WG7-SS3-KF1 | 80 | 15 | 5.0 | 7.0 | 3.0 | 1.0 |
BA15-WG7-SS3-KF1.5 | 80 | 15 | 5.0 | 7.0 | 3.0 | 1.5 |
Concrete No. | W/B | Mix Design (kg/m3) | Activator c | Retarder c | |||
---|---|---|---|---|---|---|---|
PSCM | Sand | Crushed Stone | Water Glass (WG) (Na2O wt. %) | Sodium Sulfate (SS) (wt. %) | KF (wt. %) | ||
PSCM-C30 | 0.44 | 333 a | 746 | 1121 | 7 | 3 | 1 |
PSCM-C50 | 0.33 | 500 a | 578 | 1122 | 7 | 3 | 1 |
OPC-C30 | 0.44 | 333 b | 746 | 1121 | 0 | 0 | 0 |
OPC-C50 | 0.33 | 500 b | 578 | 1122 | 0 | 0 | 0 |
Concrete No. | Mass Loss of Specimens After n Freeze–Thaw Cycles, ΔWn/% | Relative Dynamic Elastic Modulus of Specimens After n Freeze–Thaw Cycles, P/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 50 | 100 | 150 | 175 | 0 | 50 | 100 | 150 | 175 | |
PSCM-C30 | 0 | 0 | 0.5 | / | / | 100 | 88.1 | 64.2 | / | / |
PSCM-C50 | 0 | 0 | 0 | 0.08 | 0.10 | 100 | 91.2 | 83.1 | 68.3 | 61.1 |
OPC-C30 | 0 | 0.4 | 1.7 | / | / | 100 | 79.1 | 53.5 | / | / |
OPC-C50 | 0 | 0 | 0.1 | 1.24 | 2.07 | 100 | 96.2 | 81.7 | 62.8 | 56.6 |
Concrete No. | Compressive Strength Corrosion Resistance Coefficient of PSCM Concrete After n Cycles of Dry–Wet Testing with Sodium Sulfate Solution, Kf (%) | ||
---|---|---|---|
30 | 60 | 90 | |
PSCM-C30 | 110 | 99 | 85 |
PSCM-C50 | 121 | 112 | 103 |
OPC-C30 | 93 | 71 | / |
OPC-C50 | 104 | 95 | 74 |
Molar Ratios | Ca/Si | Na/Si | Al/Si | |
---|---|---|---|---|
The Selected PSCM | ||||
BA0-WG7-KF1 | 2.03 | 0.30 | 0.13 | |
BA0-WG7-SS3-KF1 | 1.90 | 0.45 | 0.12 | |
BA15-WG7-KF1 | 1.41 | 0.48 | 0.15 | |
BA15-WG7-SS3-KF1 | 1.03 | 0.81 | 0.15 |
Components | PSCM | P·O 42.5 | ||||||
---|---|---|---|---|---|---|---|---|
Item | PS | BA | L | WG (by Na2O) | SS | KF | ||
Mass percentage, % | 80 | 15 | 5 | 13.6 a | 3.0 | 1.0 | 100 | |
Component price [79], CNY/ton | 160 | 100 | 400 | 550 | 860 | 12,000 | 440 | |
Component Cost, CNY | 128 | 15 | 20 | 74.6 | 25.8 | 120 | 440 | |
Total cost, CNY/ton | 383.4 | 440 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Y.; Li, H.; Yin, H.; Xiao, J.; Xu, G. Investigation into the Strength, Hydration, and Microstructural Characteristics of Clinker-Free Cement Composed of Phosphorus Slag, Fluidized Bed Combustion Bottom Ash, and Lime. Materials 2025, 18, 3266. https://doi.org/10.3390/ma18143266
Peng Y, Li H, Yin H, Xiao J, Xu G. Investigation into the Strength, Hydration, and Microstructural Characteristics of Clinker-Free Cement Composed of Phosphorus Slag, Fluidized Bed Combustion Bottom Ash, and Lime. Materials. 2025; 18(14):3266. https://doi.org/10.3390/ma18143266
Chicago/Turabian StylePeng, Yanzhou, Haitian Li, Hefei Yin, Ji Xiao, and Gang Xu. 2025. "Investigation into the Strength, Hydration, and Microstructural Characteristics of Clinker-Free Cement Composed of Phosphorus Slag, Fluidized Bed Combustion Bottom Ash, and Lime" Materials 18, no. 14: 3266. https://doi.org/10.3390/ma18143266
APA StylePeng, Y., Li, H., Yin, H., Xiao, J., & Xu, G. (2025). Investigation into the Strength, Hydration, and Microstructural Characteristics of Clinker-Free Cement Composed of Phosphorus Slag, Fluidized Bed Combustion Bottom Ash, and Lime. Materials, 18(14), 3266. https://doi.org/10.3390/ma18143266