Study on the Properties of Basalt Fiber-Modified Phosphogypsum Planting Concrete
Abstract
1. Introduction
2. Experiment Materials and Method
2.1. Experiment Materials
2.2. Specimen Preparation
2.3. Experimental Methods
2.3.1. Compressive Strength Test
2.3.2. Porosity Test
2.3.3. Water Retention Rate Test
2.3.4. Sand Permeability Rate Test
2.3.5. Water Permeability Coefficient Test
2.3.6. Alkalinity Test
3. Results and Discussion
3.1. Compressive Strength Analysis
3.2. Porosity Analysis
3.3. Sand-Passing Ratio Analysis
3.4. Permeability Coefficient Analysis
3.5. Water Retention Analysis
3.6. Alkalinity Analysis
4. Conclusions
- The incorporation of basalt fibers significantly enhanced the compressive strength of phosphogypsum planting concrete. Specimens with 18 mm basalt fibers exhibited higher compressive strength than those with 6 mm fibers at the same dosage. The maximum 28-day compressive strength of the specimens with 18 mm basalt fibers reached 19.7 MPa at a fiber content of 1.0%, representing an 87.6% increase compared to fiber-free concrete.
- Both the total and effective porosity of phosphogypsum planting concrete decreased with increasing basalt fiber content. For 6 mm fibers, total porosity reduced from 27.6% (control) to 26.2% at 1.5% fiber content, while for 18 mm fibers, the reduction was less pronounced, reaching 26.5% at the same dosage. The variability in porosity reduction highlights the superior pore-filling effect of shorter (6 mm) fibers compared to longer (18 mm) fibers, attributed to reduced agglomeration tendencies of shorter fibers.
- The sand permeability rate and water permeability coefficient of phosphogypsum planting concrete decreased while the basalt fiber content increased. For 6 mm fibers, the sand permeability rate dropped by 16.8% to 22.4% (from 84.7% to 65.7%) and the water permeability coefficient by 6.8% to 27.3% (from 1.76 cm/s to 1.28 cm/s) at 0.5% to 1.5% fiber content. For 18 mm fibers, reductions were smaller, with sand permeability decreasing by 4.7% to 9.8% (to 76.4%) and water permeability by 5.7% to 18.2% (to 1.44 cm/s). The variability indicates that 6 mm fibers are more effective in reducing permeability due to better distribution within the matrix.
- Both the natural and saturated water retention rates of phosphogypsum planting concrete increased with higher basalt fiber content. For 6 mm fibers at 1.5% content, natural water absorption increased by 47.2% (to 4.74%) and saturated absorption by 16.2% (to 6.67%) compared to the control. For 18 mm fibers, increases were slightly lower at 45.6% (to 4.69%) and 8.3% (to 6.22%). The variability in water retention improvement underscores the role of finer pore structures formed by higher fiber dosages, with 6 mm fibers showing a slightly greater effect.
- The incorporation of basalt fibers had a minimal impact on the alkalinity of the concrete, with pH values ranging from 9.5 to 9.6 across all fiber contents. This low variability suggests that basalt fibers primarily influence the mechanical and physical properties rather than the chemical environment of the concrete.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, R.; Yang, D.; Wu, K.; Wang, F.; Chen, X.; Liu, L.; Zhang, L.; Liu, C.; Gu, T. Effect of CO2 curing pressure on alkalinity and mechanical properties of vegetated concrete. Bull. Chin. Ceram. Soc. 2023, 42, 3499–3507. [Google Scholar] [CrossRef]
- Liu, P. Study on the Purification Effect of Vegetation Concrete Ecological Slope Protection for Rainwater Runoff. Master’s Thesis, Chongqing Jiaotong University, Chongqing, China, 2023. [Google Scholar] [CrossRef]
- Liu, D.; Gao, X.; Xu, Y.; Yang, S.; Chen, J.; Ding, Y.; Xia, D.; Xiao, H.; Xu, W. Influence of biochar addition amount on physicochemical properties of vegetation concrete and biomass of cynodon dactylon. J. Basic Basic Sci. Eng. 2021, 29, 1–14. [Google Scholar] [CrossRef]
- Xie, F.; Liu, F.; Gong, A.; Mei, W.; Luo, C.; Yin, Q. Effect of porosity on compressive strength and planting performance of ecological concrete. Fly Ash. Compr. Util. 2021, 35, 50–60+65. [Google Scholar] [CrossRef]
- Ke, J.; Shui, Z.; Gao, X.; Qi, X.; Zheng, Z.; Zhang, S. Effect of Vibration Procedure on Particle Distribution of Cement Paste. Materials 2023, 16, 2600. [Google Scholar] [CrossRef]
- Kaladharan, G.; Szeles, T.; Stoffels, S.M.; Rajabipour, F. Novel admixtures for mitigation of alkali-silica reaction in concrete. Cem. Concr. Compos. 2021, 120, 104028. [Google Scholar] [CrossRef]
- Liu, G.; Su, X.; Lv, Y.; Liao, L.; Hou, Z. Research on the optimization of planting concrete mix proportion based on orthogonal test. Concrete 2022, 117–121+125. [Google Scholar] [CrossRef]
- Aydin, A.C. Self compactability of high volume hybrid fiber reinforced concrete. Constr. Build. Mater. 2007, 21, 1149–1154. [Google Scholar] [CrossRef]
- Abbass, W.; Khan, M.I.; Mourad, S. Evaluation of mechanical properties of steel fiber reinforced concrete with different strengths of concrete. Constr. Build. Mater. 2018, 168, 556–569. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, K.; Lin, B.; Yao, Y. The enhancement mechanism of modified basalt fiber on the performance of geopolymer concrete. Constr. Build. Mater. 2024, 417, 135123. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; He, Y.; Huang, G.; Li, J.; Niu, Z.; Gao, B. A review on durability of basalt fiber reinforced concrete. Compos. Sci. Technol. 2022, 225, 109519. [Google Scholar] [CrossRef]
- Yao, D.; Li, J.; Xiao, H.; Yang, W.; Liu, R. Research on the surface abrasion resistance performance of basalt fiber reinforced concrete. J. Build. Eng. 2024, 88, 109125. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, X.; Ding, L.; Jiang, K.; Su, C.; Ben, Q.; Wu, Z. Effects of macro basalt fibers on the tensile behavior of ultra-high performance concrete. J. Build. Eng. 2024, 89, 109277. [Google Scholar] [CrossRef]
- Xie, H.; Yang, L.; Zhang, X.; Li, T.; Huang, C.; Ma, L. Study on impact compression properties and failure characteristics of basalt fiber reinforced reactive powder concrete. J. Clean. Prod. 2025, 486, 144398. [Google Scholar] [CrossRef]
- Khan, M.; Cao, M.; Xie, C.; Ali, M. Hybrid fiber concrete with different basalt fiber length and content. Struct. Concr. 2021, 23, 346–364. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Y.; Yang, R.; Liu, P. Experimental Analysis of Bearing Capacity of Basalt Fiber Reinforced Concrete Short Columns under Axial Compression. Coatings 2022, 12, 654. [Google Scholar] [CrossRef]
- Ding, K.; Zeng, C. Study on the compressive strength, pore structure characteristics, and fractal dimension of the ecological porous concrete specimens based on ordinary Portland cement. Constr. Build. Mater. 2025, 483, 141795. [Google Scholar] [CrossRef]
- He, Z.; Zhao, X.; Ye, M.; Zuo, W.; Nie, X.; Zhao, J. Study on the Effect of Basalt Fiber Content and Length on Mechanical Properties and Durability of Coal Gangue Concrete. Sustainability 2024, 16, 9310. [Google Scholar] [CrossRef]
- Liang, N.; Geng, S.; Mao, J.; Liu, X.; Zhou, X. Investigation on cracking resistance mechanism of basalt-polypropylene fiber reinforced concrete based on SEM test. Constr. Build. Mater. 2024, 411, 134102. [Google Scholar] [CrossRef]
- Liang, N.; Miao, Q.; Liu, X.; Zhong, Y. Frost-resistance mechanism of multi-scale PFRC based on NMR. Mag. Concr. Res. 2019, 71, 710–718. [Google Scholar] [CrossRef]
- Yu, H.; Meng, T.; Zhao, Y.; Liao, J.; Ying, K. Effects of basalt fiber powder on mechanical properties and microstructure of concrete. Case Stud. Constr. Mater. 2022, 17, e01286. [Google Scholar] [CrossRef]
- Wang, F.; Sun, C. Effect of pore structure on compressive strength and permeability of planting recycled concrete. Constr. Build. Mater. 2023, 394, 132167. [Google Scholar] [CrossRef]
- Sun, S. Mechanical Properties and Damage Characteristics of Basalt Fiberreinforced Cemented Silty Sand in Seasonally Frozen Zone. Ph.D. Thesis, Jilin University, Changchun, China, 2022. [Google Scholar] [CrossRef]
- Chen, C. Preparation and Properties Ofcarbon Nanotubes/Basalt Fibermultiscale Composite. Ph.D. Thesis, North University of China, Taiyuan, China, 2020. [Google Scholar] [CrossRef]
- Xu, J.; Liu, M.; Kang, A.; Wu, Z.; Kou, C.; Zhang, Y.; Xiao, P. Effect of fiber characteristic parameters on the synergistic action and mechanism of basalt fiber asphalt mortar. Constr. Build. Mater. 2024, 438, 137234. [Google Scholar] [CrossRef]
- Zhou, H.; Jia, B.; Huang, H.; Mou, Y. Experimental Study on Basic Mechanical Properties of Basalt Fiber Reinforced Concrete. Materials 2020, 13, 1362. [Google Scholar] [CrossRef]
- Yang, C.; Fang, Y.; Wei, P.; Zeng, H.; Shen, C.; Yang, J.; Zhang, H.; Chu, H. Optimization study on alkali-reduction techniques and vegetation performance of planting concrete incorporating phosphogypsum. Constr. Build. Mater. 2025, 482, 141663. [Google Scholar] [CrossRef]
- Zhang, H.; Cao, J.; Bai, S.; Zhao, M.; Ding, Q.; Ma, X. Research of the Mechanical Properties and Durability of Phosphogypsum Aggregate Concrete. J. Phys. Conf. Ser. 2025, 3008, 012053. [Google Scholar] [CrossRef]
- Liu, R.; Liu, C.; Du, J.; Wang, C.; Yuan, Y.; Zhang, X. Preparation of phosphogypsum ecological concrete and study on its phytogenic properties. Front. Environ. Sci. 2025, 12, 1539964. [Google Scholar] [CrossRef]
- GB/T50081-2019; Standard for Test Methods of Concrete Physical and Mechanical Properties. China Architecture & Building Press: Beijing, China, 2019.
- CJJ/T253-2016; Technical Specification for Application of Pervious Recycled Aggregate Concrete. China Architecture & Building Press: Beijing, China, 2016.
- JC/T 2557-2020; Green-Growing Concrete. China Construction Science And Technology Press: Beijing, China, 2020.
- Azandariani, M.G.; Vajdian, M.; Asghari, K.; Mehrabi, S. Mechanical properties of polyolefin and polypropylene fibers-reinforced concrete–An experimental study. Compos. Part C Open Access 2023, 12, 100410. [Google Scholar] [CrossRef]
- Tayeh, B.A.; Akeed, M.H.; Qaidi, S.; Abu Bakar, B. Ultra-high-performance concrete: Impacts of steel fibre shape and content on flowability, compressive strength and modulus of rupture. Case Stud. Constr. Mater. 2022, 17, e01615. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, J.; Nie, M.; Wang, Q.; Yang, F.; Han, R. Interfacial reinforcement strategy of basalt fiber/polymer composite constructed by interlocking interface composed of ZnO nanowires. Colloids Surf. A Physicochem. Eng. Asp. 2024, 681, 132778. [Google Scholar] [CrossRef]
- Yang, J. Research on Composition Design and Bonding Performance of Basalt Fiber Ultra High Performence Concrete. Master’s Thesis, Yangzhou University, Yangzhou, China, 2023. [Google Scholar] [CrossRef]
- Wang, W.; Zhu, J.; Cheng, X.; Liu, S.; Jiang, D.; Wang, W. Numerical simulation of strength of basalt fiber permeable concrete based on CT technology. Case Stud. Constr. Mater. 2022, 17, e01348. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, A. Experimental study on high performance recycled pervious fiber concrete. New Chem. Mater. 2020, 48, 253–256. [Google Scholar] [CrossRef]
- Wang, W.; Zhu, J.; Cheng, X.; Jiang, D.; Shi, G.; Chen, X. Study and prediction analysis on road performance of basalt fiber permeable concrete. Sci. Eng. Compos. Mater. 2023, 30, 20220223. [Google Scholar] [CrossRef]
- Deák, T.; Czigány, T.; Maršálková, M.; Militký, J. Manufacturing and testing of long basalt fiber reinforced thermoplastic matrix composites. Polym. Eng. Sci. 2010, 50, 2448–2456. [Google Scholar] [CrossRef]
- Festugato, L.; da Silva, A.P.; Diambra, A.; Consoli, N.C.; Ibraim, E. Modelling tensile/compressive strength ratio of fibre reinforced cemented soils. Geotext. Geomembr. 2018, 46, 155–165. [Google Scholar] [CrossRef]
- Wang, Z.; Xing, L.; Zhao, K.; Lu, J.; Tian, J. Study on corrosion resistance and mechanical property degradation of basalt fiber reinforced concrete under magnesium sulfate erosion environment. Chin. J. Appl. Mech. 2020, 37, 134–141. [Google Scholar] [CrossRef]
- Guo, Y. Study on Mechanical Properties and Toughness of Basalt Fiber Recycled Aggregate Concrete. Ph.D. Thesis, Taiyuan University of Technology, Taiyuan, China, 2023. [Google Scholar] [CrossRef]
- Wang, Z.; Li, H.; Wu, B.; Ma, X.; Ma, H.; Tian, J. Experimental research on durability and mechanical properties of basalt fiber reinforced concrete in sodium hydroxide environment. Chin. J. Appl. Mech. 2019, 36, 1088–1095. [Google Scholar] [CrossRef]
Fineness (m2/kg) | Soundness | Setting Time (min) | Flexural Strength (MPa) | Compressive Strength (MPa) | |||
---|---|---|---|---|---|---|---|
Initial | Final | 3 d | 28 d | 3 d | 28 d | ||
360 | Qualified | 140 | 260 | 5.7 | 8.1 | 28.9 | 46.9 |
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | LOI |
---|---|---|---|---|---|---|
21.49 | 4.89 | 4.12 | 62.53 | 2.22 | 1.56 | 3.19 |
SO3 | CaO | SiO2 | Al2O3 | P2O5 | Fe2O3 | K2O | MgO | Na2O |
---|---|---|---|---|---|---|---|---|
43.47 | 28.79 | 4.72 | 0.88 | 0.62 | 0.36 | 0.26 | 0.23 | 0.20 |
Diameter (μm) | Density (kg/m3) | Tensile Strength (MPa) | Elastic Modulus (MPa) |
---|---|---|---|
13~14 | 2600 | 2500~2900 | 72~85 |
Mixtures | Fiber Length (mm) | Fiber Dosage (%) | Basalt Fiber (kg/m3) | Coarse Aggregate (kg/m3) | Cement (kg/m3) | Phosphogypsum (kg/m3) | Water (kg/m3) | Admixture (kg/m3) |
---|---|---|---|---|---|---|---|---|
X0-0 | 0 | 0 | 0 | 1470 | 252 | 63 | 95 | 9.5 |
X0.5-6 | 6 | 0.5 | 1.6 | 1470 | 252 | 63 | 95 | 9.5 |
X1-6 | 6 | 1 | 3.2 | 1470 | 252 | 63 | 95 | 9.5 |
X1.5-6 | 6 | 1.5 | 4.8 | 1470 | 252 | 63 | 95 | 9.5 |
X0.5-18 | 18 | 0.5 | 1.6 | 1470 | 252 | 63 | 95 | 9.5 |
X1-18 | 18 | 1 | 3.2 | 1470 | 252 | 63 | 95 | 9.5 |
X1.5-18 | 18 | 1.5 | 4.8 | 1470 | 252 | 63 | 95 | 9.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Zhou, X.; Liu, M.; Yuan, P.; Liu, Z.; Shen, C.; Hao, M.; Zhang, F.; Chu, H. Study on the Properties of Basalt Fiber-Modified Phosphogypsum Planting Concrete. Materials 2025, 18, 3209. https://doi.org/10.3390/ma18143209
Zhang W, Zhou X, Liu M, Yuan P, Liu Z, Shen C, Hao M, Zhang F, Chu H. Study on the Properties of Basalt Fiber-Modified Phosphogypsum Planting Concrete. Materials. 2025; 18(14):3209. https://doi.org/10.3390/ma18143209
Chicago/Turabian StyleZhang, Weihao, Xiaoyan Zhou, Menglu Liu, Peng Yuan, Zhao Liu, Chen Shen, Mingwang Hao, Fengchen Zhang, and Hongqiang Chu. 2025. "Study on the Properties of Basalt Fiber-Modified Phosphogypsum Planting Concrete" Materials 18, no. 14: 3209. https://doi.org/10.3390/ma18143209
APA StyleZhang, W., Zhou, X., Liu, M., Yuan, P., Liu, Z., Shen, C., Hao, M., Zhang, F., & Chu, H. (2025). Study on the Properties of Basalt Fiber-Modified Phosphogypsum Planting Concrete. Materials, 18(14), 3209. https://doi.org/10.3390/ma18143209