Achieving High Strength in Mg-0.7Sm-0.3Zr Alloy via Room-Temperature Rotary Swaging: Radial Gradient Microstructure and Grain Refinement Mechanisms
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Microstructure of the Extruded Mg-Sm-Zr Alloy
3.2. Mechanical Properties
3.3. Microstructure Evolution During Swaging
3.4. Microstructural Evolution Along the Radial Direction
4. Discussion
4.1. Strengthening Mechanism
4.2. Grain Refinement Mechanisms
5. Conclusions
- Rotary swaging at room temperature significantly enhances the hardness and strength of the alloy. After 5 passes, the radial average hardness reaches 71.6 HV, with TYS and UTS increasing to 292 MPa and 302 MPa, respectively, while elongation decreases to 11.6%.
- The microstructure of the Mg-0.7Sm-0.3Zr alloy is markedly refined following swaging. The average grain size decreases from 4.37 μm to 2.02 μm. The proportion of LAGBs and dislocation density progressively increase with swaging passes. After 2 swaging passes, the alloy exhibits a pronounced radial gradient structure from the surface to the core regions, characterized by progressively decreasing grain sizes and increasing KAM values toward the center.
- The improvement in strength results from a combination of grain refinement strengthening, dislocation strengthening, and texture strengthening. Grain refinement plays a dominant role, while dislocation strengthening reaches saturation after two passes, showing negligible variation in subsequent passes.
- The grain refinement in Mg-0.7Sm-0.3Zr alloy during swaging occurs through two distinct mechanisms. In early passes, the extensive activation of tensile twinning partitions and segments the initial coarse grains, facilitating refinement. In the later stages, stress-induced grain boundary bowing generates fresh DRX grains that further subdivide the deformed coarse grains, thereby enhancing the overall refinement.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HV | Vickers Hardness |
MPa | Megapascal |
RE | Rare Earth |
SPD | Severe Plastic Deformation |
UTS | Ultimate Tensile Strength |
TYS | Tensile Yield Strength |
EL | Elongation |
DRX | Dynamic Recrystallization |
DRV | Dynamic Recovery |
EBSD | Electron Backscatter Diffraction |
ED/AD | Extrusion Direction/Axial Direction |
LAGB | Low-Angle Grain Boundaries |
HAGB | High-Angle Grain Boundaries |
GND | Geometrically Necessary Dislocation |
GOS | Grain Orientation Spread |
IPF | Inverse Pole Figure |
KAM | Kernel Average Misorientation |
CRSS | Critical Resolved Shear Stress |
SF | Schmid Factor |
CDRX | Continuous Dynamic Recrystallization |
Appendix A
References
- She, J.; Chen, J.; Xiong, X.; Yang, Y.; Peng, X.; Chen, D.; Pan, F. Research advances of magnesium and magnesium alloys globally in 2023. J. Magnes. Alloy 2024, 12, 3441–3475. [Google Scholar] [CrossRef]
- Wu, G.; Tong, X.; Wang, C.; Jiang, R.; Ding, W. Recent advances on grain refinement of magnesium rare-earth alloys during the whole casting processes: A review. J. Magnes. Alloy 2023, 11, 3463–3483. [Google Scholar] [CrossRef]
- Zheng, T.; Hu, Y.; Zhang, C.; Zhao, T.; Jiang, B.; Pan, F.; Tang, A. Uncovering of the formation of rare earth texture and pseudo fiber bimodal microstructure in the high ductility Mg-2Gd-0.4Zr alloy during extrusion. J. Mater. Sci. Technol. 2024, 172, 166–184. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, A.; Li, C.; Xie, H.; Jiang, B.; Dong, Z.; Jin, P.; Pan, F. Recent advances of high strength Mg-RE alloys: Alloy development, forming and application. J. Mater. Res. Technol. 2023, 26, 2919–2940. [Google Scholar] [CrossRef]
- Zhao, T.; Hu, Y.; Wang, Y.; Dai, Y.; Zheng, T.; Li, Z.; Li, K.; He, B.; Zhang, C.; Pan, F. Deformation mechanism of high ductility Mg-Gd-Mn alloy during tensile process. J. Magnes. Alloy, 2023; in press. [Google Scholar] [CrossRef]
- Dai, Y.; Yi, Q.; Hu, Y.; Jiang, B.; Pan, F. The discrepancy in basal slip hardening rates of cast and extruded Mg-Y-Zr alloys. J. Mater. Res. Technol. 2024, 28, 4275–4288. [Google Scholar] [CrossRef]
- Zhang, Z.; Kim, J.; Pu, H.; Zhou, S.; Hu, Y.; Dong, Z.; Huang, G.; Jiang, B. Achieving high strength in ZK60 based Mg alloy with a low RE content though numerous precipitates. J. Alloys Compd. 2025, 1023, 180118. [Google Scholar] [CrossRef]
- Xu, M.; Xiao, L.; Gao, B.; Li, Z.; Wu, Z.; Chen, X.; Zhou, H.; Zhu, Y. Strengthening mechanisms induced by sequential grain refinement and solid solution strengthening in dual-phase heterostructured Mg-Li alloys with low Al content. J. Alloys Compd. 2025, 1021, 179527. [Google Scholar] [CrossRef]
- Ren, Q.; Mi, J.; Wang, J.; Liang, S.; Feng, Y. The influence of heat-treatment on regulating the content and morphology of LPSO phase in Mg-Y-Al alloy and its strengthening mechanism at room temperature. J. Magnes. Alloy, 2025; in press. [Google Scholar] [CrossRef]
- Zai, L.; Tong, X.; Wang, Y.; Xue, X.-h. Effect of addition temperature on dispersion behavior and grain refinement efficiency of MgO introduced into Mg alloy. Trans. Nonferrous Met. Soc. China 2024, 34, 2491–2506. [Google Scholar] [CrossRef]
- Shi, Q.-x.; Li, Y.-n.; Deng, K.-k.; Wang, C.-j.; Nie, K.-b.; Liang, W. Effect of annealing temperature on microstructure, work hardening and softening behavior of cold-rolled Mg-8Li-3Al-0.3Si alloy. Mater. Sci. Eng. A 2025, 927, 148025. [Google Scholar] [CrossRef]
- Ni, R.; Jiang, Z.; Boehlert, C.; Zheng, J.; Zhou, H.; Wang, Q.; Yin, D. Unveiling asymmetric precipitation strengthening during tension and compression via statistical slip activity analysis for an untextured Mg-10Gd-3Y-0.5Zr alloy. Int. J. Plast. 2025, 189, 104354. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, F.; Zeng, J.; Zhou, H.; Wang, F.; Dong, S.; Jin, L.; Dong, J. Nd microalloying significantly enhances precipitation strengthening of Mg-Gd-Y-Zn-Zr alloy. J. Alloys Compd. 2025, 1025, 180324. [Google Scholar] [CrossRef]
- Luo, X.; Feng, Z.; Yu, T.; Luo, J.; Huang, T.; Wu, G.; Hansen, N.; Huang, X. Transitions in mechanical behavior and in deformation mechanisms enhance the strength and ductility of Mg-3Gd. Acta Mater. 2020, 183, 398–407. [Google Scholar] [CrossRef]
- Guo, F.; Feng, B.; Fu, S.; Xin, Y.; Xu, S.; Liu, Q. Microstructure and texture in an extruded Mg–Al–Ca–Mn flat-oval tube. J. Magnes. Alloy 2017, 5, 13–19. [Google Scholar] [CrossRef]
- Tong, L.B.; Chu, J.H.; Sun, W.T.; Jiang, Z.H.; Zou, D.N.; Liu, S.F.; Kamado, S.; Zheng, M.Y. Development of a high-strength Mg alloy with superior ductility through a unique texture modification from equal channel angular pressing. J. Magnes. Alloy 2021, 9, 1007–1018. [Google Scholar] [CrossRef]
- Li, S.; Chen, X.; Li, H.; Liu, C.; Liu, Z.; Wan, Y. Ultra-high specific strength of Mg-Li alloy via rotary swaging. J. Mater. Res. Technol. 2025, 36, 7457–7467. [Google Scholar] [CrossRef]
- Lukyanova, E.; Tarytina, I.; Tabachkova, N.; Dobatkina, T.; Martynenko, N.; Rybalchenko, O.; Rybalchenko, G.; Temralieva, D.; Andreev, V.; Ovchinnikova, O.; et al. The effect of rotary swaging on the structure and mechanical properties of Mg-Y-Gd-Zr alloys additionally alloyed with samarium. Mater. Today Commun. 2025, 43, 111857. [Google Scholar] [CrossRef]
- Yi, Q.; Dai, Y.; Hu, Y.; Jiang, B.; Pan, F. Nanocrystallization and strengthening of Mg-Dy-Zr alloys by room temperature rotary swaging. J. Mater. Res. Technol. 2024, 30, 6777–6786. [Google Scholar] [CrossRef]
- Li, C.C.; Kim, R.E.; Qiao, X.G.; Sun, W.T.; Yuan, L.; Kim, H.S.; Sakai, T.; Valiev, R.Z.; Zheng, M.Y. Achieving exceptional room-temperature ductility in ultrafine-grained Mg-0.8Mn alloy via high pressure torsion. J. Alloys Compd. 2025, 1020, 179411. [Google Scholar] [CrossRef]
- Chen, X.; Liu, C.; Wan, Y.; Jiang, S.; Han, X.; Chen, Z. Formation of nanocrystalline AZ31B Mg alloys via cryogenic rotary swaging. J. Magnes. Alloy 2023, 11, 1580–1591. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Y.; Lin, Y.; Chen, H.; Li, G.; Huang, Y.; Xie, W.; Wei, G. Microstructural refinement and mechanical properties improvement of Mg–Al–Mn–Zn–Ca alloy processed by rotary swaging at room temperature. Mater. Sci. Eng. A 2024, 913, 147014. [Google Scholar] [CrossRef]
- Martynenko, N.; Anisimova, N.; Rybalchenko, G.; Lukyanova, E.; Rybalchenko, O.; Shchetinin, I.; Babayeva, G.; Pashinzeva, N.V.; Gorbenko, A.; Temralieva, D.; et al. Effect of warm rotary swaging on the mechanical and operational properties of the biodegradable Mg-1 %Zn-0.6 %Ca alloy. J. Magnes. Alloy 2025, 13, 2252–2266. [Google Scholar] [CrossRef]
- Chen, X.; Li, S.-l.; Wan, Y.-c. Effect of Gd on preparation of nanocrystalline Mg alloys via cold rotary swaging. Trans. Nonferrous Met. Soc. China 2024, 34, 1817–1828. [Google Scholar] [CrossRef]
- Li, Z.; Xu, M.; Zhou, K.; Cao, Y.; Zhao, Y. Preparing strong and ductile AZ80 Mg alloy via warm rotary swaging. J. Mater. Res. Technol. 2025, 34, 807–818. [Google Scholar] [CrossRef]
- Li, Z.-s.; Wang, M.; Hu, Y.-b.; Dai, Y.-x. Effect of extrusion temperature on microstructure and mechanical properties of Mg-Sm-Zr alloy. Trans. Mater. Heat Treat. 2023, 44, 48–56. [Google Scholar]
- GB/T 228.1-2021; Metallic Materials-Tensile testing-Part 1: Method of Test at Room Temperature. Standardization Administration of China: Beijing, China, 2021.
- Zheng, T.; Hu, Y.; Jiang, B.; Fu, L.; Pan, F.; Tang, A. A comparative study of deformation behaviors and ductility improvement in Mg–Gd–Zr and Mg–Zr cast alloys. J. Mater. Res. Technol. 2023, 26, 2082–2102. [Google Scholar] [CrossRef]
- Singh, D.; Jayaganthan, R.; Nageswara Rao, P.; Kumar, A.; Venketeswarlu, D. Effect of initial grain size on microstructure and mechanical behavior of cryorolled AA 5083. Mater. Today Proc. 2017, 4, 7609–7617. [Google Scholar] [CrossRef]
- Klevtsov, G.; Valiev, R.; Klevtsova, N.y.; Fesenyuk, M.; Kulaysova, O.; Pigaleva, I. Strength and fracture mechanism of a magnesium alloy for medical applications after equal-channel angular pressing. Lett. Mater. 2022, 12, 203–208. [Google Scholar] [CrossRef]
- Prithivirajan, S.; Nyahale, M.B.; Naik, G.M.; Narendranath, S.; Prabhu, A.; Rekha, P.D. Bio-corrosion impacts on mechanical integrity of ZM21 Mg for orthopaedic implant application processed by equal channel angular pressing. J. Mater. Sci. Mater. Med. 2021, 32, 65. [Google Scholar] [CrossRef]
- Zhang, D.; Pan, H.; He, Z.; Tang, W.; Li, C.; Yang, C.; Xie, D.; Qin, G. Mechanical anisotropy and microstructural heterogeneity of a free-forged ME20 alloy with a large cross section. Mater. Sci. Eng. A 2023, 863, 144551. [Google Scholar] [CrossRef]
- Agnew, S.R.; Capolungo, L.; Calhoun, C.A. Connections between the basal I1 “growth” fault and <c+a> dislocations. Acta Mater. 2015, 82, 255–265. [Google Scholar]
- Yang, B.; Shi, C.; Lai, R.; Shi, D.; Guan, D.; Zhu, G.; Cui, Y.; Xie, G.; Li, Y.; Chiba, A.; et al. Identification of active slip systems in polycrystals by Slip Trace—Modified Lattice Rotation Analysis (ST-MLRA). Scr. Mater. 2022, 214, 114648. [Google Scholar] [CrossRef]
- Yang, B.; Wang, J.; Li, Y.; Barnett, M.; Llorca, J. Deformation mechanisms of dual-textured Mg-6.5Zn alloy with limited tension-compression yield asymmetry. Acta Mater. 2023, 248, 118766. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Y.; Yan, S.; Jiang, S.; He, Z.; Pan, H.; Jia, N. On the micromechanism of superior strength and ductility synergy in a heterostructured Mg-2.77Y alloy. J. Magnes. Alloy 2024, 12, 2793–2811. [Google Scholar] [CrossRef]
- Zhang, Z.; Kim, J.; Li, M.; Gao, Y.; Hu, Y.; Jiang, B.; Pan, F. Effects of Nd content on the microstructures and mechanical properties of ZK60 Mg alloy and corresponding strengthening mechanisms. Mater. Sci. Eng. A 2024, 901, 146504. [Google Scholar] [CrossRef]
- Li, C.-j.; Sun, H.-f.; Li, X.-w.; Zhang, J.-l.; Fang, W.-b.; Tan, Z.-y. Microstructure, texture and mechanical properties of Mg-3.0Zn-0.2Ca alloys fabricated by extrusion at various temperatures. J. Alloys Compd. 2015, 652, 122–131. [Google Scholar] [CrossRef]
- Zhang, Z.; Xie, J.; Zhang, J.; Dong, H.; Liu, S.; Zhang, X.; Wang, J.; Wu, R. Simultaneously improving mechanical and anti-corrosion properties of extruded Mg-Al dilute alloy via trace Er addition. J. Mater. Sci. Technol. 2023, 150, 49–64. [Google Scholar] [CrossRef]
- Dong, B.; Chai, J.; Wu, G.; Zhang, H.; Zhang, Z.; Yu, J.; Xue, Y.; Meng, M. Dynamic recrystallization behavior and strengthening mechanism of Mg–Gd–Y–Zn–Zr alloy during isothermal MDF process. J. Mater. Res. Technol. 2022, 21, 1419–1433. [Google Scholar] [CrossRef]
- Wan, Y.; Tang, B.; Gao, Y.; Tang, L.; Sha, G.; Zhang, B.; Liang, N.; Liu, C.; Jiang, S.; Chen, Z.; et al. Bulk nanocrystalline high-strength magnesium alloys prepared via rotary swaging. Acta Mater. 2020, 200, 274–286. [Google Scholar] [CrossRef]
- Liu, D.; Liu, Z.; Wang, E. Effect of rolling reduction on microstructure, texture, mechanical properties and mechanical anisotropy of AZ31 magnesium alloys. Mater. Sci. Eng. A 2014, 612, 208–213. [Google Scholar] [CrossRef]
- Oppedal, A.L.; El Kadiri, H.; Tomé, C.N.; Kaschner, G.C.; Vogel, S.C.; Baird, J.C.; Horstemeyer, M.F. Effect of dislocation transmutation on modeling hardening mechanisms by twinning in magnesium. Int. J. Plast. 2012, 30–31, 41–61. [Google Scholar] [CrossRef]
- Zhou, B.; Wang, L.; Jin, P.; Jia, H.; Roven, H.J.; Zeng, X.; Li, Y. Revealing slip-induced extension twinning behaviors dominated by micro deformation in a magnesium alloy. Int. J. Plast. 2020, 128, 102669. [Google Scholar] [CrossRef]
- Wei, T.; Qian, X.; Sun, K.; Xu, S.; Pan, R.; Miao, J.; Zeng, Y. The dynamic recrystallization and elevated-temperature work hardening behavior of Mg-Y-Sn alloys. J. Alloys Compd. 2025, 1024, 180097. [Google Scholar] [CrossRef]
- Wang, F.; Barrett, C.D.; McCabe, R.J.; El Kadiri, H.; Capolungo, L.; Agnew, S.R. Dislocation induced twin growth and formation of basal stacking faults in {101¯2} twins in pure Mg. Acta Mater. 2019, 165, 471–485. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, C.; Ma, X.; Zhao, J.; Guo, F.; Fang, X.; Zhu, Y.; Wei, Y. The optimum grain size for strength-ductility combination in metals. Int. J. Plast. 2023, 164, 103574. [Google Scholar] [CrossRef]
Samples | Bar Diameters (mm) | True Strain (%) |
---|---|---|
Extrusion | 19.2 | 0 |
1st pass | 18.9 | 1.6 |
2nd pass | 18.4 | 4.3 |
3rd pass | 17.2 | 11.0 |
5th pass | 14.8 | 26.0 |
Samples | dDRX (μm) | dnon-DRX (μm) | mbasal | σgb (MPa) | σρ (MPa) | σtex (MPa) | σy, cal (MPa) | σy (MPa) |
---|---|---|---|---|---|---|---|---|
1P | 1.23 | 3.86 | 0.28 | 115 | 47 | 17 | 229 | 225 |
2P | 1.17 | 3.12 | 0.22 | 127 | 53 | 23 | 253 | 252 |
3P | 0.99 | 2.54 | 0.20 | 142 | 55 | 25 | 272 | 280 |
5P | 0.91 | 2.28 | 0.16 | 155 | 54 | 32 | 291 | 292 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Dai, Y.; Li, Z.; Hu, Y. Achieving High Strength in Mg-0.7Sm-0.3Zr Alloy via Room-Temperature Rotary Swaging: Radial Gradient Microstructure and Grain Refinement Mechanisms. Materials 2025, 18, 3199. https://doi.org/10.3390/ma18133199
Liu J, Dai Y, Li Z, Hu Y. Achieving High Strength in Mg-0.7Sm-0.3Zr Alloy via Room-Temperature Rotary Swaging: Radial Gradient Microstructure and Grain Refinement Mechanisms. Materials. 2025; 18(13):3199. https://doi.org/10.3390/ma18133199
Chicago/Turabian StyleLiu, Jie, Yuanxiao Dai, Zhongshan Li, and Yaobo Hu. 2025. "Achieving High Strength in Mg-0.7Sm-0.3Zr Alloy via Room-Temperature Rotary Swaging: Radial Gradient Microstructure and Grain Refinement Mechanisms" Materials 18, no. 13: 3199. https://doi.org/10.3390/ma18133199
APA StyleLiu, J., Dai, Y., Li, Z., & Hu, Y. (2025). Achieving High Strength in Mg-0.7Sm-0.3Zr Alloy via Room-Temperature Rotary Swaging: Radial Gradient Microstructure and Grain Refinement Mechanisms. Materials, 18(13), 3199. https://doi.org/10.3390/ma18133199