Pressure-Induced Structural Stabilities and Superconductivity in Rhodium Borides
Abstract
1. Introduction
2. Computational Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chung, H.Y.; Weinberger, M.B.; Levine, J.B.; Kavner, A.; Yang, J.M.; Tolbert, S.H.; Kaner, R.B. Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure. Science 2007, 316, 436–439. [Google Scholar] [CrossRef] [PubMed]
- Cumberland, R.W.; Weinberger, M.B.; Gilman, J.J.; Clark, S.M.; Tolbert, S.H.; Kaner, R.B. Osmium diboride, an ultra-incompressible, hard material. J. Am. Chem. Soc. 2005, 127, 7264–7265. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.Y.; Weinberger, M.B.; Yang, J.M.; Tolbert, S.H.; Kaner, R.B. Correlation between hardness and elastic moduli of the ultra incompressible transition metal diborides RuB2, OsB2, and ReB2. Appl. Phys. Lett. 2008, 92, 261904. [Google Scholar] [CrossRef]
- Du, J.Y.; Li, X.F. Theoretical investigation on two novel high-pressure orthorhombic phases of superhard C3N2. J. Alloys Compd. 2020, 815, 152324. [Google Scholar] [CrossRef]
- Knappschneider, A.; Litterscheid, C.; George, N.C.; Brgoch, J.; Wagner, N.; Beck, J.; Kurzman, J.A.; Seshadri, R.; Albert, B. Peierls-distorted monoclinic MnB4 with a Mn–Mn bond. Angew. Chem. Int. Ed. 2014, 53, 1684–1688. [Google Scholar] [CrossRef]
- Gou, H.Y.; Tsirlin, A.A.; Bykova, E.; Abakumov, A.M.; Tendeloo, G.V.; Richter, A.; Ovsyannikov, S.V.; Kurnosov, A.V.; Trots, D.M.; Konôpková, Z.; et al. Variable-composition structural optimization and experimental verification of MnB3 and MnB4. Phys. Rev. B 2014, 89, 064108. [Google Scholar] [CrossRef]
- Li, X.F.; Tao, Y.P.; Peng, F. Pressure and temperature induced phase transition in WB4: A first principles study. J. Alloys Compd. 2016, 687, 579–585. [Google Scholar] [CrossRef]
- Niu, H.Y.; Wang, J.Q.; Chen, X.Q.; Li, D.Z.; Li, Y.Y.; Lazar, P.; Podloucky, R.; Kolmogorov, A.N. Structure, bonding, and possible superhardness of CrB4. Phys. Rev. B 2012, 85, 144116. [Google Scholar] [CrossRef]
- Wang, S.; Yu, X.; Zhang, J.; Zhang, Y.; Wang, L.; Leinenweber, K.; Xu, H.; Popov, D.; Park, C.; Yang, W.; et al. Crystal structures, elastic properties, and hardness of high-pressure synthesized CrB2 and CrB4. J. Superhard Mater. 2014, 36, 279–287. [Google Scholar] [CrossRef]
- Kortus, J.; Mazin, I.I.; Belashchenko, K.D.; Antropov, V.P.; Boyer, L.L. Superconductivity of metallic boron in MgB2. Phys. Rev. Lett. 2001, 86, 4656–4659. [Google Scholar] [CrossRef]
- Nagamatsu, J.; Nakagawa, N.; Muranaka, T.; Zenitani, Y.; Akimitsu, J. Superconductivity at 39 K in magnesium diboride. Nature 2001, 410, 63–64. [Google Scholar] [CrossRef] [PubMed]
- Larbalestier, D.; Cooley, L.; Rikel, M.; Polyanskii, A.; Jiang, J.; Patnaik, S.; Cai, X.; Feldmann, D.; Gurevich, A.; Squitieri, A. Strongly linked current flow in polycrystalline forms of the superconductor MgB2. Nature 2001, 410, 186–189. [Google Scholar] [CrossRef] [PubMed]
- Okada, S.; Yu, Y.; Kudou, K.; Shishido, T.; Tanaka, T.; Higashi, I.; Lundström, T.; Fukuda, T. Synthesis and investigation of large crystals of (Cr1−ₓTMₓ)3B4 with TM = Ti, V, Nb, Ta, Mo, and W. J. Solid State Chem. 2000, 154, 45–48. [Google Scholar] [CrossRef]
- Okada, S.; Kudou, K.; Higashi, I.; Lundström, T. Single crystals of TaB, Ta5B6, Ta3B4, and TaB2, as obtained from high-temperature metal solutions, and their properties. J. Cryst. Growth 1993, 128, 1120–1124. [Google Scholar] [CrossRef]
- Zhong, M.M.; Kuang, X.Y.; Wang, Z.H.; Shao, P.; Ding, L.P.; Huang, X.F. Phase stability, physical properties, and hardness of transition-metal diborides MB2 (M = Tc, W, Re, and Os): First-principles investigations. J. Phys. Chem. C 2013, 117, 10643–10652. [Google Scholar] [CrossRef]
- Gu, Q.F.; Krauss, G.; Steurer, W. Transition metal borides: Superhard versus ultra-incompressible. Adv. Mater. 2008, 20, 3620–3626. [Google Scholar] [CrossRef]
- Rau, J.V.; Latini, A. New hard and superhard materials: RhB1.1 and IrB1.35. Chem. Mater. 2009, 21, 1407–1409. [Google Scholar] [CrossRef]
- Alessandro, L.; Julietta, V.R.; Roberto, T.; Amanda, G.; Albertini, V.R. Superhard properties of rhodium and iridium boride films. ACS Appl. Mater. Interfaces 2010, 2, 581–587. [Google Scholar]
- Wang, Q.Q.; Zhao, Z.S.; Xu, L.F.; Wang, L.M.; Yu, D.L.; Tian, Y.J.; He, J.L. Novel high-pressure phase of RhB: First-principles calculations. J. Phys. Chem. C 2011, 115, 19910–19915. [Google Scholar] [CrossRef]
- Chu, B.H.; Li, D.; Tian, F.B.; Duan, D.F.; Sha, X.J.; Lv, Y.Z.; Zhang, H.D.; Liu, B.B.; Cui, T. Structural, mechanical and electronic properties of Rh2B and RhB2: First-principles calculations. Sci. Rep. 2015, 5, 10500. [Google Scholar] [CrossRef]
- Chu, B.H.; Zhao, Y.; Yan, J.L.; Li, D. Ground state structures of boron-rich rhodium boride: An ab initio study. Chin. Phys. Lett. 2018, 35, 016401. [Google Scholar] [CrossRef]
- Guo, Y.; Gao, T.; Li, S.Z. The structural, electronic, mechanical, lattice dynamics and thermodynamic properties of Rh5B4: First-principles calculations. Mod. Phys. Lett. B 2017, 31, 1750245. [Google Scholar] [CrossRef]
- Aronsson, B.; Aselius, J.; Stenberg, E. Borides and silicides of the platinum metals. Nature 1959, 183, 1318–1319. [Google Scholar] [CrossRef]
- Mooney, R.W.; Welch, A.J.E. The crystal structure of Rh2B. Acta Crystallogr. 1954, 7, 49–53. [Google Scholar] [CrossRef]
- Wang, Y.; Lv, J.; Zhu, L.; Ma, Y. Crystal structure prediction via particle-swarm optimization. Phys. Rev. B 2010, 82, 094116. [Google Scholar] [CrossRef]
- Wang, Y.; Lv, J.; Zhu, L.; Ma, Y. CALYPSO: A method for crystal structure prediction. Comput. Phys. Commun. 2012, 183, 2063–2070. [Google Scholar] [CrossRef]
- Sun, W.; Ji, W.; Ju, M.; Xiao, Y.; Jin, Y.; Zhang, C. Investigation of the structures and electronic properties for Ce3+ doped yttrium orthoaluminate: A first-principle study. Comput. Mater. Sci. 2025, 246, 113443. [Google Scholar] [CrossRef]
- Chen, O.; Wang, J.; Jin, W.; Dou, X.L.; Sun, W. Theoretical insights into the crystal and fundamental properties of MgAl9Zn compound: First-principles calculations. Comput. Mater. Sci. 2022, 202, 110951. [Google Scholar] [CrossRef]
- Sun, W.; Chen, B.; Li, X.; Peng, F.; Hermann, A.; Lu, C. Ternary Na–P–H superconductor under high pressure. Phys. Rev. B 2023, 107, 214511. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Togo, A.; Oba, F.; Tanaka, I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type at high pressures. Phys. Rev. B 2008, 78, 134106. [Google Scholar] [CrossRef]
- Hill, R. The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. A 1952, 65, 349–354. [Google Scholar] [CrossRef]
- Chen, X.Q.; Niu, H.; Li, D.; Li, Y. Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics 2011, 19, 1275–1281. [Google Scholar] [CrossRef]
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.; et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502. [Google Scholar] [CrossRef]
- McMillan, W.L. Transition temperature of strong-coupled superconductors. Phys. Rev. 1968, 167, 331–344. [Google Scholar] [CrossRef]
- Sarrao, J.L.; Ibberson, R.M.; Fisk, Z.; Moshopoulou, E.G.; Thompson, J.D. Structure of Ce2RhIn8: An example of complementary use of high-resolution neutron powder diffraction and reciprocal-space mapping to study complex materials. Acta Crystallogr. Sect. B 2006, 62, 173–189. [Google Scholar]
- Oganov, A.R.; Chen, J.H.; Gatti, C.; Ma, Y.Z.; Ma, Y.M.; Glass, C.W.; Liu, Z.X.; Yu, T.; Kurakevych, O.O.; Soozhenko, V.L. Ionic high-pressure form of elemental boron. Nature 2009, 457, 863–867. [Google Scholar] [CrossRef]
- Joss, W.; van Ruitenbeek, J.M.; Crabtree, G.W.; Tholence, J.L.; van Deursen, A.P.J.; Fisk, Z. Observation of the Magnetic Field Dependence of the Cyclotron Mass in the Kondo Lattice CeB6. Phys. Rev. Lett. 1987, 59, 1609–1612. [Google Scholar] [CrossRef]
- Weng, H.; Zhao, J.; Wang, Z.; Fang, Z.; Dai, X. Topological Crystalline Kondo Insulator in Mixed Valence Ytterbium Borides. Phys. Rev. Lett. 2014, 112, 016403. [Google Scholar] [CrossRef]
- Neupane, M.; Xu, S.-Y.; Alidoust, N.; Bian, G.; Kim, D.J.; Liu, C.; Belopolski, I.; Chang, T.-R.; Jeng, H.-T.; Durakiewicz, T.; et al. Non-Kondo-Like Electronic Structure in the Corre-lated Rare-Earth Hexaboride YbB6. Phys. Rev. Lett. 2015, 114, 016403. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.J.; Zhao, E.J.; Xiang, H.P.; Hao, X.F.; Liu, X.J.; Meng, J. Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys. Rev. B 2007, 76, 054115. [Google Scholar] [CrossRef]
- Wang, Y.X. Elastic and electronic properties of TcB2 and superhard ReB2: First principles calculations. Appl. Phys. Lett. 2007, 91, 101904. [Google Scholar] [CrossRef]
- Li, X.F.; Peng, F. Predicted superhard phases of Zr–B compounds under pressure. Phys. Chem. Chem. Phys. 2019, 21, 15609–15614. [Google Scholar] [CrossRef]
- Sharma, M.M.; Karn, N.K.; Rani, P.; Bhowmik, R.N.; Awana, V.P.S. Bulk superconductivity and non-trivial band topology analysis of Pb2Pd. Supercond. Sci. Technol. 2022, 35, 084010. [Google Scholar] [CrossRef]
- Sharma, M.M.; Awana, V.P.S. Detailed magneto heat capacity analysis of SnAs topological superconductor. J. Phys. Condens. Matter. 2022, 34, 255702. [Google Scholar] [CrossRef]
- Kang, W.N.; Kim, H.J.; Choi, E.M.; Jung, C.U.; Lee, S.I. MgB2 Superconducting Thin Films with a Transition Temperature of 39 Kelvin. Science 2001, 292, 1521–1523. [Google Scholar] [CrossRef]
P (GPa) | Lattice Constants (Å) | x | y | z | Site | |
---|---|---|---|---|---|---|
P21/m-Rh2B | 0 | a = 5.587 | 0.926 | 0.250 | 0.231 | Rh (2e) |
b = 2.813 | 0.563 | 0.750 | 0.770 | Rh (2e) | ||
c = 4.684 | 0.776 | 0.250 | 0.604 | B (2e) | ||
C2/m-Rh2B | 50 | a = 8.429 | 0.421 | 0 | 0.095 | Rh (4i) |
b = 2.722 | 0.287 | 0 | 0.360 | Rh (4i) | ||
c = 7.073 | 0.123 | 0 | 0.652 | B (4i) | ||
P63/mmc-RhB | 0 | a = b = 3.378 | 0.667 | 0.333 | 0.75 | Rh (2a) |
c = 4.140 | 0 | 0 | 0 | B (2c) | ||
C2/m-RhB6 | 0 | a = 14.01 | 0.191 | 0.5 | 0.152 | Rh (4i) |
b = 2.777 | 0.288 | 0.5 | 0.514 | B (4i) | ||
c = 4.821 | 0.919 | 0.5 | 0.177 | B (4i) | ||
0.962 | 0.5 | 0.836 | B (4i) | |||
0.359 | 0.5 | 0.262 | B (4i) | |||
0.098 | 0 | 0.348 | B (4i) | |||
0.982 | 0 | 0.326 | B (4i) | |||
Amm2-RhB6 | 150 | a = 5.688 | 0 | 0.5 | 0.408 | Rh (2a) |
b = 2.567 | 0.261 | 0.5 | 0.071 | B (4c) | ||
c = 5.245 | 0.252 | 0 | 0.258 | B (4c) | ||
0.5 | 0 | 0.103 | B (2b) | |||
0.5 | 0 | 0.408 | B (2b) | |||
Cmca-RhB8 | 100 | a = 5.288 | 0.5 | 0 | 0.5 | Rh (4a) |
b = 13.271 | 0.5 | 0 | 0.007 | B (16g) | ||
c = 2.908 | 0.75 | 0.711 | 0.25 | B (8e) | ||
0.5 | 0.218 | 0.948 | B (8f) |
Structures | C11 | C22 | C33 | C44 | C55 | C66 | C12 | C13 | C23 | B | G | E | ν | HV | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P21/m-Rh2B | this work | 483 | 348 | 363 | 81 | 75 | 57 | 158 | 154 | 189 | 243 | 84 | 227 | 0.344 | 4.7 |
P21/m-Rh2B | Ref. [17] | 339 | 350 | 527 | 56 | 57 | 73 | 187 | 143 | 132 | 238 | 87 | 232 | 0.337 | |
C2/m-Rh2B | this work | 506 | 328 | 369 | 64 | 53 | 50 | 148 | 138 | 198 | 239 | 74 | 202 | 0.360 | 3.3 |
P63/mmc-RhB | this work | 439 | 303 | 155 | 204 | 247 | 283 | 106 | 282 | 0.334 | 7.6 | ||||
Ref. [19] | 438 | 342 | 172 | 223 | 256 | 296 | 102 | ||||||||
C2/m-RhB6 | this work | 467 | 448 | 360 | 123 | 34 | 145 | 128 | 181 | 94 | 288 | 143 | 354 | 0.242 | 13.6 |
Amm2-RhB6 | this work | 487 | 330 | 501 | 151 | 65 | 130 | ||||||||
Cmca-RhB8 | this work | 392 | 472 | 515 | 15 | 82 | 116 | 190 | 133 | 159 | 258 | 56 | 156 | 0.399 | 2.3 |
P63/mmc-ReB2 | Ref. [43] | 643 | 1035 | 263 | 159 | 129 | 344 | 364 | 642 | 0.21 | |||||
Amm2-ZrB6 | Ref. [44] | 683 | 698 | 623 | 215 | 295 | 125 | 65 | 94 | 101 | 280 | 230 | 543 | 0.178 | 40.1 |
Cmcm-ZrB6 | Ref. [44] | 660 | 669 | 601 | 220 | 283 | 139 | 66 | 86 | 94 | 269 | 231 | 540 | 0.165 | 24.6 |
Pressure (GPa) | Nf (states/ev/f.u.) | ωlog (K) | λ | Tc (K) | |
---|---|---|---|---|---|
P21/m-Rh2B | 0 | 1.182 | 221.8 | 0.411 | 1.08 |
50 | 0.971 | 291.2 | 0.335 | 0.37 | |
C2/m-Rh2B | 50 | 1.005 | 246.8 | 0.406 | 1.22 |
P63/mmc-RhB | 0 | 0.189 | 281.8 | 0.251 | 0.03 |
C2/m-RhB6 | 50 | 0.619 | 506.7 | 0.408 | 2.39 |
Amm2-RhB6 | 100 | 0.662 | 468.7 | 0.566 | 8.93 |
150 | 0.608 | 494.2 | 0.505 | 6.32 | |
Cmca-RhB8 | 100 | 0.685 | 616.2 | 0.528 | 9.36 |
150 | 0.639 | 698.5 | 0.473 | 6.92 | |
200 | 0.608 | 705.8 | 0.450 | 5.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, J.; Sun, W.; Li, X.; Su, X. Pressure-Induced Structural Stabilities and Superconductivity in Rhodium Borides. Materials 2025, 18, 3125. https://doi.org/10.3390/ma18133125
Du J, Sun W, Li X, Su X. Pressure-Induced Structural Stabilities and Superconductivity in Rhodium Borides. Materials. 2025; 18(13):3125. https://doi.org/10.3390/ma18133125
Chicago/Turabian StyleDu, Junyi, Weiguo Sun, Xiaofeng Li, and Xinfang Su. 2025. "Pressure-Induced Structural Stabilities and Superconductivity in Rhodium Borides" Materials 18, no. 13: 3125. https://doi.org/10.3390/ma18133125
APA StyleDu, J., Sun, W., Li, X., & Su, X. (2025). Pressure-Induced Structural Stabilities and Superconductivity in Rhodium Borides. Materials, 18(13), 3125. https://doi.org/10.3390/ma18133125