Effect of Synthetic Wax on the Rheological Properties of Polymer-Modified Bitumen
Abstract
1. Introduction
2. Materials and Methods
2.1. Tested Materials
2.2. Sample Preparation
2.3. Experimental Program
2.4. Methods and Modeling Techniques
- The penetration index (PI);
- The yield range (PR) of bitumen.
- Creep stiffness S (MPa) and the m-value parameter in the BBR test using a bending rheometer;
- Zero shear viscosity η0;
- Dynamic modulus |G*|;
- Phase shift angle δ;
- Irreversible creep compliance Jnr3.2;
- Elastic recovery R3.2.
2.4.1. Penetration Index and Yield Range
- TR&B—softening temperature according to the “Ring and Ball” method (°C);
- TFraass—Fraass breaking point (°C).
2.4.2. Rutting Potential G*/sin(δ) in a DSR
2.4.3. Bending Beam Rheometer Test
2.4.4. The Christensen Anderson Marasteanu (CAM) Model
3. Results
3.1. Influence of Synthetic Wax on the Penetration Index PI and Temperature Range of Plasticity PR
3.2. Bending Beam Rheometer (BBR) Creep Stiffness of PMB 45/80-65 Bitumen with Synthetic Wax Additive
3.3. Binder Rheological Properties in Terms of Linear (LVE) and Nonlinear (N-LVE) Viscoelasticity
3.3.1. Effect of Aging on Zero Shear Viscosity
- —experimental parameters specific to the fluid;
- —zero shear viscosity (parameter estimated by least squares).
3.3.2. Viscoelastic Properties of SW-Added Binder Based on Black’s Curves
3.3.3. Effect of Binder Aging on Cyclic Creep and Recovery with SW Additive
- -
- The creep mechanism of the binder specimen—during 1 s stress;
- -
- The recovery mechanism of the binder specimen—during a 9 s annealing period (after stress relief) [32].
- -
- Irreversible creep compliance, denoted as Jnr3.2—the index of resistance of the asphalt binder to rutting, expressed in [kPa−1], determined for two stress levels: 0.1 kPa and 3.2 kPa;
- -
- Elastic recovery R3.2, the elasticity index of the binder at a given temperature, expressed in [%], determined for two stress levels: 0.1 kPa and 3.2 kPa.
3.4. Construction of a CAM Model of a Modified Binder
3.5. Aging Characteristics of Asphalt Binders with SW Additives
- -
- Penetration—Pen;
- -
- Softening temperature—TR&B;
- -
- Critical temperature obtained from the BBR test—TCRIT;
- -
- Creep tendency Jnr at a stress level of 3.2 kPa—Jnr3.2;
- -
- Elastic rebound at a stress level of 3.2 kPa—R3.2.
3.6. Influence of the SW Additive on the Aging of PMB 45/80-65
3.7. Visualization of the Spectrum of Asphalt Binders in an Epi-Fluorescence Microscope
4. Conclusions
- The incorporation of synthetic wax (SW) into PMB 45/80-65 binder facilitates the production of bitumen with significantly enhanced properties at both high and low temperatures. The optimal dosage range of 2% ± 0.5% (m/m) ensures a total increase in the plasticity index by 9 °C to 11 °C, more than a twofold decrease in susceptibility to rutting (Jnr3.2 ≤ 0.35 kPa−1), and maintenance of low thermal sensitivity (PI ≈ +3).
- The results of the zero shear viscosity η0 and the parameter |G*|/sinδ indicate an increase in the thixotropic character of the bitumen modified with 3.5% synthetic wax. This effect is related to the appearance of a large number of synthetic wax crystallites in combination with the presence of the polymer in the bitumen, which probably disturbs the state of colloidal equilibrium.
- The SW addition ≤ 2.5% does not significantly deteriorate Tcrit, which is advantageous for resistance to low-temperature cracking.
- Observations conducted utilizing an epi-fluorescence microscope revealed that crystalline SW functions as a fine-crystalline filler, thereby augmenting the strength of the binder.
- The aging process of bitumen results in reductions in PI and R3.2. However, this reduction is less pronounced when a higher SW value is incorporated into the bitumen. This observation confirms that synthetic wax serves to partially counteract the degradation of polymers.
- The Christensen Anderson Marasteanu (CAM) model was fitted to the results of an experiment designed to simulate the aging process of bitumen containing a viscosity reducing SW additive. It was shown to be a very good fit to the experimental data, suggesting that it is a good mathematical tool for describing the creep phenomenon occurring in bitumen, taking into account the equivalence of time and temperature.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wong, W.G.; Li, G. Analysis of the effect of wax content on bitumen under performance grade classification. Constr. Build. Mater. 2009, 23, 2504–2510. [Google Scholar] [CrossRef]
- Iwański, M.; Mazurek, G. The influence of the low-viscosity modifier on viscoelasticity behavior of the bitumen at high operational temperature. In Proceedings of the 8th International Conference Environmental Engineering, Vilnius, Lithuania, 19–20 May 2011; Volume 1–3, pp. 1097–1102. [Google Scholar]
- Król, J.; Kowalski, K.; Radziszewski, P. Rheological behavior of n-alkane modified bitumen in aspect of Warm Mix Asphalt technology. Constr. Build. Mater. 2015, 93, 703–710. [Google Scholar] [CrossRef]
- Leng, Z.; Gamez, A.; Al-Qadi, I.L. Mechanical property characterization of warm-mix asphalt prepared with chemical additives. J. Mater. Civil Engin. 2014, 26, 304–311. [Google Scholar] [CrossRef]
- Ai, C.; Li, O.J.; Qiu, Y. Testing and assessing the performance of a new warm mix asphalt with SMC. J. Traf. Transport. Eng. 2015, 2, 399–405. [Google Scholar] [CrossRef]
- Rubio, M.C.; Martínez, G.; Baena, L.; Moreno, F. Warm Mix Asphalt: An Overview. J. Clean. Prod. 2012, 24, 76–84. [Google Scholar] [CrossRef]
- Van De Ven, M.F.C.; Jenkins, K.J.; Voskuilen, J.L.M.; Van Den Beemt, R. Development of (half-) warm foamed bitumen mixes: State of the art. Int. J. Pavement Eng. 2007, 8, 163–175. [Google Scholar] [CrossRef]
- Chomicz-Kowalska, A.; Gardziejczyk, W.; Iwański, M.M. Analysis of IT-CY stiffness modulus of foamed bitumen asphalt concrete compacted at 95 °C. In Proceedings of the 12th International Scientific Conference of Modern Building Materials, Structures and Techniques (MBMST), Vilius, Lithuania, 16–18 May 2017; Volume 172, pp. 550–559. [Google Scholar] [CrossRef]
- Jenkins, K.J.; de Groot, J.L.A.; Van de Ven, M.F.C.; Molenaar, A. Half-warm foamed bitumen treatment, a new process. In Proceedings of the 7th Conference on Asphalt Pavements for Southern Africa, Victoria Falls, Zimbabwe, 29 August–2 September 1999. [Google Scholar]
- Hugo Silva, M.R.D.; Oliveira, J.R.M.; Peralta, J.; Zooro, S.E. Optimization of warm mix asphalt using different blends of binders and synthetic paraffin wax contents. Constr. Build. Mater. 2010, 24, 1621–1631. [Google Scholar] [CrossRef]
- Iwański, M.; Mazurek, G. Effect of Fischer-Tropsch synthetic wax additive on the functional properties of bitumen. Polimery 2015, 60, 272–278. [Google Scholar] [CrossRef]
- Butz, T.; Rahimian, I.; Hildebrand, G. Modification of road bitumens with the Fischer-Tropsch Paraffin Sasobit. J. Appl. Asphalt Binder Technol. 2001, 1, 70–86. [Google Scholar]
- Vaitkus, A.; Čygas, D.; Laurinavičius, A.; Perveneckas, Z. Analysis Evaluation of Possibilities for The Use of Warm Mix Asphalt in Lithuana Balt. J. Road Bridge Eng. 2009, IV, 80–86. [Google Scholar] [CrossRef]
- Sanchez-Alonso, E.; Vega-Zamanillo, A.; Castro-Fresno, D.; Del Rio-Prat, M. Evaluation of compactability and mechanical properties of bituminous mixes with warm additives. Constr. Build. Mater. 2011, 25, 2304–2311. [Google Scholar] [CrossRef]
- Sukhija, M.; Saboo, N. A comprehensive review of warm mix asphalt mixtures-laboratory to field. Constr. Build. Mater. 2021, 274, 121781. [Google Scholar] [CrossRef]
- Iwański, M.M. Synergistic Effect of F–T Synthetic Wax and Surface-Active Agent Content on the Properties and Foaming Characteristics of Bitumen. Materials 2021, 14, 300. [Google Scholar] [CrossRef] [PubMed]
- Iwański, M.M.; Durlej, M.; Janus, K.; Horodecka, R. The Effect of Synthetic Wax and Surface-Active Agent on the Aging and Low-Temperature Properties of 50/70 Bitumen Before and After Foaming. Roads Bridges—Drog. Mosty 2024, 23, 311–329. [Google Scholar] [CrossRef]
- Sengoz, B.; Topa, A.; Gorkem, C. Evaluation of natural zeolite as warm mix asphalt additive and its comparison with other warm mix additives. Constr. Build. Mater. 2013, 43, 242–252. [Google Scholar] [CrossRef]
- Woszuk, A.; Franus, W. Properties of the Warm Mix Asphalt involving clinoptilolite and Na-P1 zeolite additives. Constr. Build. Mater. 2016, 114, 556–563. [Google Scholar] [CrossRef]
- Chomicz-Kowalska, A.; Maciejewski, K.; Iwański, M.M. Study of the Simultaneous Utilization of Mechanical Water Foaming and Zeolites and Their Effects on the Properties of Warm Mix Asphalt Concrete. Materials 2020, 13, 357. [Google Scholar] [CrossRef]
- Yu, X.; Wang, Y.; Luo, T. Impacts of water content on rheological properties and performance-related behaviours of foamed war-mix asphalt. Constr. Build. Mater. 2013, 48, 203–209. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, K.; Glover, C.; Chen, L.; Wen, Y.; Chong, D.; Hu, C. Effects of aging on the properties of asphalt at the nanoscale. Constr. Build. Mater. 2015, 80, 244–254. [Google Scholar] [CrossRef]
- Muthen, K.M. Foamed Asphalt Mixes. Mix Design Procedure; Contract Report No. CR 98/077; Sabita Ltd.: Ho Chi Minh City, Vietnam; CSIR Transportek: Pretoria, South Africa, 2009. [Google Scholar]
- Mirza, M.W.; Witczak, M.W. Development of a Global Aging System for Short- and LongTerm Aging of Asphalt Cements. J. Assoc. Asph. Paving Technol. 1995, 64, 393–431. [Google Scholar]
- Rossi, C.O.; Caputo, P.; Ashimova, S.; Fabozzi, A.; D’Errico, G.; Angelico, R. Effects of natural antioxidant agents on the bitumen aging process: An EPR and rheological investigation. Appl. Sci. 2018, 8, 1405. [Google Scholar] [CrossRef]
- Dickinson, E.J. Prediction of the Hardening of the Bitumen in Pavement Surfacing by Reaction with Atmospheric Oxygen. Road Mater. Pavement Des. 2000, 1, 255–279. [Google Scholar] [CrossRef]
- Malinowski, S.; Woszuk, A.; Franus, W. Modern two-component modifiers the aging process of road bitumen. Constr. Build. Mater. 2023, 409, 133838. [Google Scholar] [CrossRef]
- Petersen, J.C. A Review of the Fundamentals of Asphalt Oxidation: Chemical, Physicochemical, Physical Property, and Durability Relationships; Transportation Research Circular Number E-C140; Transportation Research Board: Washington, DC, USA, 2009. [Google Scholar]
- Tauste, R.; Moreno-Navarro, F.; Sol-Sanchez, M.; Rubio-Gamez, M.C. Understanding the bitumen ageing phenomenon: A review. Constr. Build. Mater. 2018, 192, 593–609. [Google Scholar] [CrossRef]
- Camargo, I.; Mirwald, I.; Hofko, B.; Grothe, H. Effect of thermal and oxidative aging on asphalt binders rheology and chemical composition. Materials 2020, 13, 4438. [Google Scholar] [CrossRef]
- Gamarra, A.; Ossa, E.A. Thermo-oxidative aging of bitumen. Int. J. Pavement Eng. 2018, 19, 641–650. [Google Scholar] [CrossRef]
- Gawel, I.; Czechowski, F.; Kosno, J. An environmental friendly anti-ageing additive to bitumen. Constr. Build. Mater. 2016, 110, 42–47. [Google Scholar] [CrossRef]
- Ren, S.; Liu, X.; Lin, P.; Jing, R.; Erkens, S. Toward the long-term aging influence novel reaction kinetics models of bitumen. Int. J. Pavement Eng. 2023, 24, 2024188. [Google Scholar] [CrossRef]
- Generalna Dyrekcja Dróg i Autostrad [General Directorate for National Roads and Motorways]. Katalog Typowych Nawierzchni Podatnych i Półsztywnych [Catalog of Typical Susceptible and Semi-Rigid Paving Structures]; Generalna Dyrekcja Dróg i Autostrad [General Directorate for National Roads and Motorways]: Warsaw, Poland, 2014; p. 112. [Google Scholar]
- Sasobit. Available online: https://www.sasobit.com/files/downloads/PDF_070722/0376SAS-Sasobit-OP-Flyer_en_LR.pdf (accessed on 21 September 2023).
- EN 12594:2014; Bitumens and Bituminous Binders—Preparation of Test Samples. European Committee for Standardization: Brussels, Belgium, 2014.
- Stuart, K.D.; Izzo, R.P. Correlation of Superpave G*/sin(delta) with rutting susceptibility from laboratory mixture tests (with discussion and closure). Transp. Res. Rec. 1995, 1492, 176–183. [Google Scholar]
- EN 12607-1:2014; Bitumen and Bituminous Binders—Determination of the Resistance to Hardening Under Influence of Heat and Air—Part 1: RTFOT Method. European Committee for Standardization: Brussels, Belgium, 2014.
- EN 14769:2023; Bitumen and Bituminous Binders—Accelerated Long-Term Ageing Conditioning by a Pressure Ageing Vessel (PAV). European Committee for Standardization: Brussels, Belgium, 2023.
- EN 1426:2015-08; Bitumen and Bituminous Binders—Determination of Needle Penetration. European Committee for Standardization: Brussels, Belgium, 2015.
- EN 1427:2015-08; Bitumen and Bituminous Binders—Determination of the Softening Point—Ring and Ball Method. European Committee for Standardization: Brussels, Belgium, 2015.
- EN 12591:2009; Bitumen and Bituminous Binders—Specifications for Paving Grade Bitumens. European Committee for Standardization: Brussels, Belgium, 2009.
- EN 12593:2015; Bitumen and Bituminous Binders—Determination of the Fraass Breaking Point. European Committee for Standardization: Brussels, Belgium, 2015.
- EN 14771; Bitumen and Bituminous Binders—Determination of the Flexural Creep Stiffness—Bending Beam Rheometer (BBR). European Committee for Standardization: Brussels, Belgium, 2012.
- Christensen, D.W.; Anderson, D.A.; Rowe, G.M. Relaxation spectra of asphalt binders and the Christensen–Anderson rheological model. Road Mater. Pavement Des. 2017, 18 (Suppl. S1), 382–403. [Google Scholar] [CrossRef]
- Marasteanu, M.O.; Anderson, D.A. Improved model for bitumen rheological characterization. In Eurobitume Workshop on Performance Related Properties for Bituminous Binders; European Bitumen Association: Brussels, Belgium, 1999; Volume 133. [Google Scholar]
- Zeng, M.; Bahia, H.U.; Zhai, H.; Anderson, M.R.; Turner, P. Rheological modeling of modified asphalt binders mixtures (with discussion). J. Assoc. Asphalt Paving Technol. 2001, 70, 403–441. [Google Scholar]
- Lazić, Ž.R. Design of Experiments in Chemical Engineering: A Practical Guide; Wiley-VCH: Weinheim, Germany, 2004. [Google Scholar]
- Montgomery, D.M. Design and Analysis of Experiments, 8th ed.; John Wiley & Son Inc.: Hoboken, NJ, USA, 2013. [Google Scholar]
- STATISTICA 13.3. Statsoft. Available online: www.statsoft.com (accessed on 20 August 2019).
- Błażejewski, K.; Styk, S. Technologia Warstw Asfaltowych; Wydawnictwa Komunikacji i Łączności: Warszawa, Poland, 2004. [Google Scholar]
- Gaweł, I.; Kalabińska, M.; Piłat, J. Asfalty Drogowe; Wydawnictwa Komunikacji i Łączności: Warszawa, Poland, 2014. [Google Scholar]
- Kołodziej, K.; Bichajło, L. Lepkość zerowego ścinania asfaltu 35/50 z dodatkiem asfaltu naturalnego Trynidad Epure (TE). Mater. Bud. 2017, 8, 68–70. [Google Scholar] [CrossRef]
- Golchin, B.; Hamzah, M.O.; Omranian, S.R.; Hasan, M.R. Effects of a surfactant-wax based warm additive on high temperature rheological properties of asphalt binders. Constr. Build. Mater. 2018, 183, 395–407. [Google Scholar] [CrossRef]
- Morea, F.; Zerbino, R.; Agnusdei, J. Improvements on asphalt mixtures rutting performance characterization by the use of low shear viscosity. Mater. Struct. 2013, 46, 267–276. [Google Scholar] [CrossRef]
- Biro, S.; Gandhi, T.; Amirkhanim, S. Determination of zero shear viscosity of warm asphalt binder. Constr. Build. Mater. 2009, 23, 2080–2086. [Google Scholar] [CrossRef]
- Zoorob, S.E.; Oliveira, L.A. Assessing low shear viscosity as the new bitumen Softening Point test. Constr. Build. Mater. 2012, 27, 357–367. [Google Scholar] [CrossRef]
- Lu, X.; Isacsson, U. Chemical and rheological evaluation of ageing properties of SBS polymer modified bitumens. Fuel 1998, 77, 961–972. [Google Scholar] [CrossRef]
- Airey, G.D. Rheological properties of styrene butadiene styrene polymer modified road bitumens. Fuel 2003, 82, 1709–1719. [Google Scholar] [CrossRef]
- AASHTO TP70:2013; Standard Method of Test for Multiple Stress Creep Recovery (MSCR) Test of Asphalt Binder Using a Dynamic Shear Rheometer (DSR). AASHTO: Washington, DC, USA, 2013.
- EN 16659:2015; Bitumen and Bituminous Binders—Multiple Stress Creep and Recovery Test (MSCRT). European Committee for Standardization: Brussels, Belgium, 2015.
- Dreessen, S.; Planche, J.P.; Gardel, V. A new performance related test method for rutting prediction: MSCRT. In Advanced Testing and Characterization of Bituminous Materials; Taylor & Francis Group: London, UK, 2009; Volume 1, pp. 971–980. [Google Scholar]
- D’Angelo, J. The Relationship of the MSCR Test to Rutting. Road Mater. Pavement Des. 2009, 10, 61–80. [Google Scholar] [CrossRef]
- Asphalt Institute. Implementation of the Multiple Stress Creep Recovery Test and Specification; Asphalt Institute Guidance Document; Asphalt Institute: Lexington, KY, USA, 2010. [Google Scholar]
- Anderson, R.M. Understanding the MSCR Test and Its Use in the PG Asphalt Binder Specification; Presentation; Asphalt Institute: Lexington, KY, USA, 2011. [Google Scholar]
- Chapra Steven, C.; Canale Raymond, P. Numerical Methods for Engineers, 6th ed.; Mc Graw-Hill: New York, NY, USA, 2010. [Google Scholar]
- Marasteanu, M.; Anderson, D.A. Time Temperature Dependency of Asphalt Binders—An Improved Model. J. Assoc. Asph. Paving Technol. 1996, 65, 407–448. [Google Scholar]
- Jing, R.; Varveri, A.; Liu, X.; Scarpas, A.; Erkens, S. Rheological, fatigue and relaxation properties of aged bitumen. Int. J. Pavement Eng. 2019, 21, 1024–1033. [Google Scholar] [CrossRef]
- Johansson, L.S.; Lu, X.; Isacsson, U. Ageing of Road Bitumens—State of the Art; Technical Report No. TRITA-IP FR 98-36; Royal Institute of Technology: Stockholm, Sweden, 1998. [Google Scholar]
- Lu, X.; Talon, Y.; Redelius, P. Aging of Bituminous Binders—Laboratory Tests and Field Data. In Proceedings of the 4th Eurasphalt & Eurobitume Congress, Copenhagen, Denmark, 21–23 May 2008. [Google Scholar]
Property | Test Method | Unit of Measure | Result |
---|---|---|---|
Penetration at 25 °C | EN 1426 | 0.1 mm | 45.3 |
Softening point TR&B | EN 1427 | °C | 74.7 |
Fraass breaking point | EN 12593 | °C | −17.8 |
Cohesion Energy at 5 °C | EN 12591 | J/cm2 | 6.4 |
Elastic recovery at 25 °C | EN 12591 | % | 87 |
Dynamic viscosity w 60 °C: | EN 12591 | Pas | 645 |
Property | Unit of Measure | Value |
---|---|---|
Appearance | - | solid pellets, white, or yellowish |
Flash point | °C | 285 |
Solidification point | °C | 95 |
Density at 25 °C | Mg/m3 | 0.9 |
Molecular weight | g/mol | ca. 1000 |
SW [% m/m] | Virgin | RTFOT | PAV (RTFOT + PAV) |
---|---|---|---|
0.0 | C R P M | C R P | C R P |
1.5 | C R P M | C R P | C R P |
2.5 | C R P M | C R P | C R P |
3.5 | C R P M | C R P | C R P M |
Modifier Type | Additive Amount (%) | Aging Treatment | CAM Model Parameters | Rheological Index R | R2 | ||
---|---|---|---|---|---|---|---|
fc [Hz] | v | w | |||||
Reference | 0 | Unaged | 6838.65 | 0.366039 | 0.777134 | 0.822398 | 0.99 |
SW | 1.5 | Unaged | 4463.62 | 0.128138 | 0.681133 | 2.349270 | 0.99 |
SW | 2.5 | Unaged | 56,041.80 | 0.236811 | 0.666271 | 1.271181 | 0.99 |
SW | 3.5 | Unaged | 64,110.16 | 0.181204 | 0.492674 | 1.661274 | 0.99 |
Reference | 0 | RTFOT | 3279.24 | 0.118217 | 0.669327 | 2.546422 | 0.99 |
SW | 1.5 | RTFOT | 3389.39 | 0.152007 | 0.634313 | 1.980375 | 0.99 |
SW | 2.5 | RTFOT | 51,721.91 | 0.307923 | 0.504736 | 0.977616 | 0.99 |
SW | 3.5 | RTFOT | 82,890.49 | 0.070345 | 0.344391 | 4.279335 | 0.99 |
Reference | 0 | RTFOT+PAV | 3664.013 | 0.164292 | 0.784387 | 1.832292 | 0.99 |
SW | 1.5 | RFTOT+PAV | 22,612.67 | 0.270815 | 0.586265 | 1.111572 | 0.99 |
SW | 2.5 | RFTOT+PAV | 88,153.27 | 0.099749 | 0.379157 | 3.017875 | 0.99 |
SW | 3.5 | RFTOT+PAV | 33,343.37 | 0.105717 | 0.447592 | 2.847504 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iwański, M.; Cholewińska, M.; Mazurek, G. Effect of Synthetic Wax on the Rheological Properties of Polymer-Modified Bitumen. Materials 2025, 18, 3067. https://doi.org/10.3390/ma18133067
Iwański M, Cholewińska M, Mazurek G. Effect of Synthetic Wax on the Rheological Properties of Polymer-Modified Bitumen. Materials. 2025; 18(13):3067. https://doi.org/10.3390/ma18133067
Chicago/Turabian StyleIwański, Marek, Małgorzata Cholewińska, and Grzegorz Mazurek. 2025. "Effect of Synthetic Wax on the Rheological Properties of Polymer-Modified Bitumen" Materials 18, no. 13: 3067. https://doi.org/10.3390/ma18133067
APA StyleIwański, M., Cholewińska, M., & Mazurek, G. (2025). Effect of Synthetic Wax on the Rheological Properties of Polymer-Modified Bitumen. Materials, 18(13), 3067. https://doi.org/10.3390/ma18133067