Critical Pathways for Transforming the Energy Future: A Review of Innovations and Challenges in Spent Lithium Battery Recycling Technologies
Abstract
1. Introduction
2. The Structure of Lithium-Ion Batteries
3. The Pre-Treatment Processes in Lithium-Ion Battery Recycling
4. The Pyrometallurgical Technology for Recycling Spent Lithium-Ion Batteries
5. The Hydrometallurgical Technology for Recycling Spent Lithium-Ion Batteries
5.1. Acid Leaching System
5.2. Deep Eutectic Solvent Leaching System
5.3. Novel Leaching Systems for Lithium-Ion Battery Recycling
5.4. Recovery of Metal Ions from Leachate Solutions
6. Novel Green and High-Efficiency Recovery Methodology
7. Discussion
- (1)
- Waste lithium-ion batteries undergo mechanical separation processes based on component-specific physical properties, enabling efficient disassembly of valuable materials through sequential screening, magnetic separation, and froth flotation. Current collectors exhibit exceptional mechanical resilience during size reduction, resisting fragmentation below critical particle diameters. This allows gravitational screening to effectively isolate coarse-grained metallic foils from fine-grained active material powders. For the screened electrode fractions, flotation offers superior selectivity for cathode/anode separation compared to alternative methods, leveraging surface property differences between lithium-bearing cathode powders and graphite-based anode materials. Post-flotation concentration, various hydrometallurgical pathways can be implemented to recover strategic metals from the purified cathode streams.
- (2)
- Pyrometallurgical processes encompass sulfurization roasting (typically operated above 600 °C) and emerging controlled-atmosphere roasting methodologies that achieve significant temperature reductions through thermodynamic optimization. While conventional high-temperature smelting demonstrates superior metal recovery rates, its long-term environmental sustainability remains questionable due to associated pollution risks. Modern roasting innovations present dual technical advancements: they not only enhance valuable metal recovery yields beyond conventional limits but also drastically reduce process energy requirements, aligning with industrial scalability criteria through improved thermodynamic efficiency and ecological compatibility.
- (3)
- Hydrometallurgical processes encompass diverse leaching systems including acid-based, DES, and emerging specialized formulations. In acidic environments, inorganic acid leaching necessitates reducing agent addition to achieve effective metal dissolution. While inorganic acids offer economic advantages, their application raises concerns regarding environmental contamination and equipment degradation. Organic acid systems present an eco-friendly alternative with superior leaching kinetics, though their industrial implementation remains hindered by high operational costs. DES leaching systems represent a sustainable innovation, combining high extraction efficiency with solvent recyclability while minimizing toxic emissions. Despite requiring complex regeneration protocols, these systems exhibit significant research potential as future-oriented recycling solutions, particularly if process simplification can be realized for industrial scaling. Specialized leaching formulations have been developed to address the structural complexity of ternary lithium batteries, demonstrating efficient metal dissolution under tailored conditions using cost-effective reagents, thereby expanding technological options for sustainable battery recycling. Following solid–liquid conversion of target metals, selective recovery from pregnant leach solutions becomes critical. Current strategies primarily involve chemical precipitation and physical property-based separation techniques. Chemical precipitation maintains widespread adoption due to its process versatility, though its implementation often involves multi-step protocols and secondary waste generation. Physical separation methods, which exploit differences in solution chemistry (e.g., solubility product modulation), offer simpler, cleaner recovery pathways but exhibit narrower applicability compared to precipitation-based approaches.
- (4)
- While existing policies and regulations support the advancement of the lithium-ion battery recycling sector, the industry currently lacks standardized protocols. This regulatory void has resulted in inconsistent recycling procedures and technical benchmarks, leaving numerous spent batteries unprocessed through safe or environmentally sustainable methods. To resolve these systemic challenges, future efforts should prioritize establishing uniform standards that ensure operational efficiency and environmental responsibility across the recycling value chain. Such measures will be critical to enabling sustainable industry expansion.
8. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BDs | bean dregs |
CA | citric acid |
DES | deep eutectic solvents |
DMSO | dimethyl sulfoxide |
EG | ethylene glycol |
EV | electric vehicle |
FA | formic acid |
ICP-OES | inductively coupled plasma optical emission spectrometry |
Ksp | solubility product |
LIBs | lithium-ion batteries |
LCO | lithium cobalt oxide |
LFP | lithium iron phosphate |
BDs | bean dregs |
EG | ethylene glycol |
MCA | monochloroacetic acid |
LNCM | ternary lithium battery cathode |
TBAC | tetrabutylammonium chloride |
LMFP | LiFexMn1−xPO4 |
LNCM | ternary lithium battery cathode |
MCA | monochloroacetic acid |
MIBC | methylisobutyl |
NCA | nickel–cobalt–aluminum oxide |
NMC | nickel–manganese–cobalt oxide |
NMP | N-methyl-2-pyrrolidone |
NTP | non-thermal plasma |
OA | oxalic acid |
PVDF | polyvinylidene fluoride |
TBAC | tetrabutylammonium chloride |
References
- Yu, J.; Liu, Y.; Li, J. Galvanic leaching recycling of spent lithium-ion batteries via low entropy-increasing strategy. Nat. Commun. 2025, 16, 2440. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Li, J.; Zhang, S.; Wei, F.; Liu, Y.; Li, J. Mechanochemical upcycling of spent LiCoO2 to new LiNi0.80Co0.15Al0.05O2 battery: An atom economy strategy. Proc. Natl. Acad. Sci. USA 2023, 120, e2217698120. [Google Scholar] [CrossRef] [PubMed]
- Mondal, A.; Fu, Y.; Gao, W.; Mi, C.C. Pretreatment of Lithium Ion Batteries for Safe Recycling with High-Temperature Discharging Approach. Batteries 2024, 10, 37. [Google Scholar] [CrossRef]
- Cao, Y.; Li, J.; Ji, H.; Wei, X.; Zhou, G.; Cheng, H.M. A review of direct recycling methods for spent lithium-ion batteries. Energy Storage Mater. 2024, 70, 103475. [Google Scholar] [CrossRef]
- Li, Q.; Song, R.; Wei, Y. A review of state-of-health estimation for lithium-ion battery packs. J. Energy Storage 2025, 118, 116078. [Google Scholar] [CrossRef]
- Alam, M.M.; Huang, H.; Yang, Z.; Zou, L.; Chi, Z.; Zhang, W. Innovative green intense tetra-eutectic solvent (ITES) for recovery via occlusion co-precipitation at room temperature. Sustain. Mater. Technol. 2024, 40, e00971. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, X.; Liu, Y.; Gong, X. Electrochemical Energy Storage Devices-Batteries, Supercapacitors, and Battery-Supercapacitor Hybrid Devices. ACS Appl. Electron. Mater. 2025, 7, 2233–2270. [Google Scholar] [CrossRef]
- Jiang, S.-Q.; Xu, C.; Li, X.-G.; Deng, C.-Z.; Yan, S.; Zhu, X.-N. Mixed crushing and competitive leaching of all electrode material components and metal collector fluid in the spent lithium battery. J. Environ. Manag. 2024, 358, 120818. [Google Scholar] [CrossRef]
- Biswal, B.K.; Zhang, B.; Tran, P.T.M.; Zhang, J.; Balasubramanian, R. Recycling of spent lithium-ion batteries for a sustainable future: Recent advancements. Chem. Soc. Rev. 2024, 53, 5552–5592. [Google Scholar] [CrossRef]
- Lee, J.; Park, K.W.; Sohn, I.; Lee, S. Pyrometallurgical recycling of end-of-life lithium-ion batteries. Int. J. Miner. Metall. Mater. 2024, 31, 1554–1571. [Google Scholar] [CrossRef]
- Wang, Z.; Song, Y.; Zhao, Q.; Shi, B.; He, J.; Li, J. Unveiling the electrochemical degradation behavior of 18650 lithium-ion batteries involved different humidity conditions. J. Power Sources 2025, 630, 236185. [Google Scholar] [CrossRef]
- Williams, D.; Green, J.; Bugryniec, P.; Brown, S.; Dwyer-Joyce, R. Battery age monitoring: Ultrasonic monitoring of ageing and degradation in lithium-ion batteries. J. Power Sources 2025, 631, 236174. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, C.; Guo, Q.; Liu, M.; Zhang, Y.; Sun, Z.; Huang, L.; Song, H. Improved recovery of cathode materials and enhanced lithium selective extraction from spent LiNi0.5Co0.2Mn0.3O2 batteries via CaCl2-assisted microwave roasting. J. Environ. Chem. Eng. 2024, 12, 112037. [Google Scholar] [CrossRef]
- Ipek, E.; Bilgin, C.; Yordem, M.; Iscanoglu, Y.; Yilmaz, M. Impact of Driving Cycles and Terrain on the Performance and Cost of EV Battery Chemistries: A Comparative Analysis and Evaluation. IEEE Access 2025, 13, 27268–27286. [Google Scholar] [CrossRef]
- Lu, J.; Tian, C.; Ren, C.; Omran, M.; Zhang, F.; Gao, L.; Chen, G. Priority recovering of lithium from spent lithium-ion battery cathode powder by pyrolysis reduction of Bidens pilosa. J. Clean. Prod. 2024, 439, 140775. [Google Scholar] [CrossRef]
- Sahu, S.; Agrawala, M.; Patra, S.R.; Devi, N. Synergistic Approach for Selective Leaching and Separation of Strategic Metals from Spent Lithium-Ion Batteries. ACS Omega 2024, 9, 10556–10565. [Google Scholar] [CrossRef]
- Tian, Y.; Zhou, F.; Wang, Z.; Chen, W.; Qin, R.; Chen, Y.; Mu, T. Deep eutectic solvent with acidity, reducibility, and coordination capability for recycling of valuable metals from spent lithium-ion battery cathodes. Sep. Purif. Technol. 2024, 348, 127810. [Google Scholar] [CrossRef]
- Lei, H.; Zeng, Z.; Zhu, C.; Wen, Y.; Li, J.; Yang, Y.; Ge, P. Lithium-Ion Battery Recycling: Defect-Driven High-Performance Regeneration. ChemSusChem 2025, 2500597. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, L.; Song, D.; Wu, J.; Yu, J.; Li, J. Recycling of spent lithium-ion batteries via sulfidation shock. Chem. Eng. J. 2025, 505, 159206. [Google Scholar] [CrossRef]
- Yu, J.; Liu, Y.; Han, S.; Tan, Q.; Liu, L.; Li, J. Unveiling Sodium Ion Pollution in Spray-Dried Precursors and Its Implications for the Green Upcycling of Spent Lithium-Ion Batteries. Environ. Sci. Technol. 2021, 55, 14897–14905. [Google Scholar] [CrossRef]
- Zhang, S.; Gu, K.; Lu, B.A.; Han, J.; Zhou, J. Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Phys.-Chim. Sin. 2024, 40, 2309028. [Google Scholar] [CrossRef]
- Sadeghi, N.; Vakilchap, F.; Ilkhani, Z.; Mousavi, S.M. Assessment of the visible light effect on one-step bacterial leaching of metals from spent lithium-ion batteries cathode pretreated by a bio-chemical lixiviant. J. Clean. Prod. 2024, 436, 140432. [Google Scholar] [CrossRef]
- Lin, S.; Chu, B.; Xie, W.; Jiang, H.; Li, Z.; Wang, S.; Zhang, T.; Xiaolu, S.; Ge, L. Analysis of Thermal Reduction of Mixture of Organic Components on Cathode Materials of Spent Ternary Lithium-Ion Battery. J. Phys. Chem. C 2024, 128, 6788–6799. [Google Scholar] [CrossRef]
- Wen, G.; Yuan, S.; Dong, Z.; Ding, H.; Gao, P. Recycling of spent lithium iron phosphate battery cathode materials: A review. J. Clean. Prod. 2024, 474, 143625. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, J.; Zhao, Y.; Lai, J.; Li, J.; Tan, Q. Valorization of waste graphite in spent lithium-ion batteries to graphene via modified mechanical exfoliation and the mechanism exploration. J. Clean. Prod. 2024, 449, 141823. [Google Scholar] [CrossRef]
- Fu, D.; Zhou, W.; Liu, J.; Zeng, S.; Wang, L.; Liu, W.; Yu, X.; Liu, X. A facile route for the efficient leaching, recovery, and regeneration of lithium and iron from waste lithium iron phosphate cathode materials. Sep. Purif. Technol. 2024, 342, 127069. [Google Scholar] [CrossRef]
- Yu, J.; Huang, K.; Zheng, J.; Zhang, L. Advance technology for treatment and recycling of electrolyte and organic matters from spent lithium-ion battery. Curr. Opin. Green Sustain. Chem. 2024, 47, 100914. [Google Scholar] [CrossRef]
- Luo, S.-H.; Wang, Y.; Liu, Q.; Li, P.; Wang, Z.; Yan, S.; Teng, F. Recent progress and perspective of cathode recycling technology for spent LiFePO4 batteries. J. Ind. Eng. Chem. 2024, 133, 65–73. [Google Scholar] [CrossRef]
- Yu, J.; Zou, S.; Xu, G.; Liu, L.; Zhao, M.; Li, J. In-situ enhanced catalytic reforming behavior of cobalt-based materials with inherent zero-valent aluminum in spent lithium ion batteries. Appl. Catal. B-Environ. 2022, 303, 120920. [Google Scholar] [CrossRef]
- Ding, W.; Bao, S.; Zhang, Y.; Xin, C.; Chen, B.; Li, J.; Liu, B.; Xia, Y.; Hou, X.; Xu, K. Sustainable regeneration of high-performance cathode materials from spent lithium-ion batteries through magnetic separation and coprecipitation. J. Clean. Prod. 2024, 438, 140798. [Google Scholar] [CrossRef]
- Li, C.; Pan, Q.; Jiang, W.-J.; Liu, Z.-Y.; Chen, L. Titanium dioxide-based materials for alkali metal-ion batteries: Safety and development. J. Power Sources 2025, 634, 236492. [Google Scholar] [CrossRef]
- Cheng, Q.; Wang, Z.; Wang, Y.; Li, J.T.; Fu, H. Recent advances in preferentially selective Li recovery from spent lithium-ion batteries: A review. J. Environ. Chem. Eng. 2024, 12, 112903. [Google Scholar] [CrossRef]
- Jena, K.K.; Alfantazi, A.; Choi, D.S.; Liao, K.; Mayyas, A. Recycling Spent Lithium Ion Batteries and Separation of Cathode Active Materials: Structural Stability, Morphology Regularity, and Waste Management. Ind. Eng. Chem. Res. 2024, 63, 3483–3490. [Google Scholar] [CrossRef]
- Petzold, M.; Flamme, S. Recycling Strategies for Spent Consumer Lithium-Ion Batteries. Metals 2024, 14, 151. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, G.; Cheng, L.; Gu, J.; Yuan, H.; Chen, Y.; Wu, Y. Development of sustainable and efficient recycling technology for spent Li-ion batteries: Traditional and transformation go hand in hand. Green Energy Environ. 2024, 9, 802–830. [Google Scholar] [CrossRef]
- Gao, Z.-W.; Lan, T.; Yin, H.; Liu, Y. Development and Commercial Application of Lithium-Ion Batteries in Electric Vehicles: A Review. Processes 2025, 13, 756. [Google Scholar] [CrossRef]
- Marchese, D.; Giosue, C.; Staffolani, A.; Conti, M.; Orcioni, S.; Soavi, F.; Cavalletti, M.; Stipa, P. An Overview of the Sustainable Recycling Processes Used for Lithium-Ion Batteries. Batteries 2024, 10, 27. [Google Scholar] [CrossRef]
- Liang, Y.; Zhao, C.-Z.; Yuan, H.; Chen, Y.; Zhang, W.; Huang, J.-Q.; Yu, D.; Liu, Y.; Titirici, M.-M.; Chueh, Y.-L.; et al. A review of rechargeable batteries for portable electronic devices. Infomat 2019, 1, 6–32. [Google Scholar] [CrossRef]
- Prazanova, A.; Plachy, Z.; Koci, J.; Fridrich, M.; Knap, V. Direct Recycling Technology for Spent Lithium-Ion Batteries: Limitations of Current Implementation. Batteries 2024, 10, 81. [Google Scholar] [CrossRef]
- Li, P.; Xu, H.; Luo, S.; Wang, Y.; Zhang, L.; Lin, Y.; Li, Z.; Guo, J.; Xu, Y.; Zhang, Y.; et al. Green and non-destructive separation of cathode materials from aluminum foil in spent lithium-ion batteries. Sep. Purif. Technol. 2024, 338, 126625. [Google Scholar] [CrossRef]
- Ding, H.; Yuan, S.; Lei, S.; Wang, W.; Wen, G.; Dong, Z. Technology and principle on preferentially selective lithium extraction for spent ternary lithium batteries: A review. Sep. Purif. Technol. 2025, 355, 129691. [Google Scholar] [CrossRef]
- Fu, Y.; Dong, X.; Ebin, B. Resource Recovery of Spent Lithium-Ion Battery Cathode Materials by a Supercritical Carbon Dioxide System. Molecules 2024, 29, 1638. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.-Q.; Li, X.-G.; Zhou, W.-T.; Deng, C.-Z.; Zhu, X.-N. Enhanced green leaching of spent lithium-ion batteries: Pyrolysis pretreatment combined with eco-friendly citric acid and ascorbic acid. Colloids Surf. A-Physicochem. Eng. Asp. 2024, 687, 133492. [Google Scholar] [CrossRef]
- Han, Y.; Yan, M.; Fang, Y.; Xiong, Y.; Wang, Y.; Chen, Y.; Lin, L.; Qian, J.; Mei, T.; Wang, X. Efficient recovery of Al foil and regeneration of cathode materials from spent lithium-ion batteries with methanol-citric acid. J. Power Sources 2024, 603, 234417. [Google Scholar] [CrossRef]
- Zhou, J.; Zhou, X.; Yu, W.; Shang, Z.; Xu, S. Towards Greener Recycling: Direct Repair of Cathode Materials in Spent Lithium-Ion Batteries. Electrochem. Energy Rev. 2024, 7, 13. [Google Scholar] [CrossRef]
- Nshizirungu, T.; Rana, M.; Jo, Y.T.; Uwiragiye, E.; Kim, J.; Park, J.-H. Ultrasound-assisted sustainable recycling of valuable metals from spent Li-ion batteries via optimisation using response surface methodology. J. Environ. Chem. Eng. 2024, 12, 112371. [Google Scholar] [CrossRef]
- Yang, C.; Hao, Y.; Wang, J.; Zhang, M.; Song, L.; Qu, J. Research on the facile regeneration of degraded cathode materials from spent LiNi0.5Co0.2Mn0.3O2 lithium-ion batteries. Front. Chem. 2024, 12, 1400758. [Google Scholar] [CrossRef]
- Yuan, X.; Jiang, T.; Tay, C.Y.; He, Y.; Wang, H.; Zhang, G. Magnetization roasting combined with multi-stage extraction for selective recovery of lithium from spent lithium-ion batteries. Sep. Purif. Technol. 2024, 338, 126349. [Google Scholar] [CrossRef]
- Wang, T.; Tao, T.; Lv, W.; Zhao, Y.; Kang, F.; Cao, H.; Sun, Z. Selective Recovery of Cathode Materials from Spent Lithium-Ion Battery Material with a Near-Room-Temperature Separation. Acs Appl. Mater. Interfaces 2024, 16, 10267–10276. [Google Scholar] [CrossRef]
- Zhang, X.; Xie, W.; Zhou, X.; Zhang, W.; Wen, J.; Wang, X.; Huang, G.; Xu, S. Study on metal recovery process and kinetics of oxidative leaching from spent LiFePO4 Li-batteries. Chin. J. Chem. Eng. 2024, 68, 94–102. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, J.; Yu, M.; Li, X.; Liu, S.; Song, H.; Wu, W.; Zheng, C.; Gao, X. Selective Lithium Leaching from Spent Lithium-Ion Batteries via a Combination of Reduction Roasting and Mechanochemical Activation. ACS Sustain. Chem. Eng. 2024, 12, 6629–6639. [Google Scholar] [CrossRef]
- Tong, H.; Lv, H.; Li, Y.; Mao, G.; Yu, W.; Guo, X. Bifunctional Treatment of Spent Ternary Cathode Materials with Improved Electrochemical Performance. ACS Appl. Energy Mater. 2024, 7, 2816–2824. [Google Scholar] [CrossRef]
- Wang, Z.; Li, M.; Fu, B.; Cao, W.; Bo, X. Recycling cobalt from spent lithium-ion batteries for designing the novel cobalt nitride followers: Towards efficient overall water splitting and advanced zinc-air batteries. J. Colloid Interface Sci. 2024, 662, 218–230. [Google Scholar] [CrossRef]
- Gu, K.; Tokoro, C.; Takaya, Y.; Zhou, J.; Qin, W.; Han, J. Resource recovery and regeneration strategies for spent lithium-ion batteries: Toward sustainable high-value cathode materials. Waste Manag. 2024, 179, 120–129. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, H.; Bi, H.; Bai, Y.; Zhang, C. Efficient recovery of electrode materials from lithium iron phosphate batteries through heat treatment, ball milling, and foam flotation. J. Mater. Cycles Waste Manag. 2024, 26, 1622–1632. [Google Scholar] [CrossRef]
- Bi, H.; Zhu, H.; Zu, L.; Bai, Y.; Gao, S.; Gao, Y. A new model of trajectory in eddy current separation for recovering spent lithium iron phosphate batteries. Waste Manag. 2019, 100, 1–9. [Google Scholar] [CrossRef]
- Qiu, H.; Peschel, C.; Winter, M.; Nowak, S.; Koethe, J.; Goldmann, D. Recovery of Graphite and Cathode Active Materials from Spent Lithium-Ion Batteries by Applying Two Pretreatment Methods and Flotation Combined with a Rapid Analysis Technique. Metals 2022, 12, 677. [Google Scholar] [CrossRef]
- Liu, J.; Wang, H.; Hu, T.; Bai, X.; Wang, S.; Xie, W.; Hao, J.; He, Y. Recovery of LiCoO2 and graphite from spent lithium-ion batteries by cryogenic grinding and froth flotation. Miner. Eng. 2020, 148, 106223. [Google Scholar] [CrossRef]
- Wen, G.; Yuan, S.; Dong, Z.; Gao, P.; Ding, H.; Lei, S.; Liu, Q. Mechanism and process study of spent lithium iron phosphate batteries by medium-temperature oxidation roasting strategy. Sep. Purif. Technol. 2025, 356, 129987. [Google Scholar] [CrossRef]
- Li, S.; Wu, Z.; Zhang, M.; Xu, J.; Jin, Z.; Gan, Y.; Xu, Z.; Wang, Q.; Zhang, W.; Xia, Y.; et al. Direct Recycling of Cathode Materials from Spent Lithium-Ion Batteries: Principles, Strategies, and Perspectives. Chem.-A Eur. J. 2025, 31, e202404461. [Google Scholar] [CrossRef]
- Lin, T.; Liang, J.; Jin, S.; Mu, D.; Sun, S.; Liu, C.; Ning, Y.; Song, J.; Zhao, L.; Dai, C. A high-efficiency and low-carbon strategy for selective lithium recovery from spent lithium-ion batteries: Combining mechanochemical activation with biomass reduction roasting. Sep. Purif. Technol. 2024, 338, 126458. [Google Scholar] [CrossRef]
- Wei, D.; Wang, W.; Jiang, L.; Chang, Z.; Zhou, H.; Dong, B.; Gao, D.; Zhang, M.; Wu, C. Preferentially selective extraction of lithium from spent LiCoO2 cathodes by medium-temperature carbon reduction roasting. Int. J. Miner. Metall. Mater. 2024, 31, 315–322. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, H.; Luo, F.; Huang, Y.; Liu, T.; Tao, X.; Yang, G.; Luo, X.; Shao, P. Minimized carbon emissions to recycle lithium from spent ternary lithium-ion batteries via sulfation roasting. Resour. Conserv. Recycl. 2024, 203, 107460. [Google Scholar] [CrossRef]
- Quan, W.; Yan, K.; Zhang, Z.; Nie, H.; Wang, R.; Xu, Z. Novel targeted extraction of lithium: An environment-friendly controlled sulfidation roasting technology and mechanism for recovering spent lithium-ion batteries. Sep. Purif. Technol. 2024, 345, 127415. [Google Scholar] [CrossRef]
- Yang, L.; Wang, D.; Zhang, J.; Chen, Y.; Wang, C. An economical and closed-loop hydrometallurgical method to prepare battery-grade iron phosphate from delithiated LiFePO4 cathode scrap. J. Clean. Prod. 2024, 444, 141194. [Google Scholar] [CrossRef]
- Liang, J.; Chen, R.; Gu, J.-N.; Li, J.; Xue, Y.; Shi, F.; Huang, B.; Guo, M.; Jia, J.; Li, K.; et al. Sustainable recycling of spent ternary lithium-ion batteries via an environmentally friendly process: Selective recovery of lithium and non-hazardous upcycling of residue. Chem. Eng. J. 2024, 481, 148516. [Google Scholar] [CrossRef]
- Yasa, S.; Birol, B.; Donmez, K.B.; Gencten, M. Recovery of cobalt based materials from spent Li-ion batteries and their use as electrode material for supercapacitor. J. Energy Storage 2024, 81, 110291. [Google Scholar] [CrossRef]
- Ren, L.; Liu, B.; Bao, S.; Ding, W.; Zhang, Y.; Hou, X.; Lin, C.; Chen, B. Recovery of Li, Ni, Co and Mn from spent lithium-ion batteries assisted by organic acids: Process optimization and leaching mechanism. Int. J. Miner. Metall. Mater. 2024, 31, 518–530. [Google Scholar] [CrossRef]
- Yang, T.; Luo, D.; Zhang, X.; Gao, S.; Gao, R.; Ma, Q.; Park, H.W.; Or, T.; Zhang, Y.; Chen, Z. Sustainable regeneration of spent cathodes for lithium-ion and post-lithium-ion batteries. Nat. Sustain. 2024, 7, 776–785. [Google Scholar] [CrossRef]
- Wang, Y.-H.; Wu, J.-J.; Hu, G.-C.; Ma, W.-H. Recovery of Li and Fe from spent lithium iron phosphate using organic acid leaching system. Trans. Nonferrous Met. Soc. China 2024, 34, 336–346. [Google Scholar] [CrossRef]
- Zhou, M.; Shen, J.; Duan, Y.; Zuo, Y.; Xing, Z.; Liu, R. The Le Chatelier’s principle enables closed loop regenerating ternary cathode materials for spent lithium-ion batteries. Energy Storage Mater. 2024, 67, 103250. [Google Scholar] [CrossRef]
- Gong, S.; Dong, E.; Liu, B.; Chao, Y.; Niu, Y.; Ji, G.; Chen, W.; Hou, K.; Guo, S.; Zhang, L. Eco-friendly closed-loop recycling of nickel, cobalt, manganese, and lithium from spent ternary lithium-ion battery cathodes. Sep. Purif. Technol. 2024, 348, 127771. [Google Scholar]
- Zhang, Y.; Wang, F.; Zhang, W.; Ren, S.; Hou, Y.; Wu, W. High-Selectivity Recycling of Valuable Metals from Spent Lithium-Ion Batteries Using Recyclable Deep Eutectic Solvents. ChemSusChem 2024, 17, e202301774. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Li, T.; Liu, X.; Wang, Z.; Lou, L.; Jing, S.; Yan, X.; Xiong, Y.; Xiong, J.; Ge, X. Realizing the reusability of leachate for the hydrometallurgical recycling of spent lithium cobalt oxide by dynamically regulating the solubility product. Green Chem. 2024, 26, 2653–2660. [Google Scholar] [CrossRef]
- Wang, C.; Ai, T.; Gao, X.; Lu, J.; Liu, J.; Zhu, W.; Luo, Y. Effective recycling of critical metals from LiCoO2 batteries by hydrated deep eutectic solvents: Performance, kinetic and mechanism. J. Water Process Eng. 2024, 59, 105088. [Google Scholar] [CrossRef]
- Liu, C.; Yu, J.; Hu, J.; Xu, J.; Yu, A.; Liu, T.; Wang, Z.; Luo, X.; Deng, C.; Luo, F.; et al. Ultra-low viscosity betaine hydrochloride-formic acid deep eutectic solvent for leaching critical metals from spent NCM lithium-ion batteries. J. Environ. Chem. Eng. 2024, 12, 112586. [Google Scholar] [CrossRef]
- Xie, J.; Xiao, S.; Xu, W.; Liu, D.; Ren, G. A green and simplified method for selective recovery of lithium from the cathode scraps of spent LiFexMn1-xPO4 batteries. Sep. Purif. Technol. 2024, 341, 126848. [Google Scholar] [CrossRef]
- Qu, X.; Zhou, F.; Wang, D.; Cai, Y.; Zhao, J.; Ma, J.; Gao, S.; Wang, D.; Yin, H. Pre-extraction of Li from spent lithium-ion batteries through an Ethanol-Water vapor thermal reduction approach. Chem. Eng. J. 2024, 482, 148608. [Google Scholar] [CrossRef]
- Qing, J.; Wu, X.; Zeng, L.; Guan, W.; Cao, Z.; Li, Q.; Wang, M.; Zhang, G.; Wu, S. High-efficiency recovery of valuable metals from spent lithium-ion batteries: Optimization of SO2 pressure leaching and selective extraction of trace impurities. J. Environ. Manag. 2024, 356, 120729. [Google Scholar] [CrossRef]
- Gu, K.; Feng, W.; Wei, H.; Dang, L. The Factors Influencing Lithium Carbonate Crystallization in Spent Lithium-Ion Battery Leachate. Processes 2024, 12, 753. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Y.; Yuan, L.; Wang, S.; Yan, S.; Liu, H.; Xu, J. Microthermal catalytic aerogenesis of renewable biomass waste using cathode materials from spent lithium-ion batteries towards reversed regulated conversion and recycling of valuable metals. Green Chem. 2023, 25, 1559–1570. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Z.; Ning, L.; Zhu, X.; Yu, H. Critical Pathways for Transforming the Energy Future: A Review of Innovations and Challenges in Spent Lithium Battery Recycling Technologies. Materials 2025, 18, 2987. https://doi.org/10.3390/ma18132987
Lu Z, Ning L, Zhu X, Yu H. Critical Pathways for Transforming the Energy Future: A Review of Innovations and Challenges in Spent Lithium Battery Recycling Technologies. Materials. 2025; 18(13):2987. https://doi.org/10.3390/ma18132987
Chicago/Turabian StyleLu, Zhiyong, Liangmin Ning, Xiangnan Zhu, and Hao Yu. 2025. "Critical Pathways for Transforming the Energy Future: A Review of Innovations and Challenges in Spent Lithium Battery Recycling Technologies" Materials 18, no. 13: 2987. https://doi.org/10.3390/ma18132987
APA StyleLu, Z., Ning, L., Zhu, X., & Yu, H. (2025). Critical Pathways for Transforming the Energy Future: A Review of Innovations and Challenges in Spent Lithium Battery Recycling Technologies. Materials, 18(13), 2987. https://doi.org/10.3390/ma18132987