Thermal and Interfacial Stability of PPS-Fabricated Segmented Skutterudite Legs for Thermoelectric Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
- n-type: Co4Sb10.8Te0.6Se0.6 and In0.4Co4Sb12
- p-type: In0.25Co3FeSb12 and CeFe3Co0.5Ni0.5Sb12
- For In0.4Co4Sb12, In0.25Co3FeSb12 and CeFe3Co0.5Ni0.5Sb12: the samples were heated to 1323 K at 2 K/min, held for 3 h, and water quenched.
- For Co4Sb10.8Te0.6Se0.6: the sample was heated in two steps—first to 923 K at 1 K/min for 3 h, then to 1073 K at 1 K/min for another 3 h, followed by water quenching.
2.2. Fabrication by Pulse Plasma Sintering
- n-type segments and joints: sintered at 923 K for 10 min
- p-type segments and joints: sintered at 873 K for 10 min
2.3. Aging Procedure and Characterization
3. Results and Discussion
3.1. Microstructure and Chemical Characterization
3.2. Phase and Thermal Stability of the Joints
3.3. Thermoelectric Performance and Interfacial Properties
3.4. Theoretical Conversion Efficiency
4. Conclusions
- Thermoelectric joints based on In0.4Co4Sb12/Co4Sb10.8Te0.6Se0.6 (n-type) and CeFe3Co0.5Ni0.5Sb12/In0.25Co3FeSb12 (p-type) were successfully fabricated using the pulse plasma sintering (PPS) technique for the first time.
- Microstructural characterization confirmed dense, crack-free interfaces without visible porosity. Minor impurity phases were observed by EDS mapping and line scans, but they did not compromise joint quality.
- Post-annealing tests conducted at 773 K for 168 h revealed the high thermal and chemical stability of the joints, with unchanged morphology and elemental profiles. XRD analysis confirmed phase stability.
- Seebeck coefficient mapping after thermal aging showed only minor variations, indicating preserved thermoelectric properties across the joint regions.
- Contact resistivity remained low before and after annealing, confirming the electrical stability of the interfaces. Compatibility factors calculated for the segmented joints were within acceptable limits.
- Thermoelectric performance evaluation showed high ZT values in both individual and segmented legs. Theoretical energy conversion efficiencies reached 13.2% (n-type) and 10.1% (p-type). Segmentation improved average ZT and thus enhanced overall efficiency.
- Measured coefficients of thermal expansion (CTE) showed minimal mismatch between the materials in each joint (<1.5 × 10−6 K−1), supporting good thermo-mechanical compatibility without the need for buffer layers.
- The selected material combinations and joining approach using PPS demonstrate strong potential for future integration into efficient, stable thermoelectric modules operating in the intermediate temperature range.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rull-Bravo, M.; Moure, A.; Fernández, J.F.; Martín-González, M. Skutterudites as Thermoelectric Materials: Revisited. RSC Adv. 2015, 5, 41653–41667. [Google Scholar] [CrossRef]
- Shi, X.; Yang, J.; Salvador, J.R.; Chi, M.; Cho, J.Y.; Wang, H.; Bai, S.; Yang, J.; Zhang, W.; Chen, L. Multiple-Filled Skutterudites: High Thermoelectric Figure of Merit through Separately Optimizing Electrical and Thermal Transports. J. Am. Chem. Soc. 2011, 133, 7837–7846. [Google Scholar] [CrossRef]
- Rogl, G.; Ghosh, S.; Renk, O.; Yubuta, K.; Grytsiv, A.; Schafler, E.; Zehetbauer, M.; Mallik, R.C.; Bauer, E.; Rogl, P. Influence of Shear Strain on HPT-Processed n-Type Skutterudites Yielding ZT = 2.1. J. Alloys Compd. 2021, 855, 157409. [Google Scholar] [CrossRef]
- Rogl, G.; Grytsiv, A.; Rogl, P.; Peranio, N.; Bauer, E.; Zehetbauer, M.; Eibl, O. N-Type Skutterudites (R,Ba,Yb)YCo4Sb12 (R = Sr, La, Mm, DD, SrMm, SrDD) Approaching ZT ≈ 2.0. Acta Mater. 2014, 63, 30–43. [Google Scholar] [CrossRef]
- Rogl, G.; Bursik, J.; Grytsiv, A.; Puchegger, S.; Soprunyuk, V.; Schranz, W.; Yan, X.; Bauer, E.; Rogl, P. Nanostructuring as a Tool to Adjust Thermal Expansion in High ZT Skutterudites. Acta Mater. 2018, 145, 359–368. [Google Scholar] [CrossRef]
- Snyder, G.J.; Toberer, E.S. Complex Thermoelectric Materials. Nat. Mater. 2008, 7, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, A.; Ballikaya, S. Modelling a Segmented Skutterudite-Based Thermoelectric Generator to Achieve Maximum Conversion Efficiency. Appl. Sci. 2020, 10, 408. [Google Scholar] [CrossRef]
- Salvador, J.R.; Cho, J.Y.; Ye, Z.; Moczygemba, J.E.; Thompson, A.J.; Sharp, J.W.; Koenig, J.D.; Maloney, R.; Thompson, T.; Sakamoto, J.; et al. Conversion Efficiency of Skutterudite-Based Thermoelectric Modules. Phys. Chem. Chem. Phys. 2014, 16, 12510–12520. [Google Scholar] [CrossRef] [PubMed]
- Prado-Gonjal, J.; Phillips, M.; Vaqueiro, P.; Min, G.; Powell, A.V. Skutterudite Thermoelectric Modules with High Volume-Power-Density: Scalability and Reproducibility. ACS Appl. Energy Mater. 2018, 1, 6609–6618. [Google Scholar] [CrossRef]
- Ochi, T.; Nie, G.; Suzuki, S.; Kikuchi, M.; Ito, S.; Guo, J.Q. Power-Generation Performance and Durability of a Skutterudite Thermoelectric Generator. J. Electron. Mater. 2014, 43, 2344–2347. [Google Scholar] [CrossRef]
- Wan, S.; Song, Q.; Chen, H.; Zhang, Q.; Liao, J.; Xia, X.; Wang, C.; Qiu, P.; Chen, B.; Bai, S.; et al. High-Efficiency Segmented Thermoelectric Power Generation Modules Constructed from All Skutterudites. Cell Rep. Phys. Sci. 2023, 4, 101651. [Google Scholar] [CrossRef]
- Bao, Y.; Fan, C.; Wang, W.; Liu, Y.; Li, X. Study on Microstructure and Interfacial Properties of N-Type Segmented Skutterudite/Half-Heusler Thermoelectric Material by Low-Temperature Bonding. J. Mater. Eng. Perform. 2024, 33, 12753–12764. [Google Scholar] [CrossRef]
- Chen, W.-H.; Chiou, Y.-B. Geometry Design for Maximizing Output Power of Segmented Skutterudite Thermoelectric Generator by Evolutionary Computation. Appl. Energy 2020, 274, 115296. [Google Scholar] [CrossRef]
- Tan, G.J.; Wang, S.Y.; Tang, X.F. Thermoelectric Performance Optimization in P-Type Ce y Fe3CoSb12 Skutterudites. J. Electron. Mater. 2014, 43, 1712–1717. [Google Scholar] [CrossRef]
- Zhu, T.; Liu, Y.; Fu, C.; Heremans, J.P.; Snyder, J.G.; Zhao, X. Compromise and Synergy in High-Efficiency Thermoelectric Materials. Adv. Mater. 2017, 29, 1605884. [Google Scholar] [CrossRef]
- Leblanc, S.; Yee, S.K.; Scullin, M.L.; Dames, C.; Goodson, K.E. Material and Manufacturing Cost Considerations for Thermoelectrics. Renew. Sustain. Energy Rev. 2014, 32, 313–327. [Google Scholar] [CrossRef]
- Dong, J.; Yang, K.; Xu, B.; Zhang, L.; Zhang, Q.; Tian, Y. Structure and Thermoelectric Properties of Se- and Se/Te-Doped CoSb3 Skutterudites Synthesized by High-Pressure Technique. J. Alloys Compd. 2015, 647, 295–302. [Google Scholar] [CrossRef]
- Jiang, Y.; Fan, X.; Chen, Q.; Ma, H.; Jia, X. High-Pressure Synthesis of Te–Ge Double-Substituted Skutterudite with Enhanced Thermoelectric Properties. ACS Appl. Mater. Interfaces 2024, 16, 61322–61330. [Google Scholar] [CrossRef]
- Deng, L.; Wang, L.B.; Ni, J.; Qin, J.M.; Jia, X.P.; Ma, H.A. Enhanced Thermoelectric Properties of Te-Doped and In, Ba Double-Filled CoSb3 Composites by High Pressure Technology. Mater. Lett. 2018, 217, 44–47. [Google Scholar] [CrossRef]
- Khovaylo, V.V.; Korolkov, T.A.; Voronin, A.I.; Gorshenkov, M.V.; Burkov, A.T. Rapid Preparation of InxCo4Sb12 with a Record-Breaking ZT = 1.5: The Role of the In Overfilling Fraction Limit and Sb Overstoichiometry. J. Mater. Chem. A 2017, 5, 3541–3546. [Google Scholar] [CrossRef]
- Visnow, E.; Heinrich, C.P.; Schmitz, A.; de Boor, J.; Leidich, P.; Klobes, B.; Hermann, R.P.; Müller, W.E.; Tremel, W. On the True Indium Content of In-Filled Skutterudites. Inorg. Chem. 2015, 54, 7818–7827. [Google Scholar] [CrossRef] [PubMed]
- Battabyal, M.; Priyadarshini, B.; Pradipkanti, L.; Satapathy, D.K.; Gopalan, R. Phase Stability and Lattice Thermal Conductivity Reduction in CoSb3 Skutterudites, Doped with Chalcogen Atoms. AIP Adv. 2016, 6, 075308. [Google Scholar] [CrossRef]
- Kruszewski, M.J.; Zybała, R.; Ciupiński, Ł.; Chmielewski, M.; Adamczyk-Cieślak, B.; Michalski, A.; Rajska, M.; Kurzydłowski, K.J. Microstructure and Thermoelectric Properties of Bulk Cobalt Antimonide (CoSb3) Skutterudites Obtained by Pulse Plasma Sintering. J. Electron. Mater. 2016, 45, 1369–1376. [Google Scholar] [CrossRef]
- Kruszewski, M.J.; Ciupiński, Ł.; Zybała, R. Review of Rapid Fabrication Methods of Skutterudite Materials. Mater. Today Proc. 2021, 44, 3475–3482. [Google Scholar] [CrossRef]
- Dąbrowski, F.; Ciupiński, Ł.; Zdunek, J.; Chromiński, W.; Kruszewski, M.; Zybala, R.; Michalski, A.; Kurzydłowski, K.J. Microstructure and Thermoelectric Properties of Doped FeSi2 with Addition of B4C Nanoparticles. Arch. Metall. Mater. 2021, 66, 1157–1162. [Google Scholar] [CrossRef]
- Kruszewski, M.J.; Cymerman, K.; Choińska, E.; Moszczyńska, D.; Ciupiński, Ł. A Comparative Study of Oxidation Behavior of Co4Sb12 and Co4Sb10.8Se0.6Te0.6 Skutterudite Thermoelectric Materials Fabricated via Fast SHS-PPS Route. J. Eur. Ceram. Soc. 2024, 44, 3760–3766. [Google Scholar] [CrossRef]
- Kruszewski, M.J.; Cymerman, K.; Flaga, J.; Ciupiński, Ł. Metallurgical Aspects of Joint Formation Between Diffusion Barriers and a Skutterudite Thermoelectric Material. Metall. Mater. Trans. A 2025, 56, 961–970. [Google Scholar] [CrossRef]
- Dąbrowski, F.; Ciupiński, Ł.; Zdunek, J.; Kruszewski, J.; Zybała, R.; Michalski, A.; Jan Kurzydłowski, K. Microstructure and Thermoelectric Properties of p and n Type Doped β-FeSi2 Fabricated by Mechanical Alloying and Pulse Plasma Sintering. Mater. Today Proc. 2019, 8, 531–539. [Google Scholar] [CrossRef]
- Shi, W.; Qin, D.; Sun, Y.; Wu, H.; Tong, H.; Xie, L.; Liu, Z.; Zhang, Q.; Cai, W.; Guo, F.; et al. Batch Fabrication and Interface Stabilization Accelerate Application of Skutterudite Thermoelectric Module for Power Generation. Adv. Energy Mater. 2024, 14, 2303698. [Google Scholar] [CrossRef]
- Nie, G.; Li, W.; Guo, J.; Yamamoto, A.; Kimura, K.; Zhang, X.; Isaacs, E.B.; Dravid, V.; Wolverton, C.; Kanatzidis, M.G.; et al. High Performance Thermoelectric Module through Isotype Bulk Heterojunction Engineering of Skutterudite Materials. Nano Energy 2019, 66, 104193. [Google Scholar] [CrossRef]
- Ballikaya, S.; Uzar, N.; Yildirim, S.; Chi, H.; Su, X.; Tan, G.; Tang, X.; Uher, C. Lower Thermal Conductivity and Higher Thermoelectric Performance of Fe-Substituted and Ce, Yb Double-Filled p-Type Skutterudites. J. Electron. Mater. 2013, 42, 1622–1627. [Google Scholar] [CrossRef]
- Kruszewski, M.J.; Cymerman, K.; Zybała, R.; Chmielewski, M.; Kowalczyk, M.; Zdunek, J.; Ciupiński, Ł. High Homogeneity and Ultralow Lattice Thermal Conductivity in Se/Te-Doped Skutterudites Obtained by Self-Propagating High-Temperature Synthesis and Pulse Plasma Sintering. J. Alloys Compd. 2022, 909, 164796. [Google Scholar] [CrossRef]
- Rogl, G.; Grytsiv, A.; Yubuta, K.; Puchegger, S.; Bauer, E.; Raju, C.; Mallik, R.C.; Rogl, P. In-Doped Multifilled n-Type Skutterudites with ZT = 1.8. Acta Mater. 2015, 95, 201–211. [Google Scholar] [CrossRef]
- Ryu, B.; Chung, J.; Kumagai, M.; Mato, T.; Ando, Y.; Gunji, S.; Tanaka, A.; Yana, D.; Fujimoto, M.; Imai, Y.; et al. Best Thermoelectric Efficiency of Ever-Explored Materials. iScience 2023, 26, 106494. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yin, Y.; Che, C.; Cui, M. Research Progress of Thermoelectric Materials—A Review. Energies 2025, 18, 2122. [Google Scholar] [CrossRef]
- Nie, G.; Suzuki, S.; Tomida, T.; Sumiyoshi, A.; Ochi, T.; Mukaiyama, K.; Kikuchi, M.; Guo, J.Q.; Yamamoto, A.; Obara, H. Performance of Skutterudite-Based Modules. J. Electron. Mater. 2017, 46, 2640–2644. [Google Scholar] [CrossRef]
Materials | Type | ρc [10−6 Ω cm2] | |
---|---|---|---|
As-Fabricated | Heat-Treated | ||
In0.4Co4Sb12/Co4Sb10.8Te0.6Se0.6 | n-type | 5.8 ± 1.1 | 4.4 ± 1.3 |
CeFe3Co0.5Ni0.5Sb12/In0.25Co3FeSb12 | p-type | 1.3 ± 0.3 | 1.0 ± 0.4 |
Material | Type | CTE [10−6 K−1] |
---|---|---|
In0.4Co4Sb12 | n-type | 10.6 |
Co4Sb10.8Te0.6Se0.6 | n-type | 11.7 |
CeFe3Co0.5Ni0.5Sb12 | p-type | 12 |
In0.25Co3FeSb12 | p-type | 10.5 |
Material | ZT Max | η Max [%] | ZT Avg | η Avg [%] |
---|---|---|---|---|
Bulk legs | ||||
In0.4Co4Sb12 | 1.18 | 15 | 0.93 | 12.9 |
Co4Sb10.8Te0.6Se0.6 | 1.1 | 14.4 | 0.66 | 10.1 |
CeFe3Co0.5Ni0.5Sb12 | 0.84 | 12.1 | 0.64 | 9.9 |
In0.25Co3FeSb12 | 0.89 | 12.6 | 0.63 | 9.7 |
Segmented legs | ||||
In0.4Co4Sb12/Co4Sb10.8Te0.6Se0.6 | 0.96 | 13.2 | ||
CeFe3Co0.5Ni0.5Sb12/In0.25Co3FeSb12 | 0.66 | 10.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kruszewski, M.J. Thermal and Interfacial Stability of PPS-Fabricated Segmented Skutterudite Legs for Thermoelectric Applications. Materials 2025, 18, 2923. https://doi.org/10.3390/ma18132923
Kruszewski MJ. Thermal and Interfacial Stability of PPS-Fabricated Segmented Skutterudite Legs for Thermoelectric Applications. Materials. 2025; 18(13):2923. https://doi.org/10.3390/ma18132923
Chicago/Turabian StyleKruszewski, Mirosław J. 2025. "Thermal and Interfacial Stability of PPS-Fabricated Segmented Skutterudite Legs for Thermoelectric Applications" Materials 18, no. 13: 2923. https://doi.org/10.3390/ma18132923
APA StyleKruszewski, M. J. (2025). Thermal and Interfacial Stability of PPS-Fabricated Segmented Skutterudite Legs for Thermoelectric Applications. Materials, 18(13), 2923. https://doi.org/10.3390/ma18132923