Facile Synthesis of Non-Noble CuFeCo/C Catalysts with High Stability for ORR in PEMFC
Abstract
:1. Introduction
2. Experimental Section
2.1. Preparation Process of CuFeCo/C
2.2. Characterization
2.3. Electrochemical Measurement
3. Results and Discussion
3.1. Characterization of CuFeCo/C
3.2. Electrochemical Properties of CuFeCo/C
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oyewole, O.; Nwulu, N.; Okampo, E.J. Multi-Objective Optimal Sizing and Design of Renewable and Diesel-Based Autonomous Microgrids with Hydrogen Storage Considering Economic, Environmental, and Social Uncertainties. Renew. Energy 2024, 231, 120987. [Google Scholar] [CrossRef]
- Akpolat, A.N.; Dursun, E.; Kuzucuoğlu, A.E. Modeling and Operation of a Fuel Cell Stack for Distributed Energy Resources: A Living Lab Platform. Int. J. Hydrogen Energy 2024, 75, 578–591. [Google Scholar] [CrossRef]
- Zhou, Z.; Yang, D.; Guo, Y.; Li, B. Effect of the Physical Adsorption of Ionomer on Pt Particles on the Fluid Characteristics of PEMFC Catalyst Ink. Int. J. Hydrogen Energy 2023, 48, 318–326. [Google Scholar] [CrossRef]
- Gao, W.; Yin, Q.; Chen, J.; Liu, Z.; Zhang, Z.; Lu, J.; Lei, Y.; Xu, H.; Ouyang, H.; Yin, Y.; et al. Mechanism Study of the Improved Catalytic Activity of PEMFC Catalyst Layer by Short-Side-Chain Ionomer: Focusing on the Ionomer/Pt Interface. Chem. Eng. J. 2024, 479, 147787. [Google Scholar] [CrossRef]
- Rodríguez-Kessler, P.L.; Rodríguez-Domínguez, A.R. Size and Structure Effects of PtN (N = 12–13) Clusters for the Oxygen Reduction Reaction: First-Principles Calculations. J. Chem. Phys. 2015, 143, 184312. [Google Scholar] [CrossRef]
- Chu, T.; Xie, M.; Yu, Y.; Wang, B.; Yang, D.; Li, B.; Ming, P.; Zhang, C. Experimental Study of the Influence of Dynamic Load Cycle and Operating Parameters on the Durability of PEMFC. Energy 2022, 239, 122356. [Google Scholar] [CrossRef]
- Zhu, S.; Huang, Y.; Yu, T.; Lei, Y.; Zhu, X.; Yang, T.; Gu, J.; Wang, C. Enhance the Durability of the Oxygen Reduction Reaction Catalyst through the Synergy of Improved Graphitization and Nitrogen Doping of Carbon Carrier. Int. J. Hydrogen Energy 2024, 51, 956–965. [Google Scholar] [CrossRef]
- Li, Q.; Su, T.; Yin, L.; Xie, S.; Tan, Y.; Chen, W.; Gao, F. Health Management for PEMFC System Long-Term Operation Based on Optimal Temperature Trajectory Real-Time Optimization. IEEE Trans. Ind. Electron. 2025, 72, 2611–2621. [Google Scholar] [CrossRef]
- Mehrabadi, B.A.T.; Braaten, J.; Wu, G.; He, Y.; Haug, A.T.; Xu, H.; Ding, S.; Litster, S. Influence of Ionomer Composition and Distribution on PEM Fuel Cell Performance of PGM-Free Catalyst. In Proceedings of the 237th ECS Meeting with the 18th International Meeting on Chemical Sensors (IMCS 2020), Montreal, QC, Canada, 10–14 May 2020; p. 1685. [Google Scholar] [CrossRef]
- Meyer, Q.; Yang, C.; Cheng, Y.; Zhao, C. Overcoming the Electrode Challenges of High-Temperature Proton Exchange Membrane Fuel Cells. Electrochem. Energy Rev. 2023, 6, 16. [Google Scholar] [CrossRef]
- Martinaiou, I.; Paloukis, F.; Daletou, M.K. Highly Efficient Cathodes with Low Platinum Loading for PEMFCs via the Use of a Modified Substrate. Electrochim. Acta 2024, 502, 144853. [Google Scholar] [CrossRef]
- Yang, S.; Shu, Q.; Fu, B.; Liu, S.; Zhang, Y.; Zhao, H. Synthesis of High-Performance Low-Pt (111)-Loading Catalysts for ORR by Interaction between Solution and Nonthermal Plasma. Chem. Eng. J. 2024, 488, 150905. [Google Scholar] [CrossRef]
- Zhan, F.; Hu, K.-S.; Mai, J.-H.; Zhang, L.-S.; Zhang, Z.-G.; He, H.; Liu, X.-H. Recent Progress of Pt-Based Oxygen Reduction Reaction Catalysts for Proton Exchange Membrane Fuel Cells. Rare Met. 2024, 43, 2444–2468. [Google Scholar] [CrossRef]
- Zhan, C.; Sun, H.; Lü, L.; Bu, L.; Li, L.; Liu, Y.; Yang, T.; Liu, W.; Huang, X. Zinc Intercalated Lattice Expansion of Ultrafine Platinum–Nickel Oxygen Reduction Catalyst for PEMFC. Adv. Funct. Mater. 2023, 33, 2212442. [Google Scholar] [CrossRef]
- Corona, B.; Howard, M.; Zhang, L.; Henkelman, G. Computational Screening of Core@shell Nanoparticles for the Hydrogen Evolution and Oxygen Reduction Reactions. J. Chem. Phys. 2016, 145, 244708. [Google Scholar] [CrossRef]
- Xue, N.; Yin, J.; Xue, X.; Zhu, H.; Yin, J. Boosting the ORR Activity in PEM Fuel Cells: Tailored Electron-Withdrawing Properties of Fe-Based Catalysts via Optimizing Fluorine Doping. J. Mater. Chem. A 2024, 12, 31630–31637. [Google Scholar] [CrossRef]
- Jiao, L.; Li, J.; Richard, L.L.; Sun, Q.; Stracensky, T.; Liu, E.; Sougrati, M.T.; Zhao, Z.; Yang, F.; Zhong, S.; et al. Chemical Vapour Deposition of Fe–N–C Oxygen Reduction Catalysts with Full Utilization of Dense Fe–N4 Sites. Nat. Mater. 2021, 20, 1385–1391. [Google Scholar] [CrossRef]
- Nie, Y.; Sun, Y.; Song, B.; Meyer, Q.; Liu, S.; Guo, H.; Tao, L.; Lin, F.; Luo, M.; Zhang, Q.; et al. Low-Electronegativity Mn-Contraction of PtMn Nanodendrites Boosts Oxygen Reduction Durability. Angew. Chem. Int. Ed. 2024, 63, e202317987. [Google Scholar] [CrossRef]
- Qin, S.-G.; Liu, J.; Chen, Z.-Y.; Liu, X.; Feng, H.; Feng, Y.; Tian, Z.-Q.; Tsiakaras, P.; Shen, P.-K. Highly Active and Extremely Stable L10-PtCoMn Ternary Intermetallic Nanocatalyst for Oxygen Reduction Reaction. Appl. Catal. B Environ. Energy 2024, 349, 123832. [Google Scholar] [CrossRef]
- Zhang, Q.; Guan, J. Applications of Atomically Dispersed Oxygen Reduction Catalysts in Fuel Cells and Zinc–Air Batteries. Energy Environ. Mater. 2021, 4, 307–335. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Lv, Z.; Fan, H.; Dong, F.; Wang, C.; Chen, X.; Liu, R.; Tian, C.; Feng, X.; et al. Efficient Proton-Exchange Membrane Fuel Cell Performance of Atomic Fe Sites via p–d Hybridization with Al Dopants. J. Am. Chem. Soc. 2024, 146, 12636–12644. [Google Scholar] [CrossRef]
- Wang, Y.; Wan, X.; Liu, J.; Li, W.; Li, Y.; Guo, X.; Liu, X.; Shang, J.; Shui, J. Catalysis Stability Enhancement of Fe/Co Dual-Atom Site via Phosphorus Coordination for Proton Exchange Membrane Fuel Cell. Nano Res. 2022, 15, 3082–3089. [Google Scholar] [CrossRef]
- Leng, D.; Tang, H.; Yang, M.; Zhang, J.; Zhang, Y.; Qin, J.; Liu, Q.; Lu, H.; Yin, F. Co/N-Doped Carbon Nanotubes-Grafted Porous Carbon Sheets Architecture as Efficient Electrocatalyst for Oxygen Reduction Reaction. J. Alloys Compd. 2021, 871, 159566. [Google Scholar] [CrossRef]
- Samad, S.; Loh, K.S.; Wong, W.Y.; Sudarsono, W.; Lee, T.K.; Wan Daud, W.R. Effect of Various Fe/Co Ratios and Annealing Temperatures on a Fe/Co Catalyst Supported with Nitrogen-Doped Reduced Graphene Oxide towards the Oxygen Reduction Reaction. J. Alloys Compd. 2020, 816, 152573. [Google Scholar] [CrossRef]
- Im, K.; Nguyen, Q.H.; Lee, E.; Lee, D.W.; Kim, J.; Yoo, S.J. High-Dispersion Co-Fe-NC Electrocatalyst Based on Leaf-Shaped Zeolite Imidazole Framework for Oxygen–Reduction Reaction in Acidic Medium. Int. J. Energy Res. 2021, 45, 15534–15543. [Google Scholar] [CrossRef]
- Zhang, P.-Y.; Yang, X.-H.; Jiang, Q.-R.; Cui, P.-X.; Zhou, Z.-Y.; Sun, S.-H.; Wang, Y.-C.; Sun, S.-G. General Carbon-Supporting Strategy to Boost the Oxygen Reduction Activity of Zeolitic-Imidazolate-Framework-Derived Fe/N/Carbon Catalysts in Proton Exchange Membrane Fuel Cells. ACS Appl. Mater. Interfaces 2022, 14, 30724–30734. [Google Scholar] [CrossRef]
- Yang, L.; Ma, Z.; Gan, Q.; Zhang, Q.; Li, P.; Cao, C. Enhanced Operational Performance of PEM Fuel Cells with Porous-Carbon Catalyst Support: A Multiscale Modeling Approach. Energy Convers. Manag. 2023, 281, 116858. [Google Scholar] [CrossRef]
- Wang, X.; Li, D.; Pan, Y.-T.; Chen, K.; Burns, K.; Kim, Y.S.; Wu, G.; Watt, J.; Spendelow, J.S. Effect of the Catalyst Metal Content and the Carbon Support on Proton-Exchange Membrane Fuel Cells Performance and Durability. Electrochim. Acta 2025, 512, 145490. [Google Scholar] [CrossRef]
- Guo, L.; Wan, X.; Liu, Q.; Liu, X.; Shang, J.; Yu, R.; Shui, J. Critical Role of Carbon Support in Metal Nanoaggregate Facilitating Fe-N-C Catalyst for PEM Fuel Cell Application. J. Energy Chem. 2024, 97, 669–676. [Google Scholar] [CrossRef]
- Liu, H.; Jiang, L.; Wang, Y.; Wang, X.; Khan, J.; Zhu, Y.; Xiao, J.; Li, L.; Han, L. Boosting Oxygen Reduction with Coexistence of Single-Atomic Fe and Cu Sites Decorated Nitrogen-Doped Porous Carbon. Chem. Eng. J. 2023, 452, 138938. [Google Scholar] [CrossRef]
- Zhang, M.; Li, H.; Chen, J.; Ma, F.-X.; Zhen, L.; Wen, Z.; Xu, C.-Y. Transition Metal (Co, Ni, Fe, Cu) Single-Atom Catalysts Anchored on 3D Nitrogen-Doped Porous Carbon Nanosheets as Efficient Oxygen Reduction Electrocatalysts for Zn–Air Battery. Small 2022, 18, 2202476. [Google Scholar] [CrossRef]
- Wang, X. The Study Focuses on the Mechanism by Which Carbon Materials Enhance the Properties of Metal Sodium Anodes and VO2 Anodes. Master’s Thesis, Yantai University, Yantai, China, 2024. [Google Scholar]
- Wu, Y.; Hou, Q.; Qiu, F.; Qi, M.; Sun, C.; Chen, Y. Co2O3/Co2N0.67 Nanoparticles Encased in Honeycomb-like N, P, O-Codoped Carbon Framework Derived from Corncob as Efficient ORR Electrocatalysts. RSC Adv. 2021, 12, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Pischetola, C.; Francis, S.M.; Grillo, F.; Baddeley, C.J.; Cárdenas-Lizana, F. Phenylacetylene Hydrogenation Coupled with Benzyl Alcohol Dehydrogenation over Cu/CeO2: A Consideration of Cu Oxidation State. J. Catal. 2021, 394, 316–331. [Google Scholar] [CrossRef]
- Gurram, V.R.B.; Enumula, S.S.; Koppadi, K.S.; Chada, R.R.; Burri, D.R.; Kamaraju, S.R.R. Role of the Fe Oxidation States on the Catalytic Oxy-Dehydrogenation of Ethylbenzene Using CO2 as a Soft Oxidant over FeOx/Carbon-Alumina. Catal. Commun. 2019, 118, 1–4. [Google Scholar] [CrossRef]
- Salam, A.; Zholobko, O.; Wu, X.-F. Roles of Functionalized Nanoparticles in the Performance Improvement of Proton-Exchange Membranes Used in Low- and Intermediate-Temperature Hydrogen Fuel Cells: A Review. Prog. Nat. Sci. Mater. Int. 2024, 34, 437–453. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, R.; Zhang, H.; Qiu, F.; Fu, W.; Huang, W.; Li, R.; Li, Z.; Jin, X.; Wang, Y. Facile Synthesis of Non-Noble CuFeCo/C Catalysts with High Stability for ORR in PEMFC. Materials 2025, 18, 2826. https://doi.org/10.3390/ma18122826
Chu R, Zhang H, Qiu F, Fu W, Huang W, Li R, Li Z, Jin X, Wang Y. Facile Synthesis of Non-Noble CuFeCo/C Catalysts with High Stability for ORR in PEMFC. Materials. 2025; 18(12):2826. https://doi.org/10.3390/ma18122826
Chicago/Turabian StyleChu, Ruixia, Hongtao Zhang, Fangyuan Qiu, Wenjun Fu, Wanyou Huang, Runze Li, Zhenyu Li, Xiaoyue Jin, and Yan Wang. 2025. "Facile Synthesis of Non-Noble CuFeCo/C Catalysts with High Stability for ORR in PEMFC" Materials 18, no. 12: 2826. https://doi.org/10.3390/ma18122826
APA StyleChu, R., Zhang, H., Qiu, F., Fu, W., Huang, W., Li, R., Li, Z., Jin, X., & Wang, Y. (2025). Facile Synthesis of Non-Noble CuFeCo/C Catalysts with High Stability for ORR in PEMFC. Materials, 18(12), 2826. https://doi.org/10.3390/ma18122826