Development of a Bio-Inspired Aerogel with Robust Sustainability and Thermal Insulation Performance
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of Silica Aerogels
2.3. Analysis and Characterization
2.4. Surface Areas and Porous Parameters
2.5. Contact Angles
2.6. Abrasion Resistance
2.7. Thermal Conductivity
2.8. Thermogravimetric Analysis
3. Results and Discussion
3.1. Composite and Constitution
3.2. Contact Angles and Abrasion Resistance
3.3. Porosity and Thermal Insulation Performance
3.4. Stability and Robustness
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tian, L.; Gao, F.; Li, Y.; Yang, Z.; Xu, X.; Yu, Z.; Shang, J.; Li, R.; Li, X. High-performance bimodal temperature/pressure tactile sensor based on lamellar CNT/MXene/cellulose nanofibers aerogel with enhanced multifunctionality. Adv. Funct. Mater. 2024, 34, 2418988. [Google Scholar] [CrossRef]
- Shao, G.; Huang, X.; Shen, X.; Li, C.; Thomas, A. Metal-organic framework and covalent-organic framework-based aerogels: Synthesis, functionality, and applications. Adv. Sci. 2024, 11, 2409290. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, J.; Thomas, A.; Liao, Y. Ultra-high surface area nitrogen-doped carbon aerogels derived from a Schiff-base porous organic polymer aerogel for CO2 storage and supercapacitors. Adv. Funct. Mater. 2019, 29, 1904785. [Google Scholar] [CrossRef]
- Wang, X.; Li, H.; Li, H.; Cui, Z.; Wang, J.; Wei, D.; Liao, X.; Li, H. Coaxial porous SiBCN/SiCN ceramic fiber aerogels with reduced shrinkage and low thermal conductivity. Chem. Eng. J. 2024, 501, 157621. [Google Scholar] [CrossRef]
- Hashemi, S.A.; Ghaffarkhah, A.; Goodarzi, M.; Nazemi, A.; Banvillet, G.; Milani, A.S.; Soroush, M.; Rojas, O.J.; Ramakrishna, S.; Wuttke, S.; et al. Liquid-templating aerogels. Adv. Mater. 2023, 35, 2302826. [Google Scholar] [CrossRef]
- Xi, S.; Wang, Y.; Zhang, X.; Cao, K.; Su, J.; Shen, J.; Wang, X. Fire-resistant polyimide-silica aerogel composite aerogels with low shrinkage, low density and high hydrophobicity for aerospace applications. Polym. Test. 2023, 129, 108259. [Google Scholar] [CrossRef]
- Yan, X.; Almajidi, Y.Q.; Uinarni, H.; Bokov, D.O.; Mansouri, S.; Fenjan, M.N.; Saxena, A.; Zabibah, R.S.; Hamzah, H.F.; Oudah, S.K. Bio(sensors) based on molecularly imprinted polymers and silica materials used for food safety and biomedical analysis: Recent trends and future prospects. Talanta 2024, 276, 126292. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, F.; Bao, Y.; Zhan, S. A mini review on the synthesis of mesoporous silica and its application in antibiotic removal. Adv. Sustain. Sys. 2024, 8, 2400634. [Google Scholar] [CrossRef]
- Kistler, S.S. Coherent expanded aerogels and jellies. Nature 1931, 127, 741. [Google Scholar] [CrossRef]
- Ebisike, K.; Okoronkwo, A.E.; Alaneme, K.K. Synthesis and characterization of chitosan–silica hybrid aerogel using sol-gel method. J. King Saud Univ. Sci. 2020, 32, 550–554. [Google Scholar] [CrossRef]
- Guo, X.; Shan, J.; Lei, W.; Ding, R.; Zhang, Y.; Yang, H. Facile synthesis of methylsilsesquioxane aerogels with uniform mesopores by microwave drying. Polymers 2019, 11, 375. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Wang, Y.; Qu, Z.; Yang, F.; Qin, Y.; Li, Y.; Zhang, G.; Gao, J.; Shi, Y.; Song, P.; et al. Hydrosilylation adducts to produce wide-temperature flexible polysiloxane aerogel under ambient temperature and pressure drying. Small 2024, 20, 2309272. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Chen, Z.; Ding, Y.; Yin, L.; Yang, M.; Erişen, D.E.; Liu, T.; Li, M.; Yang, L.; Cui, S. A flexible double network aerogel reinforced by SiO2/ZrO2 fibers paper with excellent thermal insulation at high-temperature. Ceram. Int. 2024, 50, 55–64. [Google Scholar] [CrossRef]
- Chang, M.; Zhu, W.; Liu, J.; Bai, G.; Li, X.; Lu, X.; Lei, Y. Fabrication of elastic SiO2 aerogels with prominent mechanical strength and stability reinforced by SiO2 nanofibers and polyurethane for oil adsorption. Sep. Purif. Technol. 2024, 341, 126914. [Google Scholar] [CrossRef]
- Shao, H.; Zhao, S.; Fei, Z.; Li, X.; Zhang, Z.; Li, K.; Chen, J.; Zhang, P.; Yang, Z. Unidirectional infiltrated PI/SiO2 composite aerogels with a confined reinforcing strategy for integrated thermal and acoustic insulation. Composit. B 2023, 266, 111002. [Google Scholar] [CrossRef]
- Tai, M.H.; Kumar, P.S. Harnessing the power of silica aerogels for applications in energy and water sustainability. J. Mater. Chem. A 2024, 12, 18879–18900. [Google Scholar] [CrossRef]
- Wei, Q.; Yang, D. A Self-Healing Polyvinyl Alcohol-based composite with high thermal conductivity and excellent mechanical properties. Compos. Commun. 2023, 39, 101561. [Google Scholar] [CrossRef]
- Shang, Z.; Ding, D.; Wang, X.; Liu, B.; Chen, Y.; Gong, L.; Liu, Z.; Zhang, Q. High thermal conductivity of self-healing polydimethylsiloxane elastomer composites by the orientation of boron nitride nano sheets. Polym. Adv. Technol. 2021, 32, 4745–4754. [Google Scholar] [CrossRef]
- Momeen Ul Islam, M.; Li, J.; Roychand, R.; Saberian, M. Microstructure, thermal conductivity and carbonation resistance properties of sustainable structural lightweight concrete incorporating 100% coarser rubber particles. Constr. Build. Mater. 2023, 408, 133658. [Google Scholar] [CrossRef]
- Xiao, S.; Lao, Y.; Liu, H.; Li, D.; Wei, Q.; Ye, L.; Lu, S. Self-healing, freeze-resistant, and sustainable aloe polysaccharide-based hydrogels for multifunctional sensing. ACS Sustain. Chem. Eng. 2024, 12, 4464–4475. [Google Scholar] [CrossRef]
- Pan, X.S.; Li, J.; Brown, E.B.; Kuo, C.K. Embryo movements regulate tendon mechanical property development. Philos. Trans. R. Soc. B 2018, 373, 20170325. [Google Scholar] [CrossRef]
- Chu, W.C.; Hayashi, S. Mechano-chemical enforcement of tendon apical ECM into nano-filaments during drosophila flight muscle development. Curr. Biol. 2021, 31, 1366–1378. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, J.; Cai, P.; Wen, Z. An electrochemically neutralized energy-assisted low-cost acid-alkaline electrolyzer for energy-saving electrolysis hydrogen generation. J. Mater. Chem. A 2018, 6, 4948–4954. [Google Scholar] [CrossRef]
- He, S.; Chen, X. Flexible silica aerogel based on methyltrimethoxysilane with improved mechanical property. J. Non-Cryst. Solids 2017, 463, 6–11. [Google Scholar] [CrossRef]
- Wang, L.; Guo, R.; Ren, J.; Song, G.; Chen, G.; Zhou, Z.; Li, Q. Preparation of superhydrophobic and flexible polysiloxane aerogel. Ceram. Int. 2020, 46, 10362–10369. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, W.; Shen, S.; Zhang, Q.; Chen, X.; Wang, Z.; Shao, K.; Sun, Q.; Li, C. High-compressive, elastic, and wearable cellulose nanofiber-based carbon aerogels for efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2024, 16, 16612–16621. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.; Zhang, S.; Wang, J.; Yan, D.; Huang, X.; Wang, X.; Ning, X.; Ming, J. Flexible and superhydrophobicity polylactic acid hollow fiber aerogels for thermal insulation. Appl. Mater. Today 2024, 37, 102118. [Google Scholar] [CrossRef]
- An, Z.; Zhang, R.; Fang, D. Synthesis of monolithic SiC aerogels with high mechanical strength and low thermal conductivity. Cera. Int. 2019, 45, 11368–11374. [Google Scholar] [CrossRef]
- Kantor, Z.; Wu, T.; Zeng, Z.; Gaan, S.; Lehner, S.; Jovic, M.; Bonnin, A.; Pan, Z.; Mazrouei-Sebdani, Z.; Opris, D.M.; et al. Heterogeneous silica-polyimide aerogel-in-aerogel nanocomposites. Chem. Eng. J. 2022, 443, 136401. [Google Scholar] [CrossRef]
- Zuo, X.; Chang, K.; Zhao, J.; Xie, Z.; Tang, H.; Li, B.; Chang, Z. Bubble-template-assisted synthesis of hollow fullerene-like MoS2 nanocages as a lithium ion battery anode material. J. Mater. Chem. A 2016, 4, 51–58. [Google Scholar] [CrossRef]
- Mei, Y.; Zhou, J.; Hao, Y.; Hu, X.; Lin, J.; Huang, Y.; Li, L.; Feng, C.; Wu, F.; Chen, R. High-lithiophilicity host with micro/nanostructured active sites based on Wenzel wetting model for dendrite-free lithium metal anodes. Adv. Funct. Mater. 2021, 31, 2106676. [Google Scholar] [CrossRef]
- Zhao, X.; Yang, L.; Martin, F.H.; Zhang, X.-Q.; Wang, R.; Wang, D.-Y. Influence of phenylphosphonate based flame retardant on epoxy/glass fiber reinforced composites (GRE): Flammability, mechanical and thermal stability properties. Composit. B 2017, 110, 511–519. [Google Scholar] [CrossRef]
Porosity (%) | BET Surface Area (m2·g−1) | Pore Volume (cm3·g−1) | Weight Density (g·cm−3) | Thermal Conductivity (W·m−1·K−1 × 10−3) | |
---|---|---|---|---|---|
SA-F | 94.12 | 2673.64 | 1.62 | 0.13 | 41.66 |
SA-N | 86.96 | 1971.20 | 1.14 | 0.12 | 52.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Wang, Y.; Zhu, M.; Li, S. Development of a Bio-Inspired Aerogel with Robust Sustainability and Thermal Insulation Performance. Materials 2025, 18, 2808. https://doi.org/10.3390/ma18122808
Zhang Z, Wang Y, Zhu M, Li S. Development of a Bio-Inspired Aerogel with Robust Sustainability and Thermal Insulation Performance. Materials. 2025; 18(12):2808. https://doi.org/10.3390/ma18122808
Chicago/Turabian StyleZhang, Zhao, Ying Wang, Maiyong Zhu, and Songjun Li. 2025. "Development of a Bio-Inspired Aerogel with Robust Sustainability and Thermal Insulation Performance" Materials 18, no. 12: 2808. https://doi.org/10.3390/ma18122808
APA StyleZhang, Z., Wang, Y., Zhu, M., & Li, S. (2025). Development of a Bio-Inspired Aerogel with Robust Sustainability and Thermal Insulation Performance. Materials, 18(12), 2808. https://doi.org/10.3390/ma18122808