Comprehensive Analysis of Elastic–Plastic Behavior in Hybrid Metal Matrix Composites with Varied Reinforcement Geometry
Abstract
1. Introduction
2. Method for Determining the Effective Mechanical Properties of Hybrid Composites
2.1. Method Description
2.1.1. Modeling the Microstructure of the Composites
- sphere: ;
- cylinder: , ;
- ellipsoid: , , .
- for a sphere: a segment of length di whose centre coincides with the centre of the sphere (sphere diameter);
- for a cylinder: a segment of length li connecting the centres of the circles of the lower and upper bases (the height of the cylinder)
- for an ellipsoid: a segment of length li, whose centre coincides with the centre of the ellipsoid (the longest axis of the ellipsoid).
- for the spherical reinforcements
- for the cylindrical reinforcements
- for ellipsoid-shaped reinforcement
2.1.2. FEM Modeling
2.1.3. Determination of Elastic and Elastic–Plastic Properties of Hybrid Composites
- effective Young’s modulus (Hook’s law)
- effective Poisson’s ratio (change in the material volume)
- effective density
2.2. Validation of the Developed Method
3. Studies on the Influence of the Geometry of the Reinforcement Component on the Effective Properties of Hybrid Composites
3.1. Influence of Reinforcing Particle Shape on the Effective Properties of Hybrid Composites
3.2. Influence of Reinforcement Particle Size on the Effective Properties of Hybrid Composites
3.3. Discussion
3.4. Method Limitations
4. Summary and Conclusions
4.1. Developed Analytical–Numerical Method
4.2. Validation Cases
- A traditional composite with a single reinforcement fraction.
- A hybrid composite with dual reinforcement.
4.3. Influence of Particle Geometry
- Cylindrical particles produced the highest values for Young’s modulus, yield strength, and tensile strength.
- Mixed or varied shapes yielded lower mechanical properties.
- Smaller particles improved hardening and yield strength, though their effect on Young’s modulus was minimal.
4.4. Method Limitations
- The random particle configuration requires multiple simulations to ensure statistical reliability, increasing computational effort.
- Modeling was restricted to primitive rotating solids (spheres, cylinders, ellipsoids), limiting accuracy for composites with more complex particle geometries.
- Complex microstructural interactions between particles were not considered, which may influence results in advanced cases.
4.5. Practical Relevance
4.6. Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kar, A.; Sharma, A.; Kumar, S. A Critical Review on Recent Advancements in Aluminium-Based Metal Matrix Composites. Crystals 2024, 14, 412. [Google Scholar] [CrossRef]
- Kotteda, T.K.; Kumar, M.; Kumar, P.; Chekuri, R.B.R. Metal matrix nanocomposites: Future scope in the fabrication and machining techniques. Int. J. Adv. Manuf. Technol. 2022, 1–19. [Google Scholar] [CrossRef]
- Borawski, A.; Mieczkowski, G.; Szpica, D. Composites in Vehicles Brake Systems-Selected Issues and Areas of Development. Materials 2023, 16, 2264. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.; Yu, J.; Zhang, H.; Xue, D.; Zhang, J.; Li, Y. Compliant assembly variation analysis of composite structures using the Monte Carlo method with consideration of stress-stiffening effects. Arch. Appl. Mech. 2023, 93, 4065–4080. [Google Scholar] [CrossRef]
- Li, H.; Huang, H.; Wang, R.; Huang, H.; Guo, R. Prediction method for elastic modulus of resin-mineral composites considering the effects of pores and interfacial transition zones. Arch. Appl. Mech. 2024, 94, 2859–2876. [Google Scholar] [CrossRef]
- Shabani, Y.; Mehdianfar, P.; Khoshgoftar, M.J. Tailoring vibrational behavior in hybrid cellular sandwich nanobeams: A multiscale computational study. Arch. Appl. Mech. 2024, 94, 281–298. [Google Scholar] [CrossRef]
- Mistry, J.M.; Gohil, P.P. Research review of diversified reinforcement on aluminum metal matrix composites: Fabrication processes and mechanical characterization. Sci. Eng. Compos. Mater. 2018, 25, 633–647. [Google Scholar] [CrossRef]
- Arunkumar, S.; Guhan, R.; Srivathsan, A.; Rithik, A. Fabrication Methods of Aluminium Metal Matrix Composite: A State of Review. Int. Res. J. Adv. Eng. Manag. 2024, 2, 528–537. [Google Scholar] [CrossRef]
- Shinde, S.S.; Barve, S.B. Advances in hybrid aluminium metal matrix composite produced by stir casting route: A review on applications and fabrication characteristics. Mater. Today Proc. 2024. [Google Scholar] [CrossRef]
- Jeong, H.; Hsu, D.K.; Shannon, R.E.; Liaw, P.K. Elastic Moduli of Silicon Carbide Particulate Reinforced Aluminum Metal Matrix Composites. In Review of Progress in Quantitative Nondestructive Evaluation; Springer US: New York, NY, USA, 1990; pp. 1395–1402. [Google Scholar]
- Ziaei, H.; Fan, G.; Tan, Z.; Zhang, Y.; Zhao, L.; Li, Z.; Li, Z. SiO2 coating on CNTs to fabricate the Al4O4C-Al composite with superior Young’s modulus. Mater. Charact. 2024, 207. [Google Scholar] [CrossRef]
- Bharath, V.; Nagaral, M.; Auradi, V.; Kori, S.A. Preparation of 6061Al-Al2O3 MMC’s by Stir Casting and Evaluation of Mechanical and Wear Properties. Procedia Mater. Sci. 2014, 6, 1658–1667. [Google Scholar] [CrossRef]
- Guo, Y.; Nie, K.; Deng, K.; Liu, Z.; Shi, Q. Strength-plasticity-matched (GNPs+GFs)/Mg–3Zn-0.1Ymagnesium matrix composites with high modulus through liquid-phase dispersion and multistep deformation. Compos. Commun. 2024, 45. [Google Scholar] [CrossRef]
- Wysmulski, P.; Dębski, H.; Różyło, P.; Falkowicz, K. A study of stability and post-critical behaviour of thin-walled composite profiles under compression. Eksploat. Niezawodn. 2016, 18, 632–637. [Google Scholar] [CrossRef]
- Shi, J.; Zong, X.; Jiang, W.; Yao, R.; Zheng, J. Evaluation of the Fracture Toughness of Short Carbon Fiber Reinforced Thermoplastic Composites. J. Eng. Mater. Technol. 2024, 146, 021002. [Google Scholar] [CrossRef]
- Alaneme, K.K.; Aluko, A.O. Fracture toughness (K-1C) and tensile properties of as-cast and age-hardened aluminium (6063)-silicon carbide particulate composites. Sci. Iran. 2009, 19, 992–996. [Google Scholar] [CrossRef]
- Mieczkowski, G. Description of stress fields and displacements at the tip of a rigid, flat inclusion located at interface using modified stress intensity factors. Mechanika 2015, 21, 91–98. [Google Scholar] [CrossRef]
- Lincourt, C.; Lanteigne, J.; Krishnadev, M.; Blais, C. Calculation of the Stress Intensity Factor in an Inclusion-Containing Matrix. Model. Numer. Simul. Mater. Sci. 2019, 09, 17–28. [Google Scholar] [CrossRef]
- Nan, C.W.; Clarke, D.R. The influence of particle size and particle fracture on the elastic/plastic deformation of metal matrix composites. Acta Mater. 1996, 44, 3801–3811. [Google Scholar] [CrossRef]
- Sijo, M.T.; Jayadevan, K.R. Analysis of Stir Cast Aluminium Silicon Carbide Metal Matrix Composite: A Comprehensive Review. Procedia Technol. 2016, 24, 379–385. [Google Scholar] [CrossRef]
- Kumba, A. Exploration of mechanical behavior of Al2O3 reinforced aluminium metal matrix composites. Elixir Mech. Engg. 2014, 72, 25462–25465. [Google Scholar]
- Kumar, A.; Lal, S.; Kumar, S. Fabrication and characterization of A359/Al2O3 metal matrix composite using electromagnetic stir casting method. J. Mater. Res. Technol. 2013, 2, 250–254. [Google Scholar] [CrossRef]
- Ko, B.C.; Yoo, Y.C. The effect of aging treatment on the microstructure and mechanical properties of AA2124 hybrid composites reinforced with both SiC whiskers and SiC particles. Compos. Sci. Technol. 1999, 59, 775–779. [Google Scholar] [CrossRef]
- WU, G.; Kono, N.; Watanabe, H.; Takahashi, T. Microstructure and mechanical properties of SiCw · Al2O3p/6061 composites. Scr. Metall. Mater. 1993, 28, 683–688. [Google Scholar] [CrossRef]
- Guan, L.N.; Geng, L.; Zhang, H.W.; Huang, L.J. Effects of stirring parameters on microstructure and tensile properties of (ABOw+SiCp)/6061Al composites fabricated by semi-solid stirring technique. Trans. Nonferrous Met. Soc. China 2011, 21, s274–s279. [Google Scholar] [CrossRef]
- Benveniste, Y. A new approach to the application of Mori-Tanaka’s theory in composite materials. Mech. Mater. 1987, 6, 147–157. [Google Scholar] [CrossRef]
- Hashin, Z.; Shtrikman, S. A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids. 1963, 11, 127–140. [Google Scholar] [CrossRef]
- Mital, S.K.; Murthy, P.L.N.; Goldberg, R.K. Micromechanics for particulate-reinforced composites. Mech. Compos. Mater. Struct. 1997, 4, 251–266. [Google Scholar] [CrossRef]
- Gao, X.; Lu, X.; Zhang, X.; Qian, M.; Li, A.; Wang, H.; Liu, C.; Gong, B.; Ouyang, W.; Peng, H.X. Effect of Bricks-and-Mortar Architecture on Fracture Behavior of SiCp/Al Composite: A Finite Element Analysis. Appl. Compos. Mater. 2024, 31, 1457–1473. [Google Scholar] [CrossRef]
- Rogowski, G. Plastic zones for ductile layer sandwiched between two different substrates. Int. J. Mech. Sci. 2024, 276, 109392. [Google Scholar] [CrossRef]
- Rozylo, P.; Falkowicz, K.; Wysmulski, P.; Debski, H.; Pasnik, J.; Kral, J. Experimental-numerical failure analysis of thin-walled composite columns using advanced damage models. Materials 2021, 14, 1506. [Google Scholar] [CrossRef]
- Mieczkowski, G. Criterion for crack initiation from notch located at the interface of bi-material structure. Eksploat. Niezawodn. 2019, 21, 301–310. [Google Scholar] [CrossRef]
- Wysmulski, P.; Mieczkowski, G. Influence of Size of Open Hole on Stability of Compressed Plate Made of Carbon Fiber Reinforced Polymer. Adv. Sci. Technol. Res. J. 2024, 18, 238–247. [Google Scholar] [CrossRef]
- Li, Q.; Chen, Y.; Chen, Y.; Ai, S.; Fang, D. Effects of Void Defects on Fracture Features and Tensile Strength of C/SiC Composites: An Image-based FEM Study. Appl. Compos. Mater. 2022, 29, 1021–1039. [Google Scholar] [CrossRef]
- Shen, Z.; Dong, R.; Li, J.; Su, Y.; Long, X. Determination of gradient residual stress for elastoplastic materials by nanoindentation. J. Manuf. Process. 2024, 109, 359–366. [Google Scholar] [CrossRef]
- Borawski, A. Impact of Operating Time on Selected Tribological Properties of the Friction Material in the Brake Pads of Passenger Cars. Material 2021, 14, 884. [Google Scholar] [CrossRef]
- Borawski, A.; Szpica, D.; Mieczkowski, G. Verification tests of frictional heat modelling results. Mechanika 2020, 26, 260–264. [Google Scholar] [CrossRef]
- Caban, J.; Droździel, P.; Ignaciuk, P.; Kordos, P. The impact of changing the fuel dose on chosen parameters of the diesel engine start-up process. Transp. Probl. 2019, 4, 51–62. [Google Scholar] [CrossRef]
- Mieczkowski, G.; Szpica, D.; Borawski, A.; Diliunas, S.; Pilkaite, T.; Leisis, V. Application of Smart Materials in the Actuation System of a Gas Injector. Materials 2021, 14, 6984. [Google Scholar] [CrossRef]
- Szpica, D. Validation of indirect methods used in the operational assessment of LPG vapor phase pulse injectors. Meas. J. Int. Meas. Confed. 2018, 118, 253–261. [Google Scholar] [CrossRef]
- Warguła, L.; Waluś, K.J.; Krawiec, P. Small engines spark ignited (SI) for non-road mobile machinery- Review. In Proceedings of the 22nd International Scientific Conference, Trakai, Lithuania, 3–5 October 2018; pp. 585–591. [Google Scholar]
- Mieczkowski, G.; Borawski, A.; Szpica, D. Static electromechanical characteristic of a three-layer circular piezoelectric transducer. Sensors 2020, 20, 222. [Google Scholar] [CrossRef]
- Bowen, C.; Perry, A.; Stevens, R.; Mahon, S. Analytical and numerical modelling of 3–3 piezoelectric composites. Integr. Ferroelectr. 2001, 32, 333–342. [Google Scholar] [CrossRef]
- Mieczkowski, G.; Szpica, D.; Borawski, A. Analytical and numerical modelling of deflection of circular three-layer piezoelectric transducer. In Engineering for Rural Development; Latvia University of Life Sciences and Technologies: Jelgava, Latvia, 2020; pp. 555–564. [Google Scholar]
- Shen, Y.L.; Finot, M.; Needleman, A.; Suresh, S. Effective elastic response of two-phase composites. Acta Metall. Mater. 1994, 42, 77–97. [Google Scholar] [CrossRef]
- Umer, U.; Mohammad, A.; Abu Qudeiri, J.E.; Mohamed, H.; Al-Ahmari, A. Finite element modeling of the orthogonal machining of particle reinforced aluminum based metal matrix. MM Sci. J. 2014, 2014, 511–515. [Google Scholar] [CrossRef]
- Yan, Y.W.; Geng, L.; Li ABin Fan, G.H. Finite Element Analysis about Effects of Particle Size on Deformation Behavior of Particle Reinforced Metal Matrix Composites. Key Eng. Mater. 2007, 353–358, 1263–1266. [Google Scholar] [CrossRef]
- Balokhonov, R.R.; Romanova, V.A.; Buyakova, S.P.; Kulkov, A.S.; Bakeev, R.A.; Evtushenko, E.P.; Zemlyanov, A.V. Deformation and Fracture Behavior of Particle-Reinforced Metal Matrix Composites and Coatings. Phys. Mesomech. 2022, 25, 492–504. [Google Scholar] [CrossRef]
- Islam, M.; Tudryn, G.J.; Picu, C.R. Microstructure modeling of random composites with cylindrical inclusions having high volume fraction and broad aspect ratio distribution. Comput. Mater. Sci. 2016, 125, 309–318. [Google Scholar] [CrossRef]
- Singh, I.V.; Shedbale, A.S.; Mishra, B.K. Material property evaluation of particle reinforced composites using finite element approach. J. Compos. Mater. 2015, 50, 2757–2771. [Google Scholar] [CrossRef]
- Moradi, A.; Ansari, R.; Hassanzadeh-Aghdam, M.K.; Jamali, J. Numerical prediction of thermal conductivity and thermal expansion coefficient of glass fiber-reinforced polymer hybrid composites filled with hollow spheres. J. Compos. Mater. 2024, 58, 1123–1136. [Google Scholar] [CrossRef]
- Thakur, A.K.; Kumar, P.; Srinivas, J. Studies on Effective Elastic Properties of CNT/Nano-Clay Reinforced Polymer Hybrid Composite. In IOP Conference Series: Materials Science and Engineering; Institute of Physics Publishing: Bristol, UK, 2016. [Google Scholar]
- Josien, M. Mérope: A microstructure generator for simulation of heterogeneous materials. J. Comput. Sci. 2024, 81, 102359. [Google Scholar] [CrossRef]
- Schneider, M. The sequential addition and migration method to generate representative volume elements for the homogenization of short fiber reinforced plastics. Comput. Mech. 2017, 59, 247–263. [Google Scholar] [CrossRef]
- Goodier, J.N.; Hodge, P.G., Jr. Elasticity and Plasticity: The Mathematical Theory of Elasticity and The Mathematical Theory of Plasticity; Courier Dover Publications: Mineola, NY, USA, 2016. [Google Scholar]
- Kwesi Nutor, R. Using the Hollomon Model to Predict Strain-Hardening in Metals. Am. J. Mater. Synth. Process. 2017, 2, 1. [Google Scholar] [CrossRef]
- Mises, R.V. Mechanik der festen Körper im plastisch- deformablen Zustand. Nachrichten Ges. Der Wiss. Zu Göttingen Math.-Phys. Kl. 1913, 1913, 582–592. [Google Scholar]
- Lumelsky, V.J. On fast computation of distance between line segments. Inf. Process. Lett. 1985, 21, 55–61. [Google Scholar] [CrossRef]
- Bailakanavar, M.; Liu, Y.; Fish, J.; Zheng, Y. Automated modeling of random inclusion composites. Eng. Comput. 2012, 30, 609–625. [Google Scholar] [CrossRef]
- Mieczkowski, G.; Szpica, D.; Borawski, A. Application of numerical integration in analysing the volume of reinforcement particles in algorithms for generating representative volume elements (RVEs). Acta Mech. Autom. 2024, 18, 151–160. [Google Scholar] [CrossRef]
- Moulinec, H.; Suquet, P. A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput. Methods Appl. Mech. Eng. 1998, 157, 69–94. [Google Scholar] [CrossRef]
- Kanit, T.; Forest, S.; Galliet, I.; Mounoury, V.; Jeulin, D. Determination of the size of the representative volume element for random composites: Statistical and numerical approach. Int. J. Solids Struct. 2003, 40, 3647–3679. [Google Scholar] [CrossRef]
- Sab, K. On the homogenization and the simulation of random materials. Eur. J. Mech. A/Solids 1992, 11, 585–607. [Google Scholar]
- Schneider, M.; Josien, M.; Otto, F. Representative volume elements for matrix-inclusion composites—A computational study on the effects of an improper treatment of particles intersecting the boundary and the benefits of periodizing the ensemble. J. Mech. Phys. Solids. 2022, 158, 104652. [Google Scholar] [CrossRef]
- Belgrand, L.; Ramière, I.; Largenton, R.; Lebon, F. Proximity Effects in Matrix-Inclusion Composites: Elastic Effective Behavior, Phase Moments, and Full-Field Computational Analysis. Mathematics 2022, 10, 4437. [Google Scholar] [CrossRef]
- Mori, T.; Tanaka, K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 1973, 21, 571–574. [Google Scholar] [CrossRef]
- Oh, K.H.; Han, K.S. Short-fiber/particle hybrid reinforcement: Effects on fracture toughness and fatigue crack growth of metal matrix composites. Compos. Sci. Technol. 2007, 67, 1719–1726. [Google Scholar] [CrossRef]
- Guagliano, M. A numerical model to investigate the role of residual stresses on the mechanical behavior of Al/Al2O3 particulate composites. J. Mater. Eng. Perform. 1998, 7, 183–189. [Google Scholar] [CrossRef]
- Benson, D.K.; Hancock, J.R. Effect of strain rate on the cyclic response of metals. Met. Trans. 1974, 5, 1711–1715. [Google Scholar] [CrossRef]
- Girot, F.A.; Quenisset, J.M.; Naslain, R. Discontinuously-reinforced aluminum matrix composites. Compos. Sci. Technol. 1987, 30, 155–184. [Google Scholar] [CrossRef]
- Ren, D.; Wang, C.; Wei, X.; Zhang, Y.; Han, S.; Xu, W. Harmonizing physical and deep learning modeling: A computationally efficient and interpretable approach for property prediction. Scr. Mater. 2025, 255, 116350. [Google Scholar] [CrossRef]
Material | Young Modulus E [GPa] | Poisson Ratio ν | Density ρ [kg/m3] | Yield Stress σys0.2 [MPa] | Ultimate Tensile Strength σu [MPa] | Diameter d [μm] | Diameter b [μm] | Length l [μm] | |
---|---|---|---|---|---|---|---|---|---|
Composite A [67] | Al6061 | 68.4 | 0.33 | 2700 | 208.3 | 299.6 | - | - | - |
Al2O3p | 380 | 0.21 | 3950 | - | - | 45 | - | - | |
Al2O3w | 310 | 0.21 | 3300 | - | - | 1.5–6.6 | - | 3–110 | |
Composite B [68] | Al6061 | 69 | 0.33 | 2700 | 276 | 310 | - | - | - |
Al2O3p | 297 | 0.21 | 3720 | - | - | 7.5–10 | 7.5–10 | 15–20 |
Young Modulus [GPa] | Poisson Ratio | Density [kg/m3] | Yield Stress [MPa] | Ultimate Tensile Strength [MPa] | |
---|---|---|---|---|---|
This paper | 93.2 ± 0.3 | 0.31 ± 0.01 | 2865.9 ± 0.8 | 322.1 ± 1.5 | 403.8 ± 3 |
Experiment [53] | 94.8 ± 0.6 | - | - | 318.3 ± 4.5 | 408 ± 8.9 |
Upper limit (20) | 123.7 | 0.31 | 2885 | - | - |
Lower limit (21) | 81.4 | - | - | - | - |
Poisson Ratio | Ultimate Tensile Strength [MPa] | Strength Coefficient [MPa] | Strain Hardening Exponent | |
---|---|---|---|---|
experiment [68] | 0.31 ± 0.02 | 370 ± 5 | - | - |
this paper | 0.31 ± 0.01 | 360 ± 2 | 520.63 | 0.0825 |
Material | Young Modulus E [GPa] | Poisson Ratio ν | Density ρ [kg/m3] | Yield Stress σys0.2 [MPa] | Ultimate Tensile Strength σu [MPa] | Strength Coefficient KH [MPa]. | Strain Hardening Exponent nH |
---|---|---|---|---|---|---|---|
matrix (Al6061T6) | 69 | 0.33 | 2700 | 276 | 310 | 413 | 0.06 |
reinforcement 1 (BN) | 100 | 0.21 | 2250 | - | - | - | - |
reinforcement 2 (Al2O3) | 297 | 0.21 | 3720 | - | - | - | |
reinforcement 3 (SiC) | 480 | 0.31 | 4900 | - | - | - | - |
Reinforcement 1 | Reinforcement 2 | Reinforcement 3 | |||||
---|---|---|---|---|---|---|---|
No | Sample | Shape | Volume Fraction Vp [%] | Shape | Volume Fraction Vp [%] | Shape | Volume Fraction Vp [%] |
1 | SSS-4 * | S | 4 | S | 4 | S | 4 |
2 | SSS-8 * | S | 8 | S | 8 | S | 8 |
3 | CCC-4 * | C | 4 | C | 4 | C | 4 |
4 | CCC-8 * | C | 8 | C | 8 | C | 8 |
5 | EEE-4 * | E | 4 | E | 4 | E | 4 |
6 | EEE-8 * | E | 8 | E | 8 | E | 8 |
7 | SEC-4 * | S | 4 | E | 4 | C | 4 |
8 | SEC-8 * | S | 8 | E | 8 | C | 8 |
9 | SEC-4 ** | S | 4 | E | 4 | C | 4 |
10 | SEC-8 ** | S | 8 | E | 8 | C | 8 |
Material | Young Modulus [GPa] | Poisson Ratio | Density [kg·m−3] | Yield Stress [MPa] | Ultimate Tensile Strength [MPa] | Strength Coefficient [MPa] | Strain Hardening Exponent |
---|---|---|---|---|---|---|---|
SEC-4 * | 76.53 ± 0.4 | 0.32 ± 7·10−4 | 2787.73 ± 3.9 | 302.36 ± 0.6 | 332.54 ± 0.4 | 494.95 ± 3.2 | 0.079 ± 1·10−3 |
SSS-4 * | 77.73 ± 0.6 | 0.32 ± 5·10−4 | 2791.30 ± 7.6 | 303.25 ± 0.8 | 334.85 ± 0.9 | 501.61 ± 1.5 | 0.080 ± 1·10−4 |
EEE-4 * | 78.63 ± 0.76 | 0.32 ± 5·10−4 | 2796.77 ± 8.2 | 305.03 ± 0.9 | 335.89 ± 1.1 | 505.94 ± 5.2 | 0.081 ± 1·10−3 |
CCC-4 * | 80.10 ± 0.15 | 0.32 ± 1·10−3 | 2817.03 ± 4.3 | 311.90 ± 0.6 | 347.25 ± 1.8 | 546.89 ± 6.2 | 0.091 ± 1·10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mieczkowski, G.; Szpica, D.; Borawski, A. Comprehensive Analysis of Elastic–Plastic Behavior in Hybrid Metal Matrix Composites with Varied Reinforcement Geometry. Materials 2025, 18, 2763. https://doi.org/10.3390/ma18122763
Mieczkowski G, Szpica D, Borawski A. Comprehensive Analysis of Elastic–Plastic Behavior in Hybrid Metal Matrix Composites with Varied Reinforcement Geometry. Materials. 2025; 18(12):2763. https://doi.org/10.3390/ma18122763
Chicago/Turabian StyleMieczkowski, Grzegorz, Dariusz Szpica, and Andrzej Borawski. 2025. "Comprehensive Analysis of Elastic–Plastic Behavior in Hybrid Metal Matrix Composites with Varied Reinforcement Geometry" Materials 18, no. 12: 2763. https://doi.org/10.3390/ma18122763
APA StyleMieczkowski, G., Szpica, D., & Borawski, A. (2025). Comprehensive Analysis of Elastic–Plastic Behavior in Hybrid Metal Matrix Composites with Varied Reinforcement Geometry. Materials, 18(12), 2763. https://doi.org/10.3390/ma18122763