Effects of HfB2 Content and Microwave Sintering on the Mechanical Properties of Ti2AlC Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Composites Preparation and Powder Metallurgy Stages
2.2. Microstructural Observations
2.3. Relative Density, Hardness, and Compressive Strength Measurements
3. Results
4. Discussion
5. Conclusions
- Both the conventional and microwave-assisted sintering enables the successful formation of the Ti2AlC phase using an optimized Ti:TiC:Al stoichiometry (1.2:1:1), achieving phase purity of up to 97%.
- Incorporating 5 wt.% HfB2 maximizes mechanical performance, with substantial improvements in hardness, compressive strength, and reduced porosity, independent of the sintering route adopted.
- The microwave processing further refines the microstructural arrays, resulting in the mechanical properties approximately 1.6 times higher than those obtained by the conventional methods.
- These findings establish powder metallurgy with microwave sintering as an efficient, scalable route for the advanced Ti2AlC-based composites suitable for demanding high-temperature applications.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
XRD | X-ray diffraction |
SEM | Scanning electron microscopy |
EDS | Energy-dispersive X-ray spectroscopy |
AP | Apparent Porosity |
UCS | Ultimate compressive strength |
YS | Yield Strength |
SS | Specific Strength |
MW | Microwave |
CV | Conventional |
FAPESP | Fundação de Amparo à Pesquisa do Estado de São Paulo |
CNPq | Conselho Nacional de Desenvolvimento Científico e Tecnológico |
FAEPEX | Fundação de Apoio ao Ensino, Pesquisa e Extensão |
References
- Barsoum, M.W.; El-Raghy, T.; Ali, M. Processing and Characterization of Ti2AlC, Ti2AlN, and Ti2AlC0.5N0.5. Metall. Mat. Trans. A 2000, 31, 1857–1865. [Google Scholar] [CrossRef]
- Hu, L.; Benitez, R.; Basu, S.; Karaman, I.; Radovic, M. Processing and Characterization of Porous Ti2AlC with Controlled Porosity and Pore Size. Acta Mater. 2012, 60, 6266–6277. [Google Scholar] [CrossRef]
- Eklund, P.; Beckers, M.; Jansson, U.; Högberg, H.; Hultman, L. The M+1AX Phases: Materials Science and Thin-Film Processing. Thin Solid. Films 2010, 518, 1851–1878. [Google Scholar] [CrossRef]
- Tallman, D.J.; Anasori, B.; Barsoum, M.W. A Critical Review of the Oxidation of Ti2AlC, Ti3AlC2 and Cr2AlC in Air. Mater. Res. Lett. 2013, 1, 115–125. [Google Scholar] [CrossRef]
- Agne, M.T.; Anasori, B.; Barsoum, M.W. Reactions Between Ti2AlC, B4C, and Al and Phase Equilibria at 1000 °C in the Al-Ti-B-C Quaternary System. J. Phase Equilibria Diffus. 2015, 36, 169–182. [Google Scholar] [CrossRef]
- Keerthipalli, T.; Aepuru, R.; Biswas, A. Mechanical and Tribological Behaviour of Ti2AlC Reinforced Hypereutectic Aluminium Alloy Matrix Composite Fabricated by Vacuum Assisted Induction Melting: Experimental and Theoretical Modelling. Int. J. Met. 2024, 18, 1173–1191. [Google Scholar] [CrossRef]
- Zhu, J.; Ye, L.; He, L. Microstructure and Mechanical Properties of in Situ Synthesized Ti2AlC/Al2O3 Composites. Mater. Sci. Eng. A 2012, 547, 6–11. [Google Scholar] [CrossRef]
- Su, J.; Zhang, X.; Li, J.; Guo, H.; Wang, B.; Bai, Z. Al2O3 Fiber-Reinforced MAX Phase Ceramic Matrix Composite. Ceram. Int. 2024, 50, 25400–25411. [Google Scholar] [CrossRef]
- Spencer, C.B.; Córdoba, J.M.; Obando, N.H.; Radovic, M.; Odén, M.; Hultman, L.; Barsoum, M.W. The Reactivity of Ti2AlC and Ti3SiC2 with SiC Fibers and Powders up to Temperatures of 1550°C. J. Am. Ceram. Soc. 2011, 94, 1737–1743. [Google Scholar] [CrossRef]
- Liu, Y.; Jia, Q.; Yan, Y.; Yuan, N.; Luo, W.; Yuan, X.; Wang, L.; Guo, S. Lewis Acid Molten Salt Etched Porous Lamellar Ti2AlC Powders for Enhanced Microwave Absorption. Ceram. Int. 2024, 50, 8546–8550. [Google Scholar] [CrossRef]
- Suh, M.; Lee, D.H.; Sloof, W.G.; Lee, K.S. Effect of Temperature on the Healing Capacity and Mechanical Properties of Ti2AlC MAX Phase Ceramics. Int. J. Appl. Ceram. Technol. 2024, 21, 2757–2770. [Google Scholar] [CrossRef]
- Laska, N.; Swadźba, R.; Nellessen, P.; Helle, O.; Anton, R. Oxidation Behavior of Ti2AlC MAX Phase-Based Coating on a γ-TiAl Alloy TiAl48-2-2 Produced by DC Magnetron Sputtering. Surf. Coat. Technol. 2024, 480, 130601. [Google Scholar] [CrossRef]
- Shichalin, O.O.; Ivanov, N.P.; Seroshtan, A.I.; Nadaraia, K.V.; Simonenko, T.L.; Gurin, M.S.; Kornakova, Z.E.; Shchitovskaya, E.V.; Barkhudarov, K.V.; Tsygankov, D.K.; et al. Spark Plasma Sintering of Ti2AlC/TiC MAX-Phase Based Composite Ceramic Materials and Study of Their Electrochemical Characteristics. Ceram. Int. 2024, 50, 53120–53128. [Google Scholar] [CrossRef]
- Supakul, S.; Jain, M.; Yaddanapudi, K.; Gruber, J.; El-Atwani, O.; Tucker, G.J.; Pathak, S. Synthesis, Microstructure and Micro-Mechanical Characterization of Metal (Nb, Ti)—MAX Phase (Ti2AlC) Nanolaminates. Mater. Sci. Eng. A 2024, 910, 146905. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.; Wang, K.; Wang, Z.; Ma, G.; Ke, P.; Wang, A. Highly Dense Passivation Enhanced Corrosion Resistance of Ti2AlC MAX Phase Coating in 3.5 Wt.% NaCl Solution. Corros. Sci. 2024, 228, 111820. [Google Scholar] [CrossRef]
- Huang, R.; Xu, G.; Zhao, C.; Wu, Q.; Yu, L.; Wu, C. The Thermal Stability of Ti2AlC and Ag/Ti2AlC in Ar and Air. Mater. Charact. 2024, 213, 114050. [Google Scholar] [CrossRef]
- Wang, W.; Xu, J.; Zuo, J.; Ma, K.; Li, Y.; He, G.; Li, M. Oxidation Resistance of In Situ Reaction/Hot Pressing Synthesized Ti2AlC–20% TiB2 Composite at 600–900 °C in Air. Acta Metall. Sin. (Engl. Lett.) 2024, 37, 739–748. [Google Scholar] [CrossRef]
- Ma, T.; Li, Q.; Wang, Y.; Wang, X.; Dong, D.; Zhu, D. Microstructure and Mechanical Properties of Micro-Nano Ti2AlC-Reinforced TiAl Composites. Intermetallics 2022, 146, 107563. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, P.; Wang, A.; Xie, J.; Hou, B. Fabrication, Microstructure and Mechanical Properties of TiAl Matrix Composite Reinforced by Submicro/Nano-Ti2AlC. Mater. Charact. 2023, 203, 113141. [Google Scholar] [CrossRef]
- Simonenko, E.P.; Nagornov, I.A.; Lysenkov, A.S.; Papynov, E.K.; Shichalin, O.O.; Belov, A.A.; Kolodeznikov, E.S.; Mokrushin, A.S.; Simonenko, N.P.; Kuznetsov, N.T. Effect of Ti2AlC on Sintering of Ultrahigh-Temperature Ceramics Based on HfB2–HfO2–SiC System. Russ. J. Inorg. Chem. 2024, 69, 2151–2163. [Google Scholar] [CrossRef]
- Yeh, C.-L.; Chan, Y.-C. Effects of Ti/Al Ratio on Formation of Ti-Al Intermetallics/TiB2 Composites by SHS from Ti-Al-B Powder Mixtures. Processes 2024, 12, 1237. [Google Scholar] [CrossRef]
- Yang, J.; Tan, S.; Xiao, G.; Wang, B.; Jiang, W.; Yang, X.; Zhang, H. The Influence of B4C Content on the Pore Structure of Reaction-Synthesized Porous Ti3AlC2-TiB2 Composite Ceramics. Ceram. Int. 2024, 50, 39975–39982. [Google Scholar] [CrossRef]
- Ji, C.; Wang, H.; Li, M.; Zhu, J.; Xie, W.; Shao, G.; Xu, H.; Lu, H.; Zhang, R. Microstructure and Mechanical Properties of High-Entropy Diboride-Based Ceramic Assisted by Ti3AlC2 Additive. Ceram. Int. 2024, 50, 30810–30820. [Google Scholar] [CrossRef]
- Bortolozo, A.D.; Cremasco, A.; Floriano, R.; Contieri, R.J. Effects of Microwave Heating in Nanolaminated Nb2GeC Synthesis. Ceram. Int. 2016, 42, 16343–16348. [Google Scholar] [CrossRef]
- Lin, M.-S.; Chu, K.-R. On the Non-Thermal Mechanisms in Microwave Sintering of Materials. Materials 2025, 18, 668. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Cheng, Y.; Jiang, Z.; Wang, Z.; Yuan, J. Microwave Sintering of Ti(C,N)-Based Cermets: Study of the Magnetic Effect on Metal Phase. Mater. Chem. Phys. 2024, 313, 128717. [Google Scholar] [CrossRef]
- Aman, B.; Acharya, S.; Reeja-Jayan, B. Making the Case for Scaling Up Microwave Sintering of Ceramics. Adv. Eng. Mater. 2024, 26, 2302065. [Google Scholar] [CrossRef]
- Kumar, C.S.; Sharma, A.K.; Ostap, Z.; Ragulya, A.V. Microstructural and Mechanical Properties of Microwave Sintered Bulk Titanium Nitride Nanoceramics. Ceram. Int. 2024, 50, 29293–29305. [Google Scholar] [CrossRef]
- Calado, L.D.; Padilha, G.S.; Osório, W.R.; Bortolozo, A.D. Designing Sintering Time for a TiSiC Compound: A Microwave and Conventional Comparison. Int. J. Adv. Manuf. Technol. 2019, 104, 1561–1570. [Google Scholar] [CrossRef]
- Su, W.X.; Wang, H.M.; Li, G.R.; Zhang, Y.F. Evolution of Microstructure and Mechanical Properties of Aluminum Matrix Composites Reinforced with Dual-Phase Heterostructures. Mater. Sci. Eng. A 2024, 901, 146500. [Google Scholar] [CrossRef]
- Batienkov, R.V.; Bol’shakova, A.N.; Khudnev, A.A. Microwave Sintering of Metal Powder Materials (Review). Metallurgist 2022, 65, 1163–1173. [Google Scholar] [CrossRef]
- Rybakov, K.I.; Olevsky, E.A.; Krikun, E.V. Microwave Sintering: Fundamentals and Modeling. J. Am. Ceram. Soc. 2013, 96, 1003–1020. [Google Scholar] [CrossRef]
- ASTM A6/A6M-24b; Standard Specification for General Requirements for Rolled Structural Steel Bars, Plates, Shapes, and Sheet Piling. ASTM: West Conshohocken, PA, USA, 2024.
- ASTM E8/E8M-24; Standard Test Methods for Tension Testing of Metallic Materials. ASTM: West Conshohocken, PA, USA, 2024.
- Villars, P.; Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds; ASM International: Materials Park, OH, USA, 2007. [Google Scholar]
- Aydinyan, S. Synthesis of Ti2AlC MAX Phase and Ti2C MXene by Activated Combustion. Ceram. Int. 2024, 50, 12263–12269. [Google Scholar] [CrossRef]
- Córdoba Gallego, J.M. Pressureless Sintering Kinetics Analysis of Ti3SiC2 and Ti2AlC Powdered MAX Phases. Discov. Mater. 2024, 4, 26. [Google Scholar] [CrossRef]
- Lin, Z.J.; Zhuo, M.J.; Zhou, Y.C.; Li, M.S.; Wang, J.Y. Microstructural Characterization of Layered Ternary Ti2AlC. Acta Mater. 2006, 54, 1009–1015. [Google Scholar] [CrossRef]
- Yeh, C.L.; Shen, Y.G. Effects of TiC and Al4C3 Addition on Combustion Synthesis of Ti2AlC. J. Alloys Compd. 2009, 470, 424–428. [Google Scholar] [CrossRef]
- Zhou, W.B.; Mei, B.C.; Zhu, J.Q.; Hong, X.L. Rapid Synthesis of Ti2AlC by Spark Plasma Sintering Technique. Mater. Lett. 2005, 59, 131–134. [Google Scholar] [CrossRef]
- Huang, J.; Xu, G.; Liang, Y.; Hu, G.; Chang, P. Improving Coal Permeability Using Microwave Heating Technology—A Review. Fuel 2020, 266, 117022. [Google Scholar] [CrossRef]
- Oghbaei, M.; Mirzaee, O. Microwave versus Conventional Sintering: A Review of Fundamentals, Advantages and Applications. J. Alloys Compd. 2010, 494, 175–189. [Google Scholar] [CrossRef]
- Zhou, W.; Li, K.; Zhu, J.; Tian, S.; Zhu, D. Low-temperature Synthesis of High-purity Ti2AlC Powder by Microwave Sintering. Micro Nano Lett. 2018, 13, 798–800. [Google Scholar] [CrossRef]
- Hossein-Zadeh, M.; Ghasali, E.; Mirzaee, O.; Mohammadian-Semnani, H.; Alizadeh, M.; Orooji, Y.; Ebadzadeh, T. An Investigation into the Microstructure and Mechanical Properties of V2AlC MAX Phase Prepared by Microwave Sintering. J. Alloys Compd. 2019, 795, 291–303. [Google Scholar] [CrossRef]
- Wang, Q.; Hu, C.; Cai, S.; Sakka, Y.; Grasso, S.; Huang, Q. Synthesis of High-Purity Ti3 SiC2 by Microwave Sintering. Int. J. Appl. Ceram. Technol. 2014, 11, 911–918. [Google Scholar] [CrossRef]
- Liu, P.; Hou, B.; Wang, A.; Xie, J.; Wang, Z.; Ye, F. Superior Strength-Plasticity Synergy in a Heterogeneous Lamellar Ti2AlC/TiAl Composite with Unique Interfacial Microstructure. J. Mater. Sci. Technol. 2023, 159, 21–32. [Google Scholar] [CrossRef]
- Yu, W.; Guénolé, J.; Ghanbaja, J.; Vallet, M.; Guitton, A. Frank Partial Dislocation in Ti2AlC-MAX Phase Induced by Matrix-Cu Diffusion. Scr. Mater. 2021, 191, 34–39. [Google Scholar] [CrossRef]
Properties | Sintering Method | |
---|---|---|
Conventional (CV) | Microwave (MW) | |
Porosity (%) | 18 ± 1.3 | 13 ± 1.1 |
Hardness (HV) | 375 ± 42 | 474 ± 33 |
Ultimate Strength (MPa) | 345 ± 27 | 450 ± 35 |
Specific Strength (103 m2/s2) | 95 ± 5 | 118 ± 6 |
a lattice parameter (nm) | 0.304 ± 0.01 | 0.3043 ± 0.01 |
c lattice parameter (nm) | 1.374 ± 0.001 | 1.363 ± 0.001 |
Crystallite size (nm) | 55.7 ± 8 | 38.1 ± 5 |
Lattice strain (%) | 0.11 ± 0.02 | 0.10 ± 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Damaceno, M.d.S.D.; Meyer, Y.A.; Ortiz, E.L.; Padilha, G.d.S.; Osório, W.R.; Bortolozo, A.D. Effects of HfB2 Content and Microwave Sintering on the Mechanical Properties of Ti2AlC Composites. Materials 2025, 18, 2693. https://doi.org/10.3390/ma18122693
Damaceno MdSD, Meyer YA, Ortiz EL, Padilha GdS, Osório WR, Bortolozo AD. Effects of HfB2 Content and Microwave Sintering on the Mechanical Properties of Ti2AlC Composites. Materials. 2025; 18(12):2693. https://doi.org/10.3390/ma18122693
Chicago/Turabian StyleDamaceno, Matheus dos Santos Dias, Yuri Alexandre Meyer, Eder Lopes Ortiz, Giovana da Silva Padilha, Wislei Riuper Osório, and Ausdinir Danilo Bortolozo. 2025. "Effects of HfB2 Content and Microwave Sintering on the Mechanical Properties of Ti2AlC Composites" Materials 18, no. 12: 2693. https://doi.org/10.3390/ma18122693
APA StyleDamaceno, M. d. S. D., Meyer, Y. A., Ortiz, E. L., Padilha, G. d. S., Osório, W. R., & Bortolozo, A. D. (2025). Effects of HfB2 Content and Microwave Sintering on the Mechanical Properties of Ti2AlC Composites. Materials, 18(12), 2693. https://doi.org/10.3390/ma18122693