Use of a Flexible Two-Dimensional Textile Dosimeter with a Kilogray Dose Range to Measure the Dose Distribution for a 60Co Source
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Samples
2.2. Stability of Samples
2.3. Irradiation of Samples
2.4. 2D Scanning of Samples
2.5. Data Processing
3. Results and Discussion
3.1. Storage and Calibration of NBT-Cotton
3.2. Two-Dimensional Dose Distribution Measurements near 60Co Shield
3.3. Two-Dimensional Dose Distribution Measurements on Implant Materials
3.4. Two-Dimensional Dose Distribution in the Metal Wedge
3.5. On the Use of NBT-Cotton for 60Co and EB Dosimetry—Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. Sources and Effects of Ionizing Radiation, United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2008 Report to the General Assembly with Scientific Annexes, v. 1.; United Nations: New York, NY, USA, 2010; ISBN 978-92-1-142274-0. Available online: https://www.unscear.org/unscear/en/publications/2008_1.html (accessed on 25 April 2025).
- International Atomic Energy Agency. Radiological Assessment Reports Series, Environmental Consequences of the Chernobyl Accident and Their Remediation: Twenty Years of Experience, Report of the Chernobyl Forum Expert Group “Environment”; International Atomic Energy Agency: Vienna, Austria, 2006; (STI/PUB/1239); Available online: https://www.iaea.org/publications/7382/environmental-consequences-of-the-chernobyl-accident-and-their-remediation-twenty-years-of-experience (accessed on 25 April 2025).
- Gaunt, J.; Numark, N.J.; ERC Environmental and Energy Services Co., Inc. (ERCE). Health and Safety Aspects of Nuclear Power Plants; Industry and Energy Department Working Paper, Energy Series; Paper No. 41; Adamantiades, A.G., EMTIE, The World Bank, Eds.; The World Bank: Washington, DC, USA, 1991. [Google Scholar]
- Committee on Lessons Learned from the Fukushima Nuclear Accident for Improving Safety and Security of U.S. Nuclear Plants; Nuclear and Radiation Studies Board; Division on Earth and Life Studies; National Research Council. Lessons Learned from the Fukushima Nuclear Accident for Improving Safety of U.S. Nuclear Plants; National Academies Press: Washington, DC, USA, 2014. [Google Scholar]
- Baldock, C.; De Deene, Y.; Doran, S.; Ibbott, G.; Jirasek, A.; Lepage, M.; McAuley, K.B.; Oldham, M.; Schreiner, L.J. Polymer gel dosimetry. Phys. Med. Biol. 2010, 55, R1–R63. [Google Scholar] [CrossRef] [PubMed]
- De Deene, Y. Radiation dosimetry by use of radiosensitive hydrogels and polymers: Mechanisms, state-of-the-art and perspective from 3D to 4D. Gels 2022, 8, 599. [Google Scholar] [CrossRef] [PubMed]
- Pappas, E.; Kalaitzakis, G.; Boursianis, T.; Zoros, E.; Zourari, K.; Pappas, E.P.; Makris, D.; Seimenis, I.; Efstathopoulos, E.; Maris, T.G. Dosimetric performance of the Elekta Unity MRlinac system: 2D and 3D dosimetry in anthropomorphic inhomogeneous geometry. Phys. Med. Biol. 2019, 64, 225009. [Google Scholar] [CrossRef] [PubMed]
- Gallo, S.; Artuso, E.; Brambilla, M.G.; Gambarini, G.; Lenardi, C.; Monti, A.F.; Torresin, A.; Pignoli, E.; Veronese, I. Characterization of radiochromic poly(vinyl-alcohol)–glutaraldehyde Fricke gels for dosimetry in external x-ray radiation therapy. J. Phys. D Appl. Phys. 2019, 52, 225601. [Google Scholar] [CrossRef]
- Maryanski, M.J.; Gore, J.C.; Kennan, R.P.; Schulz, R.J. NMR relaxation enhancement in gels polymerized and cross-linked by ionizing radiation: A new approach to 3D dosimetry by MRI. Magn. Reson. Imaging 1993, 11, 253–258. [Google Scholar] [CrossRef]
- Jensen, M.L.; Julsgaard, B.; Turtos, R.M.; Skyt, P.S.; Jensen, M.B.; Muren, L.P.; Balling, P. High-resolution three-dimensional dosimetry in clinically relevant volumes utilizing optically stimulated luminescence. Med. Phys. 2024, 51, 2200–2209. [Google Scholar] [CrossRef]
- McLaughlin, W.L. Radiation chemistry of anionic disazo dyes in cellophane films applications for high-dose dosimetry. Radiat. Phys. Chem. 2003, 67, 561–567. [Google Scholar] [CrossRef]
- Niroomand-Rad, A.; Blackwell, C.R.; Coursey, B.M.; Gall, K.P.; Galvin, J.M.; McLaughlin, W.L.; Meigooni, A.S.; Nath, R.; Rodgers, J.E.; Soares, C.G. Radiochromic film dosimetry: Recommendations of AAPM radiation therapy committee task group 55. Med. Phys. 1998, 25, 2093–2115. [Google Scholar] [CrossRef]
- Pikaev, A.K.; Kriminskaya, Z.K. Use of tetrazolium salts in dosimetry of ionizing radiation. Radiat. Phys. Chem. 1998, 52, 555–561. [Google Scholar] [CrossRef]
- Kovács, A.; Wojnárovits, L.; Baranyai, M.; Moussa, A.; Othman, I.; McLaughlin, W.L. Radiolytic reactions of nitro blue te-trazolium under oxidative and reductive conditions: A pulse radiolysis study. Radiat. Phys. Chem. 1999, 55, 795–798. [Google Scholar] [CrossRef]
- Kriminskaya, Z.K.; Konarev, A.A.; Dyumaev, K.M.; Tolkachev, B.V.; Pikaev, A.K. Radiolysis of aqueous solutions of tetrazolium salts. Russ. Chem. Bull. 1988, 37, 1555–1559. [Google Scholar] [CrossRef]
- Kovács, A.; Wojnárovits, L.; Pálfi, T.; Emi-Reynolds, G.; Fletcher, J. Pulse radiolysis of tetrazolium violet in aqueous and aqueous-alcoholic solutions under oxidative and reductive conditions. Radiat. Phys. Chem. 2008, 77, 1088–1092. [Google Scholar] [CrossRef]
- Ebraheem, S.; El-Kelany, M. Dosimeter film based on ethyl violet-bromophenol blue dyed poly(vinyl alcohol). J. Polym. Chem. 2013, 3, 1–5. [Google Scholar] [CrossRef]
- Kovács, A.; Baranyai, M.; Wojnárovits, L.; Moussa, A.; Othman, I.; McLaughlin, W.L. Aqueous-ethanol nitro blue tetrazolium solutions for high dose dosimetry. Radiat. Phys. Chem. 1999, 55, 799–803. [Google Scholar] [CrossRef]
- Kovács, A.; Wojnárovits, L.; El-Assy, N.B.; Afeefy, H.Y.; Al-Sheikhly, M.; Walker, M.L.; McLaughlin, W.L. Alcohol solutions of triphenyl-tetrazolium chloride as high-dose radiochromic dosimeters. Radiat. Phys. Chem. 1995, 46, 1217–1225. [Google Scholar] [CrossRef]
- Kovács, A.; Wojnárovits, L.; McLaughlin, W.L.; Ebrahim Eid, S.E.; Miller, A. Radiation-chemical reaction of 2,3,5-triphenyl-tetrazolium chloride in liquid and solid state. Radiat. Phys. Chem. 1996, 47, 483–486. [Google Scholar] [CrossRef]
- Kovács, A.; Baranyai, M.; Wojnárovits, L.; Slezsák, I.; McLaughlin, W.L.; Miller, A.; Moussa, A. Dose determination with nitro blue tetrazolium containing radiochromic dye films by measuring absorbed and reflected light. Radiat. Phys. Chem. 2000, 57, 711–716. [Google Scholar] [CrossRef]
- Basfar, A.A.; Rabaeh, K.A.; Moussa, A.A.; Msalam, R.I. Dosimetry characterization of nitro-blue tetrazolium polyvinylbutyral films for radiation processing. Radiat. Phys. Chem. 2011, 80, 763–766. [Google Scholar] [CrossRef]
- Al Zahrany, A.A.; Rabaeh, K.A.; Basfar, A.A. Radiation-induced color bleaching of methyl red in polyvinyl butyral film dosimeter. Radiat. Phys. Chem. 2011, 80, 1263–1267. [Google Scholar] [CrossRef]
- Butson, M.J.; Yu, P.K.N.; Cheung, T.; Metcalfe, P. Radiochromic film for medical radiation dosimetry. Mater. Sci. Eng. 2003, 41, 61–120. [Google Scholar] [CrossRef]
- Kozicki, M.; Maras, P. Features of 2Day.QA® as a 2D radiation dosimeter. Phys. Medica 2022, 104, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Sąsiadek, E.; Andrzejczak, R.; Kozicki, M. The importance of fabric structure in the construction of 2D textile radiation dosimeters. Radiat. Meas. 2012, 47, 622–627. [Google Scholar] [CrossRef]
- Sąsiadek-Andrzejczak, E.; Maras, P.; Kozicki, M. Flexible and Ecological Cotton-Based Dosimeter for 2D UV Surface Dose Distribution Measurements. Materials 2024, 17, 4339. [Google Scholar] [CrossRef] [PubMed]
- Kozicki, M.; Sąsiadek-Andrzejczak, E.; Wach, R.; Maras, P. Flexible Cotton Fabric-Based Ionizing Radiation Dosimeter for 2D Dose Distribution Measurements over a Wide Dose Range at High Dose Rates. Int. J. Mol. Sci. 2024, 25, 2916. [Google Scholar] [CrossRef]
- Kozicki, M.; Maras, P.; Karwowski, A.C. Software for 3D radiotherapy dosimetry. Validation. Phys. Med. Biol. 2014, 59, 4111–4136. [Google Scholar] [CrossRef]
- Sąsiadek-Andrzejczak, E.; Maras, P.; Kozicki, M. Storage Conditions of Textile Dosimeters for 2D UV Dose Measurements. Materials 2025, 18, 2146. [Google Scholar] [CrossRef]
No. | Storage Conditions | Time [Days] | ||||
---|---|---|---|---|---|---|
1 | 5 | 10 | 30 | 150 | ||
1 | 20–23 °C | 13.10% | 15.46% | 24.30% | 43.79% | 54.19% |
2 | 20–23 °C, covered with aluminum foil | 1.27% | 3.66% | 4.17% | 11.39% | 23.93% |
3 | 2–4 °C, covered with aluminum foil | 0.62% | 1.43% | 1.56% | 3.01% | 6.72% |
4 | −17–−20 °C, covered with aluminum foil | 0.88% | 2.96% | 3.66% | 4.18% | 4.25% |
Type of Alloy | 8 mm Diameter Rod Made of a CoCrMo Alloy | 16 mm Diameter Rod Made of a CoCrMo Alloy | 16 mm Diameter Rod Made of Stainless Steel (316L) | Eleven 16 mm Diameter and 3 mm-High Cylinders Made of a TiVa and TiNb Alloy | ||||
---|---|---|---|---|---|---|---|---|
Dose (Irradiation Time: 17 h) | Front | Back | Front | Back | Front | Back | Front | Back |
Minimum dose [kGy] | 10.1 | 7.8 | 9.9 | 5.5 | 10.9 | 6.4 | 9.5 | 6.2 |
Maximum dose [kGy] | 13.3 | 9.9 | 14.3 | 9.4 | 15.4 | 8.6 | 17.9 | 10.3 |
Mean dose [kGy] | 11.8 (10.9) | 8.3 (6.2) | 12.3 (11.2) | 6.8 (4.8) | 13.0 (11.2) | 7.1 (4.2) | 11.9 (9.9) | 7.3 (4.7) |
Std [kGy] | 0.8 | 0.4 | 0.8 | 0.5 | 1.1 | 0.4 | 1.0 | 0.5 |
Y Distance [mm] | Dose Measured with NBT-Cotton [kGy] | Dose Measured with Film Dosimeters [kGy] |
---|---|---|
−20 | 13.7 ± 0.8 | 11.8 |
−39 | 11.0 ± 0.4 | 10.7 |
−55 | 11.5 ± 0.6 | 9.9 |
−73 | 10.7 ± 0.5 | 9.6 |
−92.5 | 10.0 ± 0.4 | 8.8 |
−110 | 9.8 ± 0.4 | 8.2 |
−130 | 8.4 ± 0.8 | 6.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozicki, M.; Wach, R.; Sąsiadek-Andrzejczak, E.; Maras, P. Use of a Flexible Two-Dimensional Textile Dosimeter with a Kilogray Dose Range to Measure the Dose Distribution for a 60Co Source. Materials 2025, 18, 2685. https://doi.org/10.3390/ma18122685
Kozicki M, Wach R, Sąsiadek-Andrzejczak E, Maras P. Use of a Flexible Two-Dimensional Textile Dosimeter with a Kilogray Dose Range to Measure the Dose Distribution for a 60Co Source. Materials. 2025; 18(12):2685. https://doi.org/10.3390/ma18122685
Chicago/Turabian StyleKozicki, Marek, Radosław Wach, Elżbieta Sąsiadek-Andrzejczak, and Piotr Maras. 2025. "Use of a Flexible Two-Dimensional Textile Dosimeter with a Kilogray Dose Range to Measure the Dose Distribution for a 60Co Source" Materials 18, no. 12: 2685. https://doi.org/10.3390/ma18122685
APA StyleKozicki, M., Wach, R., Sąsiadek-Andrzejczak, E., & Maras, P. (2025). Use of a Flexible Two-Dimensional Textile Dosimeter with a Kilogray Dose Range to Measure the Dose Distribution for a 60Co Source. Materials, 18(12), 2685. https://doi.org/10.3390/ma18122685