Electronic Correlations in Altermagnet MnTe in Hexagonal Crystal Structure
Abstract
:1. Introduction
2. Methods and Crystal Structure
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TMC | Transition metal chalcogenides |
DFT | Density functional theory |
RS | Rock salt |
SOC | Spin-orbit coupling |
LSDA | Local spin-density approximation |
GGA | Generalized gradient approximation |
References
- Amin, O.J.; Dal Din, A.; Golias, E.; Niu, Y.; Zakharov, A.; Fromage, S.C.; Fields, C.J.B.; Heywood, S.L.; Cousins, R.B.; Maccherozzi, F.; et al. Nanoscale imaging and control of altermagnetism in MnTe. Nature 2024, 636, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Krempaský, J.; Šmejkal, L.; D’Souza, S.W.; Hajlaoui, M.; Springholz, G.; Uhlířová, K.; Alarab, F.; Constantinou, P.C.; Strocov, V.; Usanov, D.; et al. Altermagnetic lifting of Kramers spin degeneracy. Nature 2024, 626, 517–522. [Google Scholar] [CrossRef] [PubMed]
- Šmejkal, L.; Sinova, J.; Jungwirth, T. Emerging Research Landscape of Altermagnetism. Phys. Rev. X 2022, 12, 040501. [Google Scholar] [CrossRef]
- Gonzalez Betancourt, R.D.; Zubáč, J.; Geishendorf, K.; Ritzinger, P.; Růžičková, B.; Kotte, T.; Železný, J.; Olejník, K.; Springholz, G.; Büchner, B.; et al. Anisotropic magnetoresistance in altermagnetic MnTe. Npj Spintron. 2024, 2, 45. [Google Scholar] [CrossRef]
- Šmejkal, L.; Sinova, J.; Jungwirth, T. Beyond Conventional Ferromagnetism and Antiferromagnetism: A Phase with Nonrelativistic Spin and Crystal Rotation Symmetry. Phys. Rev. X 2022, 12, 031042. [Google Scholar] [CrossRef]
- McClarty, P.A.; Rau, J.G. Landau Theory of Altermagnetism. Phys. Rev. Lett. 2024, 132, 176702. [Google Scholar] [CrossRef]
- Chowde Gowda, C.; Chandravanshi, D.; Tromer, R.M.; Malya, A.; Chattopadhyay, K.; Galvão, D.S.; Tiwary, C.S. Tuning the band gap of manganese telluride quantum dots (MnTe QDs) for photocatalysis. Appl. Phys. A 2024, 130, 299. [Google Scholar] [CrossRef]
- Raju Baral, A.M.; Abeykoon, M.; Campbell, B.J.; Frandsen, B.A. Giant Spontaneous Magnetostriction in MnTe Driven by a Novel Magnetostructural Coupling Mechanism. Adv. Funct. Mater. 2023, 33, 2305247. [Google Scholar] [CrossRef]
- Šmejkal, L.; González-Hernández, R.; Jungwirth, T.; Sinova, J. Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets. Sci. Adv. 2020, 6, eaaz8809. [Google Scholar] [CrossRef]
- González-Hernández, R.; Šmejkal, L.; Výborný, K.; Yahagi, Y.; Sinova, J.; Jungwirth, T.; Železný, J. Efficient Electrical Spin Splitter Based on Nonrelativistic Collinear Antiferromagnetism. Phys. Rev. Lett. 2021, 126, 127701. [Google Scholar] [CrossRef]
- López-Moreno, S.; Romero, A.H.; Mejía-López, J.; Munoz, A.; Roshchin, I.V. First-principles study of electronic, vibrational, elastic, and magnetic properties of FeF as a function of pressure. Phys. Rev. B 2012, 85, 134110. [Google Scholar] [CrossRef]
- Yuan, L.-D.; Wang, Z.; Luo, J.-W.; Rashba, E.I.; Zunger, A. Giant momentum-dependent spin splitting in centrosymmetric low-Z antiferromagnets. Phys. Rev. B 2020, 102, 014422. [Google Scholar] [CrossRef]
- Iguchi, S.; Kobayashi, H.; Ikemoto, Y.; Furukawa, T.; Itoh, H.; Iwai, S.; Moriwaki, T.; Sasaki, T. Magnetooptical spectra of an organic antiferromagnet as a candidate for an altermagnet. Phys. Rev. Res. 2025, in press. [Google Scholar] [CrossRef]
- Woods-Robinson, R.; Han, Y.; Zhang, H.; Ablekim, T.; Khan, I.; Persson, K.A.; Zakutayev, A. Wide Band Gap Chalcogenide Semiconductors. Chem. Rev. 2020, 120, 4007. [Google Scholar] [CrossRef]
- Osumi, T.; Souma, S.; Aoyama, T.; Yamauchi, K.; Honma, A.; Nakayama, K.; Takahashi, T.; Ohgushi, K.; Sato, T. Observation of a giant band splitting in altermagnetic MnTe. Phys. Rev. B 2024, 109, 115102. [Google Scholar] [CrossRef]
- Barik, R.; Ingole, P.P. Challenges and prospects of metal sulfide materials for supercapacitors. Curr. Opin. Electrochem. 2020, 21, 327–334. [Google Scholar] [CrossRef]
- Huang, Z.F.; Song, J.; Li, K.; Tahir, M.; Wang, Y.T.; Pan, L.; Wang, L.; Zhang, X.; Zou, J.J. Hollow Cobalt-Based Bimetallic Sulfide Polyhedra for Efficient All-pH-Value Electrochemical and Photocatalytic Hydrogen Evolution. J. Am. Chem. Soc. 2016, 138, 1359. [Google Scholar] [CrossRef]
- Caetano, R.; Freire, H. Orbital selectivity versus Pomeranchuk instability in the iron–chalcogenide superconductors: A two-loop renormalization group study. Ann. Phys. 2019, 405, 308–324. [Google Scholar] [CrossRef]
- Dyachenko, A.A.; Lukoyanov, A.V.; Shorikov, A.O.; Anisimov, V.I. Magnetically driven phase transitions with a large volume collapse in MnSe under pressure: A DFT+DMFT study. Phys. Rev. B 2018, 98, 085139. [Google Scholar] [CrossRef]
- Chernov, E.D.; Lukoyanov, A.V. Metal-insulator transition in MnS. Phys. Scr. 2025, 100, 035903. [Google Scholar] [CrossRef]
- Wang, Y.; Bai, L.; Wen, T.; Yang, L.; Gou, H.; Xiao, Y.; Chow, P.; Pravica, M.; Yang, W.; Zhao, Y. Giant Pressure-Driven Lattice Collapse Coupled with Intermetallic Bonding and Spin-State Transition in Manganese Chalcogenides. Angew. Chem. Int. Ed. 2016, 55, 10350. [Google Scholar] [CrossRef]
- Allen, J.W.; Lucovsky, G.; Mikkelsen, J.C., Jr. Optical properties and electronic structure of crossroads material MnTe. Solid State Commun. 1977, 24, 367–370. [Google Scholar] [CrossRef]
- Mimasaka, M.; Sakamoto, I.; Murata, K.; Fujii, Y.; Onodera, A. Pressure-induced phase transitions of MnTe. J. Phys. C Solid State Phys. 1987, 20, 4689–4694. [Google Scholar] [CrossRef]
- Wang, P.; Zhu, S.C.; Zou, Y.; Chen, H.; Liu, Y.; Li, W.; Chen, J.; Zhu, J.; Wu, L.; Wang, S.; et al. Concurrent pressure-induced spin-state transitions and Jahn–Teller distortions in MnTe. Chem. Mater. 2022, 34, 3931–3940. [Google Scholar] [CrossRef]
- Xiao, G.; Yang, X.; Zhang, X.; Wang, K.; Huang, X.; Ding, Z.; Ma, Y.; Zou, G.; Zou, B. A Protocol to fabricate nanostructured new phase: B31-Type MnS synthesized under high pressure. J. Am. Chem. Soc. 2015, 137, 10297–10303. [Google Scholar] [CrossRef]
- Kriegner, D.; Reichlova, H.; Grenzer, J.; Schmidt, W.; Ressouche, E.; Godinho, J.; Wagner, T.; Martin, S.Y.; Shick, A.B.; Volobuev, V.V.; et al. Magnetic anisotropy in antiferromagnetic hexagonal MnTe. Phys. Rev. B 2017, 96, 214418. [Google Scholar] [CrossRef]
- Sattigeri, R.M.; Cuono, G.; Autieri, C. Altermagnetic surface states: Towards the observation and utilization of altermagnetism in thin films, interfaces and topological materials. Nanoscale 2023, 15, 16998. [Google Scholar] [CrossRef] [PubMed]
- Zulkifal, S.; Wang, Z.; Zhang, X.; Siddique, S.; Yu, Y.; Wang, C.; Gong, Y.; Li, S.; Li, D.; Zhang, Y.; et al. Multiple Valence Bands Convergence and Localized Lattice Engineering Lead to Superhigh Thermoelectric Figure of Merit in MnTe. Adv. Sci. 2023, 10, 2206342. [Google Scholar] [CrossRef]
- Devaraj, N.; Bose, A.; Narayan, A. Interplay of altermagnetism and pressure in hexagonal and orthorhombic MnTe. Phys. Rev. Mater. 2024, 8, 104407. [Google Scholar] [CrossRef]
- Faria Junior, P.E.; de Mare, K.A.; Zollner, K.; Ahn, K.; Erlingsson, S.I.; van Schilfgaarde, M.; Výborný, K. Sensitivity of the MnTe valence band to the orientation of magnetic moments. Phys. Rev. B 2023, 107, L100417. [Google Scholar] [CrossRef]
- Deng, H.; Lou, X.; Lu, W.; Zhang, J.; Li, D.; Li, S.; Zhang, Q.; Zhang, X.; Chen, X.; Zhang, D.; et al. High-performance eco-friendly MnTe thermoelectrics through introducing SnTe nanocrystals and manipulating band structure. Nano Energy 2021, 81, 105649. [Google Scholar] [CrossRef]
- Rooj, S.; Chakraborty, J.; Ganguli, N. Hexagonal MnTe with Antiferromagnetic Spin Splitting and Hidden Rashba–Dresselhaus Interaction for Antiferromagnetic Spintronics. Adv. Phys. Res. 2024, 3, 2300050. [Google Scholar] [CrossRef]
- Makovetskii, G.; Galyas, A.; Severin, G.; Yanushkevich, K.I. Synthesis of Solid Solutions of Cr1-xMnxTe (0 ≤ x ≤ 1). Inorg. Mater. 1996, 32, 846. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Kuneš, J.; Lukoyanov, A.V.; Anisimov, V.I.; Scalettar, R.T.; Pickett, W.E. Collapse of magnetic moment drives the Mott transition in MnO. Nat. Mater. 2008, 7, 198–202. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef]
- Sandratskii, L.M.; Egorov, R.F.; Berdyshev, A.A. Energy Band Structure and Electronic Properties of NiAs Type Compounds. II. Antiferromagnetic Manganese Telluride. Phys. Status Solidi 1981, 104, 103–107. [Google Scholar] [CrossRef]
- Xiong, W.; Wang, Z.; Zhang, X.; Wang, C.; Yin, L.; Gong, Y.; Zhang, Q.; Li, S.; Liu, Q.; Wang, P.; et al. Lattice Distortions and Multiple Valence Band Convergence Contributing to High Thermoelectric Performance in MnTe. Small 2022, 19, 2206058. [Google Scholar] [CrossRef]
- Sato, H.; Mihara, T.; Furuta, A.; Tamura, M.; Mimura, K.; Happo, N.; Taniguchi, M.; Ueda, Y. Chemical trend of occupied and unoccupied Mn 3d states in Mn Y (Y= S, Se, Te). Phys. Rev. B 1997, 56, 7222. [Google Scholar] [CrossRef]
- Krause, M.; Bechstedt, F. Structural and Magnetic Properties of MnTe Phases from Ab Initio Calculations. J. Supercond. Nov. Magn. 2013, 26, 1963–1972. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chernov, E.D.; Lukoyanov, A.V. Electronic Correlations in Altermagnet MnTe in Hexagonal Crystal Structure. Materials 2025, 18, 2637. https://doi.org/10.3390/ma18112637
Chernov ED, Lukoyanov AV. Electronic Correlations in Altermagnet MnTe in Hexagonal Crystal Structure. Materials. 2025; 18(11):2637. https://doi.org/10.3390/ma18112637
Chicago/Turabian StyleChernov, Evgenii D., and Alexey V. Lukoyanov. 2025. "Electronic Correlations in Altermagnet MnTe in Hexagonal Crystal Structure" Materials 18, no. 11: 2637. https://doi.org/10.3390/ma18112637
APA StyleChernov, E. D., & Lukoyanov, A. V. (2025). Electronic Correlations in Altermagnet MnTe in Hexagonal Crystal Structure. Materials, 18(11), 2637. https://doi.org/10.3390/ma18112637