Effect of Nano-SiO2 on the Hydration, Microstructure, and Mechanical Performances of Solid Waste-Based Cementitious Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Samples
2.3. Test Methods
3. Results and Discussion
3.1. Compressive Strength
3.2. Autogenous Shrinkage Setup
3.3. X-Ray Diffraction Analysis
3.4. Thermogravimetric Analysis of Hydrated Samples
3.5. Micro-Morphology of the Hardened Pastes
3.6. Chloride Diffusion Coefficient
4. Conclusions
- (1)
- The mechanical properties of SWBC are found to be optimal when the incorporation amount of nano-SiO2 is 0.5%. Although excessive incorporation of nano-SiO2 (≥1%) slows down the hydration rate of SWBC, it does not have a negative impact on the ultimate strength. Furthermore, nano-SiO2 significantly mitigates the linear variation of SWBC, with this effect being particularly pronounced at higher incorporation levels.
- (2)
- The incorporation of nano-SiO2 promotes C-S-H gel formation and partially delays AFt development. The inhibitory effect on AFt formation becomes more pronounced with increasing nano-SiO2 content. The impact of nano-SiO2 on SWBC is modulated to some extent by its proportion in the mix.
- (3)
- The incorporation of nano-SiO2 exerts a certain influence on the corrosion resistance of SWBC. Incorporating 0.5% nano-SiO2 significantly improves the corrosion resistance of SWBC and decreases its chloride diffusion coefficient. Excessive nano-SiO2 dosage can negatively affect the corrosion resistance of SWBC.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mesgari, S.; Akbarnezhad, A.; Xiao, J.Z. Recycled geopolymer aggregates as coarse aggregates for Portland cement concrete and geopolymer concrete: Effects on mechanical properties. Constr. Build. Mater. 2020, 236, 117571. [Google Scholar] [CrossRef]
- Wang, J.; Luan, Y.; Ma, T.; Zhang, W.; Xu, G. Experimental investigation on the mechanical performance and microscopic characterization of desulfurization gypsum-reinforced ternary geopolymer. Constr. Build. Mater. 2023, 392, 131855. [Google Scholar] [CrossRef]
- Schuhmacher, M.; Domingo, J.L.; Garreta, J. Pollutants emitted by a cement plant: Health risks for the population living in the neighborhood. Environ. Res. 2004, 95, 198–206. [Google Scholar] [CrossRef]
- Saedi, A.; Jamshidi-Zanjani, A.; Darban, A.K. A review on different methods of activating tailings to improve their cementitious property as cemented paste and reusability. J. Environ. Manag. 2020, 270, 110881. [Google Scholar] [CrossRef]
- Van Deventer, J.S.J.; Provis, J.L.; Duxson, P. Technical and commercial progress in the adoption of geopolymer cement. Miner. Eng. 2012, 29, 89–104. [Google Scholar] [CrossRef]
- Habert, G.; Miller, S.A.; John, V.M.; Provis, J.L.; Favier, A.; Horvath, A.; Scrivener, K.L. Environmental impacts and decarbonization strategies in the cement and concrete industries. Nat. Rev. Earth Environ. 2020, 1, 559–573. [Google Scholar] [CrossRef]
- Nguyen, H.-A.; Chang, T.-P.; Shih, J.-Y. Effects of sulfate rich solid waste activator on engineering properties and durability of modified high volume fly ash cement based SCC. J. Build. Eng. 2018, 20, 123–129. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, Z.; Qiu, D.; Chu, Y.; Tang, Y. Beneficial utilization of Al/Si/O-rich solid wastes for environment-oriented ceramic membranes. J. Hazard. Mater. 2021, 401, 123427. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, H.; Du, L.; Lu, W.; Qi, K. Exploring the industrial solid wastes management system: Empirical analysis of forecasting and safeguard mechanisms. J. Environ. Manag. 2021, 279, 111627. [Google Scholar] [CrossRef]
- Zhou, K.; Gong, K.; Zhou, Q.; Zhao, S.; Guo, H.; Qian, X. Estimating the feasibility of using industrial solid wastes as raw material for polyurethane composites with low fire hazards. J. Clean. Prod. 2020, 257, 120606. [Google Scholar] [CrossRef]
- Bach, Q.-V.; Chen, W.-H.; Eng, C.F.; Wang, C.-W.; Liang, K.-C.; Kuo, J.-Y. Pyrolysis characteristics and non-isothermal torrefaction kinetics of industrial solid wastes. Fuel 2019, 251, 118–125. [Google Scholar] [CrossRef]
- Liu, J.; Yan, C.W.; Zhang, J.; Li, J.Q.; Zhao, J.H.; Shen, X.W.; Cao, F.; Zhang, G.C.; Meng, X.D. Characteristics of AC impedance and pore structure in solid waste-based cementitious materials with different water-to-binder ratios. Constr. Build. Mater. 2025, 467, 140342. [Google Scholar] [CrossRef]
- Firdous, R.; Stephan, D.; Djobo, J.N.Y. Natural pozzolan based geopolymers: A review on mechanical, microstructural and durability characteristics. Constr. Build. Mater. 2018, 190, 1251–1263. [Google Scholar] [CrossRef]
- Wu, M.; Hu, X.; Zhang, Q.; Cheng, W.; Hu, Z.; Cannas, M. Orthogonal Experimental Studies on Preparation of Mine-Filling Materials from Carbide Slag, Granulated Blast-Furnace Slag, Fly Ash, and Flue-Gas Desulphurisation Gypsum. Adv. Mater. Sci. Eng. 2018, 2018, 4173520. [Google Scholar] [CrossRef]
- Li, J.; Zhang, S.Q.; Wang, Q.; Ni, W.; Li, K.Q.; Fu, P.F.; Hu, W.T.; Li, Z.F. Feasibility of using fly ash-slag-based binder for mine backfilling and its associated leaching risks. J. Hazard. Mater. 2020, 400, 123191. [Google Scholar] [CrossRef]
- Yeau, K.Y.; Kim, E.K. An experimental study on corrosion resistance of concrete with ground granulate blast-furnace slag. Cem. Concr. Res. 2005, 35, 1391–1399. [Google Scholar] [CrossRef]
- Fu, C.Q.; Ling, Y.F.; Ye, H.L.; Jin, X.Y. Chloride resistance and binding capacity of cementitious materials containing high volumes of fly ash and slag. Mag. Concr. Res. 2021, 73, 55–68. [Google Scholar] [CrossRef]
- Friol Guedes de Paiva, F.; Tamashiro, J.R.; Pereira Silva, L.H.; Kinoshita, A. Utilization of inorganic solid wastes in cementitious materials—A systematic literature review. Constr. Build. Mater. 2021, 285, 122833. [Google Scholar] [CrossRef]
- Shi, Y.; Li, Y.; Wang, H. Eco-friendly solid waste-based cementitious material containing a large amount of phosphogypsum: Performance optimization, micro-mechanisms, and environmental properties. J. Clean. Prod. 2024, 471, 143335. [Google Scholar] [CrossRef]
- Wu, Q.; Xue, Q.; Yu, Z. Research status of super sulfate cement. J. Clean. Prod. 2021, 294, 126228. [Google Scholar] [CrossRef]
- Shakib, S.; Sheikh, M.N.; Hadi, M.N.S. Mitigation of drying shrinkage in alkali-activated reactive powder concrete through copper-coated microwire steel fibers. Struct. Concr. 2025; online ahead of print. [Google Scholar] [CrossRef]
- Singh, L.P.; Karade, S.R.; Bhattacharyya, S.K.; Yousuf, M.M.; Ahalawat, S. Beneficial role of nanosilica in cement based materials—A review. Constr. Build. Mater. 2013, 47, 1069–1077. [Google Scholar] [CrossRef]
- Xu, Z.; Guo, Z.; Zhao, Y.; Li, S.; Luo, X.; Chen, G.; Liu, C.; Gao, J. Hydration of blended cement with high-volume slag and nano-silica. J. Build. Eng. 2023, 64, 105657. [Google Scholar] [CrossRef]
- Xu, Z.; Qi, G.; Liu, Q.; Yao, J. Output feedback disturbance rejection control for full-state constrained hydraulic systems with guaranteed tracking performance. Appl. Math. Model. 2022, 111, 332–348. [Google Scholar] [CrossRef]
- Chen, H.; Hou, P.K.; Zhou, X.M.; Black, L.; Adu-Amankwah, S.; Feng, P.; Cui, N.; Glinicki, M.A.; Cai, Y.M.; Zhang, S.P.; et al. Toward performance improvement of supersulfated cement by nano silica: Asynchronous regulation on the hydration kinetics of silicate and aluminate. Cem. Concr. Res. 2023, 167, 107117. [Google Scholar] [CrossRef]
- Zhang, L.; Bian, M.; Xiao, Z.; Wang, X.; Han, B. A comprehensive review of cementitious composites modified with nano silica: Fabrication, microstructures, properties and applications. Constr. Build. Mater. 2023, 409, 133922. [Google Scholar] [CrossRef]
- Guo, Z.H.; Ni, Y.Y.; Xu, Z.H.; Chen, G.F.; Wu, H.X.; Liu, C.; Gao, J.M.; Du, H.J. Evolution of in-situ pore structure of nanosilica modified high-volume blast furnace slag cementitious materials under sulfate attack. Constr. Build. Mater. 2024, 438, 136937. [Google Scholar] [CrossRef]
- GB/T 17671-2021; Test Method of Cement Mortar Strength (ISO Method). National Standard of the People’s Republic of China, State Administration for Market Regulation and Standardization Administration of China: Beijing, China, 2021.
- GB/T 29417-2012; Standard Test Methods for Drying Shrinkage Stress and Cracking Possibility of Cement Mortar and Concrete. National Standard of the People’s Republic of China, State Administration for Market Regulation and Standardization Administration of China: Beijing, China, 2012.
- Wei, Y.; Yao, W.; Xing, X.; Wu, M. Quantitative evaluation of hydrated cement modified by silica fume using QXRD, 27Al MAS NMR, TG–DSC and selective dissolution techniques. Constr. Build. Mater. 2012, 36, 925–932. [Google Scholar] [CrossRef]
- Liao, C.-Z.; Zeng, L.; Shih, K. Quantitative X-ray Diffraction (QXRD) analysis for revealing thermal transformations of red mud. Chemosphere 2015, 131, 171–177. [Google Scholar] [CrossRef]
- Bish, D.L.; Post, J.E. Quantitative Mineralogical Analysis Using the Rietveld Full-Pattern Fitting Method. Am. Miner. 1993, 78, 932–940. [Google Scholar]
- Ibáñez, J.; Font, O.; Moreno, N.; Elvira, J.J.; Alvarez, S.; Querol, X. Quantitative Rietveld analysis of the crystalline and amorphous phases in coal fly ashes. Fuel 2013, 105, 314–317. [Google Scholar] [CrossRef]
- Yasukawa, K.; Terashi, Y.; Nakayama, A. Crystallinity Analysis of Glass-Ceramics by the Rietveld Method. J. Am. Ceram. Soc. 1998, 81, 2978–2982. [Google Scholar] [CrossRef]
- Lothenbach, B.; Nonat, A. Calcium silicate hydrates: Solid and liquid phase composition. Cem. Concr. Res. 2015, 78, 57–70. [Google Scholar] [CrossRef]
- Scrivener, K.L.; Snellings, R.; Lothenbach, B. A Practical Guide to Microstructural Analysis of Cementitious Materials; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- GB/T 42272-2022; The Method for Determining the Chloride Diffusion Coefficient for Cement Mortar. National Standard of the People’s Republic of China, State Administration for Market Regulation and Standardization Administration of China: Beijing, China, 2022.
- Meng, T.; Hong, Y.; Wei, H.; Xu, Q. Effect of nano-SiO2 with different particle size on the hydration kinetics of cement. Thermochim. Acta 2019, 675, 127–133. [Google Scholar] [CrossRef]
- Behfarnia, K.; Salemi, N. The effects of nano-silica and nano-alumina on frost resistance of normal concrete. Constr. Build. Mater. 2013, 48, 580–584. [Google Scholar] [CrossRef]
- Jo, B.-W.; Kim, C.-H.; Tae, G.-h.; Park, J.-B. Characteristics of cement mortar with nano-SiO2 particles. Constr. Build. Mater. 2007, 21, 1351–1355. [Google Scholar] [CrossRef]
- Cai, T.Z.; Hou, P.K.; Chen, H.; Zhao, P.Q.; Du, P.; Wang, S.D.; Zhou, X.M.; Wang, X.W.; Cheng, X. Effects of nanosilica on supersulfated cements of different clinker-activation degree. Constr. Build. Mater. 2023, 365, 130118. [Google Scholar] [CrossRef]
- Naji Givi, A.; Abdul Rashid, S.; Aziz, F.N.A.; Salleh, M.A.M. Experimental investigation of the size effects of SiO2 nano-particles on the mechanical properties of binary blended concrete. Compos. Part B Eng. 2010, 41, 673–677. [Google Scholar] [CrossRef]
- Zheng, Y.; Xi, X.; Liu, H.; Du, C.; Lu, H. A review: Enhanced performance of recycled cement and CO2 emission reduction effects through thermal activation and nanosilica incorporation. Constr. Build. Mater. 2024, 422, 135763. [Google Scholar] [CrossRef]
- Toufigh, V.; Karamian, M.H.; Ghasemalizadeh, S. Study of stress–strain and volume change behavior of fly ash-GBFS based geopolymer rammed earth. Bull. Eng. Geol. Environ. 2021, 80, 6749–6767. [Google Scholar] [CrossRef]
- Luan, Y.C.; Wang, J.H.; Ma, T.; Wang, S.Q.; Li, C. Modification mechanism of flue gas desulfurization gypsum on fly ash and ground granulated blast-furnace slag alkali-activated materials: Promoting green cementitious material. Constr. Build. Mater. 2023, 396, 132400. [Google Scholar] [CrossRef]
- Bogas, J.A.; Nogueira, R.; Almeida, N.G. Influence of mineral additions and different compositional parameters on the shrinkage of structural expanded clay lightweight concrete. Mater. Des. 2014, 56, 1039–1048. [Google Scholar] [CrossRef]
- Gu, X.; Ge, X.; Liu, J.; Song, G.; Wang, S.; Hu, Z.; Wang, H. Study on the synergistic effect of calcium carbide residue -fly ash enhanced desulphurisation gypsum under high temperature maintenance condition. Constr. Build. Mater. 2024, 412, 134706. [Google Scholar] [CrossRef]
- Qu, F.L.; Li, W.G.; Guo, Y.P.; Zhang, S.S.; Zhou, J.L.; Wang, K.J. Chloride-binding capacity of cement-GGBFS-nanosilica composites under seawater chloride-rich environment. Constr. Build. Mater. 2022, 342, 127890. [Google Scholar] [CrossRef]
- Winnefeld, F.; Lothenbach, B. Hydration of calcium sulfoaluminate cements—Experimental findings and thermodynamic modelling. Cem. Concr. Res. 2010, 40, 1239–1247. [Google Scholar] [CrossRef]
- Wang, T.; Wu, K.; Wu, M. Development of green binder systems based on flue gas desulfurization gypsum and fly ash incorporating slag or steel slag powders. Constr. Build. Mater. 2020, 265, 120275. [Google Scholar] [CrossRef]
- Guo, Z.H.; Xu, Z.H.; Liu, C.; Gao, J.M.; Luo, X.; Li, S.J. New insights into the effects of nanosilica on transmission properties and pore structure in high-volume blast furnace slag cementitious materials. Constr. Build. Mater. 2023, 404, 133181. [Google Scholar] [CrossRef]
- Ba, H.J.; Li, J.J.; Ni, W.; Li, Y.; Ju, Y.J.; Zhao, B.; Wen, G.P.; Hitch, M. Effect of calcium to silicon ratio on the microstructure of hydrated calcium silicate gels prepared under medium alkalinity. Constr. Build. Mater. 2023, 379, 131240. [Google Scholar] [CrossRef]
- Hou, P.; Wang, X.; Zhao, P.; Wang, K.; Kawashima, S.; Li, Q.; Xie, N.; Cheng, X.; Shah, S.P. Physicochemical effects of nanosilica on C3A/C3S hydration. J. Am. Ceram. Soc. 2020, 103, 6505–6518. [Google Scholar] [CrossRef]
- Hou, P.; Kawashima, S.; Kong, D.; Corr, D.J.; Qian, J.; Shah, S.P. Modification effects of colloidal nanoSiO2 on cement hydration and its gel property. Compos. Part B Eng. 2013, 45, 440–448. [Google Scholar] [CrossRef]
- Hou, P.; Qian, J.; Cheng, X.; Shah, S.P. Effects of the pozzolanic reactivity of nanoSiO2 on cement-based materials. Cem. Concr. Compos. 2015, 55, 250–258. [Google Scholar] [CrossRef]
- Xu, Z.H.; Gao, J.M.; Zhao, Y.S.; Li, S.J.; Guo, Z.H.; Luo, X.; Chen, G.F. Promoting utilization rate of ground granulated blast furnace slag (GGBS): Incorporation of nanosilica to improve the properties of blended cement containing high volume GGBS. J. Clean. Prod. 2022, 332, 130096. [Google Scholar] [CrossRef]
- Ylmén, R.; Jäglid, U.; Steenari, B.-M.; Panas, I. Early hydration and setting of Portland cement monitored by IR, SEM and Vicat techniques. Cem. Concr. Res. 2009, 39, 433–439. [Google Scholar] [CrossRef]
- Gao, S.; Ji, Y.; Qin, Z.; Zhang, H.; Xing, F.; Liu, A. A comprehensive analysis of pore structures and performances of mineral admixtures modified recycled aggregate concrete based on experiment and theory. Constr. Build. Mater. 2022, 358, 129451. [Google Scholar] [CrossRef]
- Hamada, H.; Shi, J.; Yousif, S.T.; Al Jawahery, M.; Tayeh, B.; Jokhio, G. Use of nano-silica in cement-based materials—A comprehensive review. J. Sustain. Cem. Based Mater. 2023, 12, 1286–1306. [Google Scholar] [CrossRef]
- Falaciński, P.; Machowska, A.; Szarek, Ł. The Impact of Chloride and Sulphate Aggressiveness on the Microstructure and Phase Composition of Fly Ash-Slag Mortar. Materials 2021, 14, 4430. [Google Scholar] [CrossRef]
- Leng, F.G.; Feng, N.Q.; Lu, X.Y. An experimental study on the properties of resistance to diffusion of chloride ions of fly ash and blast furnace slag concrete. Cem. Concr. Res. 2000, 30, 989–992. [Google Scholar] [CrossRef]
- Sun, Z.; Yang, S.; Ren, Z.; Wu, W.; Wang, Y.; Yang, T. Quantitative evaluation for the fracture resistance of alkali-activated slag/fly ash seawater sea sand mortar. Constr. Build. Mater. 2025, 470, 140620. [Google Scholar] [CrossRef]
SS | GBFS | DG | PC | FA | |
---|---|---|---|---|---|
CaO | 48.57 | 40.41 | 32.06 | 62.13 | 3.43 |
SiO2 | 17.89 | 29.87 | 1.65 | 21.75 | 51.13 |
Al2O3 | 1.86 | 16.70 | 0.79 | 5.21 | 29.67 |
MgO | 5.36 | 8.71 | 0.70 | 2.09 | 0.78 |
Fe2O3 | 16.88 | 0.28 | 0.20 | 2.91 | 5.07 |
K2O | 0.05 | 0.35 | 0.08 | 0.63 | 2.20 |
SO3 | 0.21 | 0 | 42.46 | 1.97 | 1.16 |
P2O5 | 0 | 0 | 0.01 | 0 | 0.33 |
LOI | 21.69 | 0.65 | 21.59 | 1.80 | 4.08 |
Item | Diameter (nm) | Surface-Volume Ratio (m2/g) | Purity (%) |
---|---|---|---|
Target | 7–40 | 150 | 99.8% |
SS | GBFS | DG | PC | FA | Nano-SiO2 | |
---|---|---|---|---|---|---|
A1 | 10 | 65 | 10 | 10 | 5 | 0 |
A2 | 10 | 65 | 10 | 10 | 5 | 0.5 |
A3 | 10 | 65 | 10 | 10 | 5 | 1 |
A4 | 10 | 65 | 10 | 10 | 5 | 2 |
B1 | 10 | 65 | 5 | 15 | 5 | 0 |
B2 | 10 | 65 | 5 | 15 | 5 | 0.5 |
B3 | 10 | 65 | 5 | 15 | 5 | 1 |
B4 | 10 | 65 | 5 | 15 | 5 | 2 |
C1 | 10 | 70 | 10 | 5 | 5 | 0 |
C2 | 10 | 70 | 10 | 5 | 5 | 0.5 |
C3 | 10 | 70 | 10 | 5 | 5 | 1 |
C4 | 10 | 70 | 10 | 5 | 5 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, Z.; Zhang, Y.; Zhou, Y.; Duan, J.; Yu, Z. Effect of Nano-SiO2 on the Hydration, Microstructure, and Mechanical Performances of Solid Waste-Based Cementitious Materials. Materials 2025, 18, 2636. https://doi.org/10.3390/ma18112636
Geng Z, Zhang Y, Zhou Y, Duan J, Yu Z. Effect of Nano-SiO2 on the Hydration, Microstructure, and Mechanical Performances of Solid Waste-Based Cementitious Materials. Materials. 2025; 18(11):2636. https://doi.org/10.3390/ma18112636
Chicago/Turabian StyleGeng, Zian, Yu Zhang, Yiwen Zhou, Jiapeng Duan, and Zhuqing Yu. 2025. "Effect of Nano-SiO2 on the Hydration, Microstructure, and Mechanical Performances of Solid Waste-Based Cementitious Materials" Materials 18, no. 11: 2636. https://doi.org/10.3390/ma18112636
APA StyleGeng, Z., Zhang, Y., Zhou, Y., Duan, J., & Yu, Z. (2025). Effect of Nano-SiO2 on the Hydration, Microstructure, and Mechanical Performances of Solid Waste-Based Cementitious Materials. Materials, 18(11), 2636. https://doi.org/10.3390/ma18112636