Magnetic 2D Transition-Metal-Based Nanomaterials in Biomedicine: Opportunities and Challenges in Cancer Therapy
Abstract
:1. Introduction
2. Transition Metal Dichalcogenides
3. Transition Metal Carbides/Nitrides
4. Transition Metal Oxides
5. Metal–Organic Frameworks
6. Future Directions
7. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Yang, N.; Yang, M.; Lu, C.; Xie, M. Development of a Magnetic MoS2 System Camouflaged by Lipid for Chemo/Phototherapy of Cancer. Colloids Surf. B Biointerfaces 2022, 213, 112389. [Google Scholar] [CrossRef] [PubMed]
- Jouybari, M.H.; Hosseini, S.; Mahboobnia, K.; Boloursaz, L.A.; Moradi, M.; Irani, M. Simultaneous Controlled Release of 5-FU, DOX and PTX from Chitosan/PLA/5-FU/g-C3N4-DOX/g-C3N4-PTX Triaxial Nanofibers for Breast Cancer Treatment in Vitro. Colloids Surf. B Biointerfaces 2019, 179, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Wu, S.; Wang, Y.; Liang, M.; Wang, M.; Hu, W.; Yu, G.; Mao, Z.; Huang, F.; Zhou, J. Recent Progress of Supramolecular Chemotherapy Based on Host–Guest Interactions. Adv. Mater. 2024, 36, 2304249. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Fan, R.; Zou, B.; Yan, J.; Shi, Q.; Guo, G. Roles of MXenes in Biomedical Applications: Recent Developments and Prospects. J. Nanobiotechnol. 2023, 21, 73. [Google Scholar] [CrossRef]
- Zhang, W.-J.; Li, S.; Vijayan, V.; Lee, J.S.; Park, S.S.; Cui, X.; Chung, I.; Lee, J.; Ahn, S.; Kim, J.R.; et al. ROS- and pH-Responsive Polydopamine Functionalized Ti3C2Tx MXene-Based Nanoparticles as Drug Delivery Nanocarriers with High Antibacterial Activity. Nanomaterials 2022, 12, 4392. [Google Scholar] [CrossRef]
- Mahmoud, A.M.; Deambrogi, C. Advancements in Nanotechnology for Targeted and Controlled Drug Delivery in Hematologic Malignancies: Shaping the Future of Targeted Therapeutics. Appl. Biosci. 2025, 4, 16. [Google Scholar] [CrossRef]
- Ge, X.; Mohapatra, J.; Silva, E.; He, G.; Gong, L.; Lyu, T.; Madhogaria, R.P.; Zhao, X.; Cheng, Y.; Al-Enizi, A.M.; et al. Metal–Organic Framework as a New Type of Magnetothermally-Triggered On-Demand Release Carrier. Small 2024, 20, 2306940. [Google Scholar] [CrossRef] [PubMed]
- Boppana, S.H.; Kutikuppala, L.V.S.; Sharma, S.; Madhavrao, C.; Rangari, G.; Misra, A.K.; Kandi, V.; Mishra, S.; Singh, P.K.; Rabaan, A.A.; et al. Current Approaches in Smart Nano-Inspired Drug Delivery: A Narrative Review. Health Sci. Rep. 2024, 7, e2065. [Google Scholar] [CrossRef]
- Akbar, M.U.; Badar, M.; Zaheer, M. Programmable Drug Release from a Dual-Stimuli Responsive Magnetic Metal–Organic Framework. ACS Omega 2022, 7, 32588–32598. [Google Scholar] [CrossRef]
- Sun, L.; Liu, H.; Ye, Y.; Lei, Y.; Islam, R.; Tan, S.; Tong, R.; Miao, Y.-B.; Cai, L. Smart Nanoparticles for Cancer Therapy. Signal Transduct. Target. Ther. 2023, 8, 418. [Google Scholar] [CrossRef]
- Dulińska-Litewka, J.; Łazarczyk, A.; Hałubiec, P.; Szafrański, O.; Karnas, K.; Karewicz, A. Superparamagnetic Iron Oxide Nanoparticles—Current and Prospective Medical Applications. Materials 2019, 12, 617. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Li, B.; Qiao, Y. Fe3O4 Nanoparticles in Targeted Drug/Gene Delivery Systems. Materials 2018, 11, 324. [Google Scholar] [CrossRef] [PubMed]
- Avasthi, A.; Caro, C.; Pozo-Torres, E.; Leal, M.P.; García-Martín, M.L. Magnetic Nanoparticles as MRI Contrast Agents. In Surface-Modified Nanobiomaterials for Electrochemical and Biomedicine Applications; Puente-Santiago, A.R., Rodríguez-Padrón, D., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 49–91. ISBN 978-3-030-55502-3. [Google Scholar]
- Kianfar, E. Magnetic Nanoparticles in Targeted Drug Delivery: A Review. J. Supercond. Nov. Magn. 2021, 34, 1709–1735. [Google Scholar] [CrossRef]
- Van de Walle, A.; Figuerola, A.; Espinosa, A.; Abou-Hassan, A.; Estrader, M.; Wilhelm, C. Emergence of Magnetic Nanoparticles in Photothermal and Ferroptotic Therapies. Mater. Horiz. 2023, 10, 4757–4775. [Google Scholar] [CrossRef]
- Cheng, H.-L.; Guo, H.-L.; Xie, A.-J.; Shen, Y.-H.; Zhu, M.-Z. 4-in-1 Fe3O4/g-C3N4@PPy-DOX Nanocomposites: Magnetic Targeting Guided Trimode Combinatorial Chemotherapy/PDT/PTT for Cancer. J. Inorg. Biochem. 2021, 215, 111329. [Google Scholar] [CrossRef]
- Nikolovski, D.; Jeremic, M.; Paunovic, J.; Vucevic, D.; Radosavljevic, T.; Radojević-Škodrić, S.; Rakocevic, R.; Nesic, D.; Pantic, I. Application of Iron Oxide Nanoparticles in Contemporary Experimental Physiology and Cell Biology Research. Rev. Adv. Mater. Sci. 2018, 53, 74–78. [Google Scholar] [CrossRef]
- Wang, X.; Han, X.; Li, C.; Chen, Z.; Huang, H.; Chen, J.; Wu, C.; Fan, T.; Li, T.; Huang, W.; et al. 2D Materials for Bone Therapy. Adv. Drug Deliv. Rev. 2021, 178, 113970. [Google Scholar] [CrossRef] [PubMed]
- Chang, F.; Davies, G.-L. From 0D to 2D: Synthesis and Bio-Application of Anisotropic Magnetic Iron Oxide Nanomaterials. Prog. Mater. Sci. 2024, 144, 101267. [Google Scholar] [CrossRef]
- Davis, R.; Urbanowski, R.A.; Gaharwar, A.K. 2D Layered Nanomaterials for Therapeutics Delivery. Curr. Opin. Biomed. Eng. 2021, 20, 100319. [Google Scholar] [CrossRef]
- Anju, S.; Mohanan, P.V. Biomedical Applications of Transition Metal Dichalcogenides (TMDCs). Synth. Met. 2021, 271, 116610. [Google Scholar] [CrossRef]
- Chen, L.; Dai, X.; Feng, W.; Chen, Y. Biomedical Applications of MXenes: From Nanomedicine to Biomaterials. Acc. Mater. Res. 2022, 3, 785–798. [Google Scholar] [CrossRef]
- Hefayathullah, M.; Singh, S.; Ganesan, V.; Maduraiveeran, G. Metal-Organic Frameworks for Biomedical Applications: A Review. Adv. Colloid Interface Sci. 2024, 331, 103210. [Google Scholar] [CrossRef] [PubMed]
- Esfanddarani, H.M.; Panigrahi, M. Phytosynthesis of Transition (Ni, Fe, Co, Cr, and Mn) Metals and Their Oxide Nanoparticles for Biomedical Applications: A Review. J. Mater. Sci. 2024, 59, 10677–10723. [Google Scholar] [CrossRef]
- Saeed, M.; Uddin, W.; Saleemi, A.S.; Hafeez, M.; Kamil, M.; Mir, I.A.; Sunila; Ullah, R.; Rehman, S.U.; Ling, Z. Optoelectronic Properties of MoS2-ReS2 and ReS2-MoS2 Heterostructures. Phys. B Condens. Matter 2020, 577, 411809. [Google Scholar] [CrossRef]
- Murali, A.; Lokhande, G.; Deo, K.A.; Brokesh, A.; Gaharwar, A.K. Emerging 2D Nanomaterials for Biomedical Applications. Mater. Today 2021, 50, 276–302. [Google Scholar] [CrossRef]
- Garg, T.; Dabra, N.; Hundal, J.S. Ferroelectric Ceramic-Polymer Nanocomposites for Applications in Dielectric Energy Storage Capacitors. In Encyclopedia of Materials: Electronics; Haseeb, A.S.M.A., Ed.; Academic Press: Oxford, UK, 2023; pp. 463–498. ISBN 978-0-12-819735-6. [Google Scholar]
- Tyagi, A.; Banerjee, S.; Cherusseri, J.; Kar, K.K. Characteristics of Transition Metal Oxides. In Handbook of Nanocomposite Supercapacitor Materials I Characteristics; Kar, K.K., Ed.; Springer Series in Materials Science; Springer International Publishing: Cham, Switzerland, 2020; pp. 91–123. ISBN 978-3-030-43009-2. [Google Scholar]
- Zhao, W.; Li, A.; Zhang, A.; Zheng, Y.; Liu, J. Recent Advances in Functional-Polymer-Decorated Transition-Metal Nanomaterials for Bioimaging and Cancer Therapy. ChemMedChem 2018, 13, 2134–2149. [Google Scholar] [CrossRef]
- Nikitin, A.A.; Ivanova, A.V.; Semkina, A.S.; Lazareva, P.A.; Abakumov, M.A. Magneto-Mechanical Approach in Biomedicine: Benefits, Challenges, and Future Perspectives. Int. J. Mol. Sci. 2022, 23, 11134. [Google Scholar] [CrossRef]
- Sobolev, K.; Omelyanchik, A.; Shilov, N.; Gorshenkov, M.; Andreev, N.; Comite, A.; Slimani, S.; Peddis, D.; Ovchenkov, Y.; Vasiliev, A.; et al. Iron Oxide Nanoparticle-Assisted Delamination of Ti3C2Tx MXenes: A New Approach to Produce Magnetic MXene-Based Composites. Nanomaterials 2024, 14, 97. [Google Scholar] [CrossRef]
- Hojjati-Najafabadi, A.; Mansoorianfar, M.; Liang, T.; Shahin, K.; Wen, Y.; Bahrami, A.; Karaman, C.; Zare, N.; Karimi-Maleh, H.; Vasseghian, Y. Magnetic-MXene-Based Nanocomposites for Water and Wastewater Treatment: A Review. J. Water Process Eng. 2022, 47, 102696. [Google Scholar] [CrossRef]
- Rethinasabapathy, M.; Bhaskaran, G.; Park, B.; Shin, J.-Y.; Kim, W.-S.; Ryu, J.; Huh, Y.S. Iron Oxide (Fe3O4)-Laden Titanium Carbide (Ti3C2Tx) MXene Stacks for the Efficient Sequestration of Cationic Dyes from Aqueous Solution. Chemosphere 2022, 286, 131679. [Google Scholar] [CrossRef]
- Xu, Z.; Long, Q.; Deng, Y.; Liao, L. In Situ Synthesis and Catalytic Application of Reduced Graphene Oxide Supported Cobalt Nanowires. Appl. Surf. Sci. 2018, 441, 955–964. [Google Scholar] [CrossRef]
- Liu, X.; Liang, T.; Zhang, R.; Ding, Q.; Wu, S.; Li, C.; Lin, Y.; Ye, Y.; Zhong, Z.; Zhou, M. Iron-Based Metal–Organic Frameworks in Drug Delivery and Biomedicine. ACS Appl. Mater. Interfaces 2021, 13, 9643–9655. [Google Scholar] [CrossRef]
- Ensoylu, M.; Deliormanlı, A.M.; Atmaca, H. Tungsten Disulfide Nanoparticle-Containing PCL and PLGA-Coated Bioactive Glass Composite Scaffolds for Bone Tissue Engineering Applications. J. Mater. Sci. 2021, 56, 18650–18667. [Google Scholar] [CrossRef]
- Chen, W.; Ouyang, J.; Liu, H.; Chen, M.; Zeng, K.; Sheng, J.; Liu, Z.; Han, Y.; Wang, L.; Li, J.; et al. Black Phosphorus Nanosheet-Based Drug Delivery System for Synergistic Photodynamic/Photothermal/Chemotherapy of Cancer. Adv. Mater. Deerfield Beach Fla 2017, 29, 1603864. [Google Scholar] [CrossRef]
- Roy, S.; Bermel, P. Electronic and Optical Properties of Ultra-Thin 2D Tungsten Disulfide for Photovoltaic Applications. Sol. Energy Mater. Sol. Cells 2018, 174, 370–379. [Google Scholar] [CrossRef]
- Ratwani, C.R.; Zhao, S.; Huang, Y.; Hadfield, M.; Kamali, A.R.; Abdelkader, A.M. Surface Modification of Transition Metal Dichalcogenide Nanosheets for Intrinsically Self-Healing Hydrogels with Enhanced Mechanical Properties. Small 2023, 19, 2207081. [Google Scholar] [CrossRef] [PubMed]
- Qin, B.; Ma, H.; Hossain, M.; Zhong, M.; Xia, Q.; Li, B.; Duan, X. Substrates in the Synthesis of Two-Dimensional Materials via Chemical Vapor Deposition. Chem. Mater. 2020, 32, 10321–10347. [Google Scholar] [CrossRef]
- Yang, A.; Blancon, J.-C.; Jiang, W.; Zhang, H.; Wong, J.; Yan, E.; Lin, Y.-R.; Crochet, J.; Kanatzidis, M.G.; Jariwala, D.; et al. Giant Enhancement of Photoluminescence Emission in WS2-Two-Dimensional Perovskite Heterostructures. Nano Lett. 2019, 19, 4852–4860. [Google Scholar] [CrossRef]
- Xu, G.; Li, J.; Zhang, S.; Cai, J.; Deng, X.; Wang, Y.; Pei, P. Two-Dimensional Nano-Biomaterials in Regulating the Tumor Microenvironment for Immunotherapy. Nano TransMed 2024, 3, 100045. [Google Scholar] [CrossRef]
- Kim, J.; Cho, H.; Lim, D.-K.; Joo, M.K.; Kim, K. Perspectives for Improving the Tumor Targeting of Nanomedicine via the EPR Effect in Clinical Tumors. Int. J. Mol. Sci. 2023, 24, 10082. [Google Scholar] [CrossRef]
- Er, E.; Erk, N. An Electrochemical Nanosensor Using a Screen-Printed Electrode Modified with 1T-MoS2/Nafion for Determination of Renin Inhibitor Aliskiren. J. Electrochem. Soc. 2021, 168, 017509. [Google Scholar] [CrossRef]
- Liu, W.; Lin, Z.; Tian, S.; Huang, Y.; Xue, H.; Zhu, K.; Gu, C.; Yang, Y.; Li, J. Plasmonic Effect on the Magneto-Optical Property of Monolayer WS2 Studied by Polarized-Raman Spectroscopy. Appl. Sci. 2021, 11, 1599. [Google Scholar] [CrossRef]
- Norden, T.; Zhao, C.; Zhang, P.; Sabirianov, R.; Petrou, A.; Zeng, H. Giant Valley Splitting in Monolayer WS2 by Magnetic Proximity Effect. Nat. Commun. 2019, 10, 4163. [Google Scholar] [CrossRef]
- Ge, Y.; Yang, Y.; Zhu, Y.; Yuan, M.; Sun, L.; Jiang, D.; Liu, X.; Zhang, Q.; Zhang, J.; Wang, Y. 2D TiS2-Nanosheet-Coated Concave Gold Arrays with Triple-Coupled Resonances as Sensitive SERS Substrates. Small 2024, 20, 2302410. [Google Scholar] [CrossRef]
- Li, B.L.; Li, R.; Zou, H.L.; Ariga, K.; Li, N.B.; Leong, D.T. Engineered Functionalized 2D Nanoarchitectures for Stimuli-Responsive Drug Delivery. Mater. Horiz. 2020, 7, 455–469. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J. Hybrid Nanomaterials of WS 2 or MoS 2 Nanosheets with Liposomes: Biointerfaces and Multiplexed Drug Delivery. Nanoscale 2017, 9, 13187–13194. [Google Scholar] [CrossRef]
- Abareshi, A.; Salehi, N. The Effect of Fe3O4 Nanoparticles on Structural, Optical, and Thermal Properties MoS2 Nanoflakes. J. Mater. Sci. Mater. Electron. 2022, 33, 25153–25162. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, X.; Hu, T.; Xue, B.; Chen, H.; Ma, L.; Liang, R.; Tan, C. Molybdenum-Based Nanomaterials for Photothermal Cancer Therapy. Adv. NanoBiomed Res. 2022, 2, 2200065. [Google Scholar] [CrossRef]
- Wang, Z.-Q.; Pan, Y.-W.; Wu, J.; Qi, H.-B.; Zhu, S.; Gu, Z.-J. A Bibliometric Analysis of Molybdenum-Based Nanomaterials in the Biomedical Field. Tungsten 2024, 6, 17–47. [Google Scholar] [CrossRef]
- Liu, T.; Shi, S.; Liang, C.; Shen, S.; Cheng, L.; Wang, C.; Song, X.; Goel, S.; Barnhart, T.E.; Cai, W.; et al. Iron Oxide Decorated MoS2 Nanosheets with Double PEGylation for Chelator-Free Radiolabeling and Multimodal Imaging Guided Photothermal Therapy. ACS Nano 2015, 9, 950–960. [Google Scholar] [CrossRef]
- Shariati, B.; Goodarzi, M.T.; Jalali, A.; Salehi, N.; Mozaffari, M. Gold Nanorods Incorporated into a MoS2/Fe3O4 Nanocomposite for Photothermal Therapy and Drug Delivery. New J. Chem. 2023, 47, 20100–20108. [Google Scholar] [CrossRef]
- Li, J.; Qi, X.; Ye, P.; Yang, M.; Xie, M. Construction of WS2/Au-Lipid Drug Delivery System for Multiple Combined Therapy of Tumor. J. Drug Deliv. Sci. Technol. 2022, 76, 103747. [Google Scholar] [CrossRef]
- Hsiao, P.F.; Anbazhagan, R.; Tsai, H.-C.; Krishnamoorthi, R.; Lin, S.-J.; Lin, S.-Y.; Lee, K.-Y.; Kao, C.-Y.; Chen, R.-S.; Lai, J.-Y. Fabrication of Electroactive Polypyrrole-Tungsten Disulfide Nanocomposite for Enhanced in Vivo Drug Release in Mice Skin. Mater. Sci. Eng. C 2020, 107, 110330. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Gong, H.; Liu, T.; Sun, X.; Cheng, L.; Liu, Z. Two-Dimensional Magnetic WS2@Fe3O4 Nanocomposite with Mesoporous Silica Coating for Drug Delivery and Imaging-Guided Therapy of Cancer. Biomaterials 2015, 60, 62–71. [Google Scholar] [CrossRef]
- Xie, M.; Ye, P.; Zhao, R.; Yang, M. Magnetic WS2 Nanosheets Functionalized by Biomimetic Lipids with Enhanced Dispersibility for Combined Photothermal and Chemotherapy Therapy. J. Drug Deliv. Sci. Technol. 2023, 86, 104744. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, F.; Lin, H.; Qu, F. Biodegradable Hollow MoSe2/Fe3O4 Nanospheres as the Photodynamic Therapy-Enhanced Agent for Multimode CT/MR/IR Imaging and Synergistic Antitumor Therapy. ACS Appl. Mater. Interfaces 2019, 11, 43964–43975. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, S.; Lin, H.; Zhao, M.; Yao, H.; Zhang, L.; Peng, W.; Chen, Y. Theranostic 2D Ultrathin MnO2 Nanosheets with Fast Responsibility to Endogenous Tumor Microenvironment and Exogenous NIR Irradiation. Biomaterials 2018, 155, 54–63. [Google Scholar] [CrossRef]
- Lei, Z.; Zhu, W.; Xu, S.; Ding, J.; Wan, J.; Wu, P. Hydrophilic MoSe2 Nanosheets as Effective Photothermal Therapy Agents and Their Application in Smart Devices. ACS Appl. Mater. Interfaces 2016, 8, 20900–20908. [Google Scholar] [CrossRef]
- Ha, C.H.; Hur, W.; Lee, S.J.; Lee, H.B.; Kim, D.H.; Seong, G.H. Targeted Photothermal Cancer Therapy Using Surface-Modified Transition Metal Dichalcogenides. J. Photochem. Photobiol. Chem. 2025, 459, 116062. [Google Scholar] [CrossRef]
- Wang, G.; Chen, X.; Li, B.; Wu, L. Near-Infrared Photothermal Conversion of Polyoxometalate-Modified Gold Nanorods for Plasmon-Enhanced Catalysis. Inorg. Chem. Front. 2023, 10, 1852–1862. [Google Scholar] [CrossRef]
- Kumar, P.P.P.; Lim, D.-K. Photothermal Effect of Gold Nanoparticles as a Nanomedicine for Diagnosis and Therapeutics. Pharmaceutics 2023, 15, 2349. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, M.H.; Hanoon, F.H. Bilayer MSe2 and MS2 (M = Mo, W) as a Novel Drug Delivery System for β-Lapachone Anticancer Drug: Quantum Chemical Study. Comput. Theor. Chem. 2020, 1190, 112999. [Google Scholar] [CrossRef]
- Jin, W.; Yang, T.; Jia, J.; Jia, J.; Zhou, X. Enhanced Sensitivity of A549 Cells to Doxorubicin with WS2 and WSe2 Nanosheets via the Induction of Autophagy. Int. J. Mol. Sci. 2024, 25, 1164. [Google Scholar] [CrossRef]
- Bahri, M.; Yu, D.; Zhang, C.Y.; Chen, Z.; Yang, C.; Douadji, L.; Qin, P. Unleashing the Potential of Tungsten Disulfide: Current Trends in Biosensing and Nanomedicine Applications. Heliyon 2024, 10, e24427. [Google Scholar] [CrossRef]
- Mei, X.; Hu, T.; Wang, Y.; Weng, X.; Liang, R.; Wei, M. Recent Advancements in Two-Dimensional Nanomaterials for Drug Delivery. WIREs Nanomed. Nanobiotechnol. 2020, 12, e1596. [Google Scholar] [CrossRef]
- Zhou, A.; Liu, Y.; Li, S.; Wang, X.; Ying, G.; Xia, Q.; Zhang, P. From Structural Ceramics to 2D Materials with Multi-Applications: A Review on the Development from MAX Phases to MXenes. J. Adv. Ceram. 2021, 10, 1194–1242. [Google Scholar] [CrossRef]
- Mohajer, F.; Ziarani, G.M.; Badiei, A.; Iravani, S.; Varma, R.S. Advanced MXene-Based Micro- and Nanosystems for Targeted Drug Delivery in Cancer Therapy. Micromachines 2022, 13, 1773. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Dong, C.; Feng, W.; Wang, Y.; Huang, B.; Chen, Y. Biomedical Engineering of Two-Dimensional MXenes. Adv. Drug Deliv. Rev. 2022, 184, 114178. [Google Scholar] [CrossRef]
- Huang, H.; Feng, W.; Chen, Y. Two-Dimensional Biomaterials: Material Science, Biological Effect and Biomedical Engineering Applications. Chem. Soc. Rev. 2021, 50, 11381–11485. [Google Scholar] [CrossRef]
- Hong, W.; Wyatt, B.C.; Nemani, S.K.; Anasori, B. Double Transition-Metal MXenes: Atomistic Design of Two-Dimensional Carbides and Nitrides. MRS Bull. 2020, 45, 850–861. [Google Scholar] [CrossRef]
- Kong, F.; He, X.; Liu, Q.; Qi, X.; Sun, D.; Zheng, Y.; Wang, R.; Bai, Y. Further Surface Modification by Carbon Coating for in-Situ Growth of Fe3O4 Nanoparticles on MXene Ti3C2 Multilayers for Advanced Li-Ion Storage. Electrochim. Acta 2018, 289, 228–237. [Google Scholar] [CrossRef]
- Iravani, S.; Varma, R.S. MXenes for Cancer Therapy and Diagnosis: Recent Advances and Current Challenges. ACS Biomater. Sci. Eng. 2021, 7, 1900–1913. [Google Scholar] [CrossRef] [PubMed]
- Iravani, S.; Varma, R.S. MXenes in Cancer Nanotheranostics. Nanomaterials 2022, 12, 3360. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-Z.; El-Demellawi, J.K.; Jiang, Q.; Ge, G.; Liang, H.; Lee, K.; Dong, X.; Alshareef, H.N. MXene Hydrogels: Fundamentals and Applications. Chem. Soc. Rev. 2020, 49, 7229–7251. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, Z.; Sa, B.; Miao, N.; Zhou, J.; Sun, Z. Computational Design of Double Transition Metal MXenes with Intrinsic Magnetic Properties. Nanoscale Horiz. 2022, 7, 276–287. [Google Scholar] [CrossRef]
- Li, Y.; Lai, M.; Hu, M.; Zhao, S.; Liu, B.; Kai, J.-J. Insights into Electronic and Magnetic Properties of MXenes: From a Fundamental Perspective. Sustain. Mater. Technol. 2022, 34, e00516. [Google Scholar] [CrossRef]
- Khazaei, M.; Arai, M.; Sasaki, T.; Chung, C.-Y.; Venkataramanan, N.S.; Estili, M.; Sakka, Y.; Kawazoe, Y. Novel Electronic and Magnetic Properties of Two-Dimensional Transition Metal Carbides and Nitrides. Adv. Funct. Mater. 2013, 23, 2185–2192. [Google Scholar] [CrossRef]
- Gao, Q.; Zhang, H. Magnetic I-MXenes: A New Class of Multifunctional Two-Dimensional Materials. Nanoscale 2020, 12, 5995–6001. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, H.; Han, J.; Chen, Y.; Lin, H.; Yang, T. Surface Nanopore Engineering of 2D MXenes for Targeted and Synergistic Multitherapies of Hepatocellular Carcinoma. Adv. Mater. 2018, 30, 1706981. [Google Scholar] [CrossRef]
- Dutta, T.; Alam, P.; Mishra, S.K. MXenes and MXene-Based Composites for Biomedical Applications. J. Mater. Chem. B 2025, 13, 4279–4312. [Google Scholar] [CrossRef]
- Liu, G.; Zou, J.; Tang, Q.; Yang, X.; Zhang, Y.; Zhang, Q.; Huang, W.; Chen, P.; Shao, J.; Dong, X. Surface Modified Ti3C2 MXene Nanosheets for Tumor Targeting Photothermal/Photodynamic/Chemo Synergistic Therapy. ACS Appl. Mater. Interfaces 2017, 9, 40077–40086. [Google Scholar] [CrossRef] [PubMed]
- Ziranu, P.; Pretta, A.; Aimola, V.; Cau, F.; Mariani, S.; D’Agata, A.P.; Codipietro, C.; Rizzo, D.; Dell’Utri, V.; Sanna, G.; et al. CD44: A New Prognostic Marker in Colorectal Cancer? Cancers 2024, 16, 1569. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Huang, J.; Lin, H.; Wang, Z.; Li, P.; Chen, Y. 2D Ultrathin MXene-Based Drug-Delivery Nanoplatform for Synergistic Photothermal Ablation and Chemotherapy of Cancer. Adv. Healthc. Mater. 2018, 7, 1701394. [Google Scholar] [CrossRef] [PubMed]
- Darroudi, M.; Elnaz Nazari, S.; Karimzadeh, M.; Asgharzadeh, F.; Khalili-Tanha, N.; Asghari, S.Z.; Ranjbari, S.; Babaei, F.; Rezayi, M.; Khazaei, M. Two-Dimensional-Ti3C2 Magnetic Nanocomposite for Targeted Cancer Chemotherapy. Front. Bioeng. Biotechnol. 2023, 11, 1097631. [Google Scholar] [CrossRef]
- Alsafari, I.A.; Munir, S.; Zulfiqar, S.; Saif, M.S.; Warsi, M.F.; Shahid, M. Synthesis, Characterization, Photocatalytic and Antibacterial Properties of Copper Ferrite/MXene (CuFe2O4/Ti3C2) Nanohybrids. Ceram. Int. 2021, 47, 28874–28883. [Google Scholar] [CrossRef]
- Liu, Y.; Han, Q.; Yang, W.; Gan, X.; Yang, Y.; Xie, K.; Xie, L.; Deng, Y. Two-Dimensional MXene/Cobalt Nanowire Heterojunction for Controlled Drug Delivery and Chemo-Photothermal Therapy. Mater. Sci. Eng. C 2020, 116, 111212. [Google Scholar] [CrossRef]
- Rajan, A.; Chandunika, R.K.; Raju, F.; Joshi, R.; Sahu, N.K.; Ningthoujam, R.S. Synthesis and Processing of Magnetic-Based Nanomaterials for Biomedical Applications. In Handbook on Synthesis Strategies for Advanced Materials: Volume-II: Processing and Functionalization of Materials; Tyagi, A.K., Ningthoujam, R.S., Eds.; Springer Nature: Singapore, 2022; pp. 659–714. ISBN 978-981-16-1803-1. [Google Scholar]
- Liu, Z.; Zhao, M.; Lin, H.; Dai, C.; Ren, C.; Zhang, S.; Peng, W.; Chen, Y. 2D Magnetic Titanium Carbide MXene for Cancer Theranostics. J. Mater. Chem. B 2018, 6, 3541–3548. [Google Scholar] [CrossRef]
- Lee, I.-C.; Li, Y.-C.E.; Thomas, J.L.; Lee, M.-H.; Lin, H.-Y. Recent Advances Using MXenes in Biomedical Applications. Mater. Horiz. 2024, 11, 876–902. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, C.; Deng, D.; Gu, Y.; Wang, H.; Zhong, Q. Multiple Stimuli-Responsive MXene-Based Hydrogel as Intelligent Drug Delivery Carriers for Deep Chronic Wound Healing. Small 2022, 18, 2104368. [Google Scholar] [CrossRef]
- Guan, M.; Wang, Q.; Zhang, X.; Bao, J.; Gong, X.; Liu, Y. Two-Dimensional Transition Metal Oxide and Hydroxide-Based Hierarchical Architectures for Advanced Supercapacitor Materials. Front. Chem. 2020, 8, 390. [Google Scholar] [CrossRef]
- Stemmer, S.; Millis, A.J. Quantum Confinement in Oxide Quantum Wells. MRS Bull. 2013, 38, 1032–1039. [Google Scholar] [CrossRef]
- Zhang, X.; Rowberg, A.J.E.; Govindarajan, N.; He, X. Hydrogen Bond Network at the H2O/Solid Interface. In Encyclopedia of Solid-Liquid Interfaces, 1st ed.; Wandelt, K., Bussetti, G., Eds.; Elsevier: Oxford, UK, 2024; pp. 92–113. ISBN 978-0-323-85670-6. [Google Scholar]
- Yin, W.; Bao, T.; Zhang, X.; Gao, Q.; Yu, J.; Dong, X.; Yan, L.; Gu, Z.; Zhao, Y. Biodegradable MoOx Nanoparticles with Efficient Near-Infrared Photothermal and Photodynamic Synergetic Cancer Therapy at the Second Biological Window. Nanoscale 2018, 10, 1517–1531. [Google Scholar] [CrossRef]
- Zhou, M.; Liu, Y.; Su, Y.; Su, Q. Plasmonic Oxygen Defects in MO3− (M = W or Mo) Nanomaterials: Synthesis, Modifications, and Biomedical Applications. Adv. Healthc. Mater. 2021, 10, 2101331. [Google Scholar] [CrossRef]
- Xing, Y.; Cai, Y.; Cheng, J.; Xu, X. Applications of Molybdenum Oxide Nanomaterials in the Synergistic Diagnosis and Treatment of Tumor. Appl. Nanosci. 2020, 10, 2069–2083. [Google Scholar] [CrossRef]
- Wahab, R.; Siddiqui, M.A.; Ahmad, J.; Saquib, Q.; Al-Khedhairy, A.A. A Comparative Cytological Study of Silver and Molybdenum Oxide Nanostructures against Breast Cancer Cells. J. King Saud Univ. Sci. 2023, 35, 102843. [Google Scholar] [CrossRef]
- Pandey, S.; Sharma, K.H.; Sharma, A.K.; Nerthigan, Y.; Hang, D.-R.; Wu, H.-F. Comparative Photothermal Performance among Various Sub-Stoichiometric 2D Oxygen-Deficient Molybdenum Oxide Nanoflakes and In Vivo Toxicity. Chem. Eur. J. 2018, 24, 7417–7427. [Google Scholar] [CrossRef] [PubMed]
- Qiu, N.; Yang, X.; Zhang, Y.; Zhang, J.; Ji, J.; Zhang, Y.; Kong, X.; Xi, Y.; Liu, D.; Ye, L.; et al. A Molybdenum Oxide-Based Degradable Nanosheet for Combined Chemo-Photothermal Therapy to Improve Tumor Immunosuppression and Suppress Distant Tumors and Lung Metastases. J. Nanobiotechnol. 2021, 19, 428. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Kong, B.; Yu, C.; Shi, X.; Wang, M.; Liu, W.; Sun, Y.; Zhang, Y.; Yang, H.; Yang, S. Tungsten Oxide Nanorods: An Efficient Nanoplatform for Tumor CT Imaging and Photothermal Therapy. Sci. Rep. 2014, 4, 3653. [Google Scholar] [CrossRef]
- Zhao, P.; Ren, S.; Liu, Y.; Huang, W.; Zhang, C.; He, J. PL–W18O49–TPZ Nanoparticles for Simultaneous Hypoxia-Activated Chemotherapy and Photothermal Therapy. ACS Appl. Mater. Interfaces 2018, 10, 3405–3413. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, S.; Ouyang, J.; Deng, L.; Liu, Y.-N. Oxygen-Deficient Tungsten Oxide Perovskite Nanosheets-Based Photonic Nanomedicine for Cancer Theranostics. Chem. Eng. J. 2022, 431, 133273. [Google Scholar] [CrossRef]
- Zhao, Z.; Yang, S.; Yang, P.; Lin, J.; Fan, J.; Zhang, B. Study of Oxygen-Deficient W18O49-Based Drug Delivery System Readily Absorbed through Cellular Internalization Pathways in Tumor-Targeted Chemo-/Photothermal Therapy. Biomater. Adv. 2022, 136, 212772. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Chen, W.; Wang, J.; Cheng, L.; Wang, J.; Zhang, H.; Song, L.; Hu, Y.; Ma, X. Oxygen-Deficient Titanium Dioxide-Loaded Black Phosphorus Nanosheets for Synergistic Photothermal and Sonodynamic Cancer Therapy. Biomater. Adv. 2022, 136, 212794. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M.G.M.; Martín, M.J.; Otarola, J.; Vakarelska, E.; Simeonov, V.; Lassalle, V.; Nedyalkova, M. Biomedical Applications of Iron Oxide Nanoparticles: Current Insights Progress and Perspectives. Pharmaceutics 2022, 14, 204. [Google Scholar] [CrossRef]
- Ansari, K.; Ahmad, R.; Tanweer, M.S.; Azam, I. Magnetic Iron Oxide Nanoparticles as a Tool for the Advancement of Biomedical and Environmental Application: A Review. Biomed. Mater. Devices 2024, 2, 139–157. [Google Scholar] [CrossRef]
- Edvinsson, T. Optical Quantum Confinement and Photocatalytic Properties in Two-, One- and Zero-Dimensional Nanostructures. R. Soc. Open Sci. 2018, 5, 180387. [Google Scholar] [CrossRef]
- Kasbe, P.S.; Yang, M.; Bosch, J.; Bu, J.; DellaCorte, C.; Xu, W. Two-Dimensional Iron Oxide/Graphene-Based Nanocomposites as High-Performance Solid Lubricants. 2D Mater. 2024, 11, 045005. [Google Scholar] [CrossRef]
- Amrillah, T. All Shapes and Phases of Nanometer-Sized Iron Oxides Made from Natural Sources and Waste Material via Green Synthesis Approach: A Review. Cryst. Growth Des. 2022, 22, 4640–4660. [Google Scholar] [CrossRef]
- Zanganeh, S.; Hutter, G.; Spitler, R.; Lenkov, O.; Mahmoudi, M.; Shaw, A.; Pajarinen, J.S.; Nejadnik, H.; Goodman, S.; Moseley, M.; et al. Iron Oxide Nanoparticles Inhibit Tumour Growth by Inducing Pro-Inflammatory Macrophage Polarization in Tumour Tissues. Nat. Nanotechnol. 2016, 11, 986–994. [Google Scholar] [CrossRef]
- Dong, J.; Liu, L.; Tan, C.; Xu, Q.; Zhang, J.; Qiao, Z.; Chu, D.; Liu, Y.; Zhang, Q.; Jiang, J.; et al. Free-Standing Homochiral 2D Monolayers by Exfoliation of Molecular Crystals. Nature 2022, 602, 606–611. [Google Scholar] [CrossRef]
- Xia, H.-Y.; Li, B.-Y.; Zhao, Y.; Han, Y.-H.; Wang, S.-B.; Chen, A.-Z.; Kankala, R.K. Nanoarchitectured Manganese Dioxide (MnO2)-Based Assemblies for Biomedicine. Coord. Chem. Rev. 2022, 464, 214540. [Google Scholar] [CrossRef]
- Wang, L.; Guan, S.; Weng, Y.; Xu, S.-M.; Lu, H.; Meng, X.; Zhou, S. Highly Efficient Vacancy-Driven Photothermal Therapy Mediated by Ultrathin MnO2 Nanosheets. ACS Appl. Mater. Interfaces 2019, 11, 6267–6275. [Google Scholar] [CrossRef]
- Fan, H.; Yan, G.; Zhao, Z.; Hu, X.; Zhang, W.; Liu, H.; Fu, X.; Fu, T.; Zhang, X.-B.; Tan, W. A Smart Photosensitizer–Manganese Dioxide Nanosystem for Enhanced Photodynamic Therapy by Reducing Glutathione Levels in Cancer Cells. Angew. Chem. Int. Ed. 2016, 55, 5477–5482. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Hou, P.; Dong, L.; Cai, L.; Chen, Z.; Zhao, M.; Li, J. Manganese Dioxide Nanosheets: From Preparation to Biomedical Applications. Int. J. Nanomed. 2019, 14, 4781–4800. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wang, Y.; Liu, Y.; Wang, H.; Yang, C.; Liu, X.; Wang, F. Integration of Manganese Dioxide-Based Nanomaterials for Biomedical Applications. Adv. NanoBiomed Res. 2023, 3, 2200093. [Google Scholar] [CrossRef]
- Huang, C.-C.; Khu, N.-H.; Yeh, C.-S. The Characteristics of Sub 10°Nm Manganese Oxide T1 Contrast Agents of Different Nanostructured Morphologies. Biomaterials 2010, 31, 4073–4078. [Google Scholar] [CrossRef]
- Hu, D.; Li, D.; Liu, X.; Zhou, Z.; Tang, J.; Shen, Y. Vanadium-Based Nanomaterials for Cancer Diagnosis and Treatment. Biomed. Mater. 2020, 16, 014101. [Google Scholar] [CrossRef]
- Zhang, Z.; Guo, Z.; Ruan, Z.; Ge, M.; Cao, S.; Yuan, J.; Xu, Z.; Fan, L.; Zong, M.; Lin, H.; et al. Two-Dimensional Ultrathin Vanadium Oxide Nanosheets as Catalytic Bactericide. Sci. China Mater. 2024, 67, 2965–2976. [Google Scholar] [CrossRef]
- Zhao, R.; Zhu, Y.; Feng, L.; Liu, B.; Hu, Y.; Zhu, H.; Zhao, Z.; Ding, H.; Gai, S.; Yang, P. Architecture of Vanadium-Based MXene Dysregulating Tumor Redox Homeostasis for Amplified Nanozyme Catalytic/Photothermal Therapy. Adv. Mater. 2024, 36, 2307115. [Google Scholar] [CrossRef]
- Osterrieth, J.W.M.; Fairen-Jimenez, D. Metal–Organic Framework Composites for Theragnostics and Drug Delivery Applications. Biotechnol. J. 2021, 16, 2000005. [Google Scholar] [CrossRef] [PubMed]
- Lawson, H.D.; Walton, S.P.; Chan, C. Metal–Organic Frameworks for Drug Delivery: A Design Perspective. ACS Appl. Mater. Interfaces 2021, 13, 7004–7020. [Google Scholar] [CrossRef]
- Raptopoulou, C.P. Metal-Organic Frameworks: Synthetic Methods and Potential Applications. Materials 2021, 14, 310. [Google Scholar] [CrossRef]
- Mittal, A.; Roy, I.; Gandhi, S.; Mittal, A.; Roy, I.; Gandhi, S. Drug Delivery Applications of Metal-Organic Frameworks (MOFs). In Drug Carriers; IntechOpen: London, UK, 2022; ISBN 978-1-80355-832-5. [Google Scholar]
- Saeb, M.R.; Rabiee, N.; Mozafari, M.; Mostafavi, E. Metal-Organic Frameworks (MOFs)-Based Nanomaterials for Drug Delivery. Materials 2021, 14, 3652. [Google Scholar] [CrossRef]
- Pham, H.; Ramos, K.; Sua, A.; Acuna, J.; Slowinska, K.; Nguyen, T.; Bui, A.; Weber, M.D.R.; Tian, F. Tuning Crystal Structures of Iron-Based Metal–Organic Frameworks for Drug Delivery Applications. ACS Omega 2020, 5, 3418–3427. [Google Scholar] [CrossRef] [PubMed]
- Lei, B.; Wang, M.; Jiang, Z.; Qi, W.; Su, R.; He, Z. Constructing Redox-Responsive Metal–Organic Framework Nanocarriers for Anticancer Drug Delivery. ACS Appl. Mater. Interfaces 2018, 10, 16698–16706. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Tang, Q.; Jiang, Y.; Zhang, M.; Wang, M.; Mao, L. Nanoscale ATP-Responsive Zeolitic Imidazole Framework-90 as a General Platform for Cytosolic Protein Delivery and Genome Editing. J. Am. Chem. Soc. 2019, 141, 3782–3786. [Google Scholar] [CrossRef]
- Chen, W.-H.; Karmi, O.; Willner, B.; Nechushtai, R.; Willner, I. Thrombin Aptamer-Modified Metal–Organic Framework Nanoparticles: Functional Nanostructures for Sensing Thrombin and the Triggered Controlled Release of Anti-Blood Clotting Drugs. Sensors 2019, 19, 5260. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-H.; Luo, G.-F.; Sohn, Y.S.; Nechushtai, R.; Willner, I. Enzyme-Driven Release of Loads from Nucleic Acid–Capped Metal–Organic Framework Nanoparticles. Adv. Funct. Mater. 2019, 29, 1805341. [Google Scholar] [CrossRef]
- Liu, H.; Cai, G.; Yuan, S.; Zhou, X.; Gui, R.; Huang, R. Platelet Membrane-Camouflaged Silver Metal–Organic Framework Biomimetic Nanoparticles for the Treatment of Triple-Negative Breast Cancer. Mol. Pharm. 2024, 21, 3577–3590. [Google Scholar] [CrossRef]
- Cui, R.; Zhao, P.; Yan, Y.; Bao, G.; Damirin, A.; Liu, Z. Outstanding Drug-Loading/Release Capacity of Hollow Fe-Metal–Organic Framework-Based Microcapsules: A Potential Multifunctional Drug-Delivery Platform. Inorg. Chem. 2021, 60, 1664–1671. [Google Scholar] [CrossRef]
- Wen, T.; Quan, G.; Niu, B.; Zhou, Y.; Zhao, Y.; Lu, C.; Pan, X.; Wu, C. Versatile Nanoscale Metal–Organic Frameworks (nMOFs): An Emerging 3D Nanoplatform for Drug Delivery and Therapeutic Applications. Small 2021, 17, 2005064. [Google Scholar] [CrossRef]
- Ke, F.; Yuan, Y.-P.; Qiu, L.-G.; Shen, Y.-H.; Xie, A.-J.; Zhu, J.-F.; Tian, X.-Y.; Zhang, L.-D. Facile Fabrication of Magnetic Metal–Organic Framework Nanocomposites for Potential Targeted Drug Delivery. J. Mater. Chem. 2011, 21, 3843–3848. [Google Scholar] [CrossRef]
- Nejad, A.K.H.; Panahi, H.A.; Keshmirizadeh, E.; Fard, N.T. Fabrication of a pH-Responsive Drug Delivery System Based on the Super-Paramagnetic Metal-Organic Framework for Targeted Delivery of Oxaliplatin. Int. J. Polym. Mater. Polym. Biomater. 2023, 72, 1083–1092. [Google Scholar] [CrossRef]
- Abu-Dief, A.M.; Alrashedee, F.M.M.; Emran, K.M.; Al-Abdulkarim, H.A. Development of Some Magnetic Metal–Organic Framework Nano Composites for Pharmaceutical Applications. Inorg. Chem. Commun. 2022, 138, 109251. [Google Scholar] [CrossRef]
- Dhawan, U.; Tseng, C.-L.; Wu, P.-H.; Liao, M.-Y.; Wang, H.-Y.; Wu, K.C.-W.; Chung, R.-J. Theranostic Doxorubicin Encapsulated FeAu Alloy@metal-Organic Framework Nanostructures Enable Magnetic Hyperthermia and Medical Imaging in Oral Carcinoma. Nanomed. Nanotechnol. Biol. Med. 2023, 48, 102652. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Ye, J.; Yang, X.; Liu, S.; Zhang, Z.; Wang, J.; Zhang, K.; Xu, J.; Fu, Y.; Yang, P. Fe/Mn Bimetal-Doped ZIF-8-Coated Luminescent Nanoparticles with Up/Downconversion Dual-Mode Emission for Tumor Self-Enhanced NIR-II Imaging and Catalytic Therapy. ACS Nano 2022, 16, 18143–18156. [Google Scholar] [CrossRef]
- Parsaei, M.; Akhbari, K. Magnetic UiO-66-NH2 Core–Shell Nanohybrid as a Promising Carrier for Quercetin Targeted Delivery toward Human Breast Cancer Cells. ACS Omega 2023, 8, 41321–41338. [Google Scholar] [CrossRef] [PubMed]
- Attia, M.; Glickman, R.D.; Romero, G.; Chen, B.; Brenner, A.J.; Ye, J.Y. Optimized Metal-Organic-Framework Based Magnetic Nanocomposites for Efficient Drug Delivery and Controlled Release. J. Drug Deliv. Sci. Technol. 2022, 76, 103770. [Google Scholar] [CrossRef]
- Chakraborty, G.; Park, I.-H.; Medishetty, R.; Vittal, J.J. Two-Dimensional Metal-Organic Framework Materials: Synthesis, Structures, Properties and Applications. Chem. Rev. 2021, 121, 3751–3891. [Google Scholar] [CrossRef]
- Li, K.; Ji, Q.; Liang, H.; Hua, Z.; Hang, X.; Zeng, L.; Han, H. Biomedical Application of 2D Nanomaterials in Neuroscience. J. Nanobiotechnol. 2023, 21, 181. [Google Scholar] [CrossRef]
- Kumar, S.A.; Balasubramaniam, B.; Bhunia, S.; Jaiswal, M.K.; Verma, K.; Prateek; Khademhosseini, A.; Gupta, R.K.; Gaharwar, A.K. Two-Dimensional Metal Organic Frameworks for Biomedical Applications. WIREs Nanomed. Nanobiotechnol. 2021, 13, e1674. [Google Scholar] [CrossRef]
- Li, Y.; Gao, Z.; Chen, F.; You, C.; Wu, H.; Sun, K.; An, P.; Cheng, K.; Sun, C.; Zhu, X.; et al. Decoration of Cisplatin on 2D Metal–Organic Frameworks for Enhanced Anticancer Effects through Highly Increased Reactive Oxygen Species Generation. ACS Appl. Mater. Interfaces 2018, 10, 30930–30935. [Google Scholar] [CrossRef]
- Feng, J.; Yu, W.; Xu, Z.; Hu, J.; Liu, J.; Wang, F. Correction to “Multifunctional siRNA-Laden Hybrid Nanoplatform for Noninvasive PA/IR Dual-Modal Imaging-Guided Enhanced Photogenetherapy”. ACS Appl. Mater. Interfaces 2024, 16, 63086–63087. [Google Scholar] [CrossRef]
- He, C.; Liu, D.; Lin, W. Nanomedicine Applications of Hybrid Nanomaterials Built from Metal–Ligand Coordination Bonds: Nanoscale Metal–Organic Frameworks and Nanoscale Coordination Polymers. Chem. Rev. 2015, 115, 11079–11108. [Google Scholar] [CrossRef]
- Zhu, W.; Yang, Y.; Jin, Q.; Chao, Y.; Tian, L.; Liu, J.; Dong, Z.; Liu, Z. Two-Dimensional Metal-Organic-Framework as a Unique Theranostic Nano-Platform for Nuclear Imaging and Chemo-Photodynamic Cancer Therapy. Nano Res. 2019, 12, 1307–1312. [Google Scholar] [CrossRef]
- Rabiee, N.; Bagherzadeh, M.; Jouyandeh, M.; Zarrintaj, P.; Saeb, M.R.; Mozafari, M.; Shokouhimehr, M.; Varma, R.S. Natural Polymers Decorated MOF-MXene Nanocarriers for Co-Delivery of Doxorubicin/pCRISPR. ACS Appl. Bio Mater. 2021, 4, 5106–5121. [Google Scholar] [CrossRef] [PubMed]
- Derakhshi, M.; Daemi, S.; Shahini, P.; Habibzadeh, A.; Mostafavi, E.; Ashkarran, A.A. Two-Dimensional Nanomaterials beyond Graphene for Biomedical Applications. J. Funct. Biomater. 2022, 13, 27. [Google Scholar] [CrossRef]
- Huang, K.; Li, Z.; Lin, J.; Han, G.; Huang, P. Two-Dimensional Transition Metal Carbides and Nitrides (MXenes) for Biomedical Applications. Chem. Soc. Rev. 2018, 47, 5109–5124. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Song, X.; Jiang, Q.; Guo, W.; Liu, J.; Chu, X.; Lei, Z. Transition Metal Oxide Nanomaterials: New Weapons to Boost Anti-Tumor Immunity Cycle. Nanomaterials 2024, 14, 1064. [Google Scholar] [CrossRef] [PubMed]
- Pires, L.S.; Magalhães, F.D.; Pinto, A.M. New Polymeric Composites Based on Two-Dimensional Nanomaterials for Biomedical Applications. Polymers 2022, 14, 1464. [Google Scholar] [CrossRef]
- Martín, C.; Kostarelos, K.; Prato, M.; Bianco, A. Biocompatibility and Biodegradability of 2D Materials: Graphene and Beyond. Chem. Commun. 2019, 55, 5540–5546. [Google Scholar] [CrossRef]
- Wang, Q.; Pan, X.; Lin, C.; Gao, H.; Cao, S.; Ni, Y.; Ma, X. Modified Ti3C2TX (MXene) Nanosheet-Catalyzed Self-Assembled, Anti-Aggregated, Ultra-Stretchable, Conductive Hydrogels for Wearable Bioelectronics. Chem. Eng. J. 2020, 401, 126129. [Google Scholar] [CrossRef]
- Dagogo-Jack, I.; Shaw, A.T. Tumour Heterogeneity and Resistance to Cancer Therapies. Nat. Rev. Clin. Oncol. 2018, 15, 81–94. [Google Scholar] [CrossRef]
- Xu, X.; Liu, C.; Wang, Y.; Koivisto, O.; Zhou, J.; Shu, Y.; Zhang, H. Nanotechnology-Based Delivery of CRISPR/Cas9 for Cancer Treatment. Adv. Drug Deliv. Rev. 2021, 176, 113891. [Google Scholar] [CrossRef]
- Chen, S.H.; Bell, D.R.; Luan, B. Understanding Interactions between Biomolecules and Two-Dimensional Nanomaterials Using in Silico Microscopes. Adv. Drug Deliv. Rev. 2022, 186, 114336. [Google Scholar] [CrossRef]
- Patil, S.; Mishra, V.S.; Yadav, N.; Reddy, P.C.; Lochab, B. Dendrimer-Functionalized Nanodiamonds as Safe and Efficient Drug Carriers for Cancer Therapy: Nucleus Penetrating Nanoparticles. ACS Appl. Bio Mater. 2022, 5, 3438–3451. [Google Scholar] [CrossRef] [PubMed]
- Nezhadali, A.; Shapouri, M.R.; Amoli-Diva, M. Anti-Cancer Combination Therapy by Co-Delivery of Hydrophilic and Hydrophobic Using Dual Temperature and pH-Responsive Liposomes. Micro Nano Lett. 2020, 15, 1065–1070. [Google Scholar] [CrossRef]
- Moghimipour, E.; Rezaei, M.; Ramezani, Z.; Kouchak, M.; Amini, M.; Angali, K.A.; Dorkoosh, F.A.; Handali, S. Transferrin Targeted Liposomal 5-Fluorouracil Induced Apoptosis via Mitochondria Signaling Pathway in Cancer Cells. Life Sci. 2018, 194, 104–110. [Google Scholar] [CrossRef]
- Wang, W.-Y.; Cao, Y.-X.; Zhou, X.; Wei, B. Delivery of Folic Acid-Modified Liposomal Curcumin for Targeted Cervical Carcinoma Therapy. Drug Des. Devel. Ther. 2019, 13, 2205–2213. [Google Scholar] [CrossRef]
- Hardiansyah, A.; Huang, L.-Y.; Yang, M.-C.; Liu, T.-Y.; Tsai, S.-C.; Yang, C.-Y.; Kuo, C.-Y.; Chan, T.-Y.; Zou, H.-M.; Lian, W.-N.; et al. Magnetic Liposomes for Colorectal Cancer Cells Therapy by High-Frequency Magnetic Field Treatment. Nanoscale Res. Lett. 2014, 9, 497. [Google Scholar] [CrossRef]
- Sonali; Singh, R.P.; Singh, N.; Sharma, G.; Vijayakumar, M.R.; Koch, B.; Singh, S.; Singh, U.; Dash, D.; Pandey, B.L.; et al. Transferrin Liposomes of Docetaxel for Brain-Targeted Cancer Applications: Formulation and Brain Theranostics. Drug Deliv. 2016, 23, 1261–1271. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhan, X.; Xiong, J.; Peng, S.; Huang, W.; Joshi, R.; Cai, Y.; Liu, Y.; Li, R.; Yuan, K.; et al. Temperature-Dependent Cell Death Patterns Induced by Functionalized Gold Nanoparticle Photothermal Therapy in Melanoma Cells. Sci. Rep. 2018, 8, 8720. [Google Scholar] [CrossRef] [PubMed]
- Beik, J.; Alamzadeh, Z.; Mirrahimi, M.; Sarikhani, A.; Ardakani, T.S.; Asadi, M.; Irajirad, R.; Mirrahimi, M.; Mahabadi, V.P.; Eslahi, N.; et al. Multifunctional Theranostic Graphene Oxide Nanoflakes as MR Imaging Agents with Enhanced Photothermal and Radiosensitizing Properties. ACS Appl. Bio Mater. 2021, 4, 4280–4291. [Google Scholar] [CrossRef] [PubMed]
- Naief, M.F.; Khalaf, Y.H.; Mohammed, A.M. Novel Photothermal Therapy Using Multi-Walled Carbon Nanotubes and Platinum Nanocomposite for Human Prostate Cancer PC3 Cell Line. J. Organomet. Chem. 2022, 975, 122422. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sukur, S.; Ranc, V. Magnetic 2D Transition-Metal-Based Nanomaterials in Biomedicine: Opportunities and Challenges in Cancer Therapy. Materials 2025, 18, 2570. https://doi.org/10.3390/ma18112570
Sukur S, Ranc V. Magnetic 2D Transition-Metal-Based Nanomaterials in Biomedicine: Opportunities and Challenges in Cancer Therapy. Materials. 2025; 18(11):2570. https://doi.org/10.3390/ma18112570
Chicago/Turabian StyleSukur, Sunčica, and Václav Ranc. 2025. "Magnetic 2D Transition-Metal-Based Nanomaterials in Biomedicine: Opportunities and Challenges in Cancer Therapy" Materials 18, no. 11: 2570. https://doi.org/10.3390/ma18112570
APA StyleSukur, S., & Ranc, V. (2025). Magnetic 2D Transition-Metal-Based Nanomaterials in Biomedicine: Opportunities and Challenges in Cancer Therapy. Materials, 18(11), 2570. https://doi.org/10.3390/ma18112570