Computational Investigation of an All-sp3 Hybridized Superstable Carbon Allotrope with Large Band Gap
Abstract
:1. Introduction
2. Computational Method
3. Results and Discussion
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Balaban, A.T. Carbon and its nets. Comput. Math. Appl. 1989, 17, 397–416. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Lv, J.; Zhu, C.; Li, Q.; Zhang, M.; Li, Q.; Ma, Y. First-principles structural design of superhard materials. J. Chem. Phys. 2013, 138, 114101. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.T.; Chen, C.F.; Wang, E.G.; Kawazoe, Y. A New Carbon Allotrope with Six-Fold Helical Chains in all-sp2 Bonding Networks. Sci. Rep. 2014, 4, 04339. [Google Scholar] [CrossRef]
- Wang, J.T.; Mizuseki, C.F.C.H.; Kawazoe, Y. New carbon allotropes in sp+sp3 bonding networks consisting of C8 cubes. Phys. Chem. Chem. Phys. 2018, 20, 7962–7967. [Google Scholar] [CrossRef]
- Zhang, C.; Ding, X.Y.; Gan, L.Y.; Cao, Y.; Li, B.S.; Wu, X.; Wang, R. Symmetry-guaranteed ideal Weyl semimetallic phase in face-centered orthogonal C6. Phys. Rev. B 2020, 101, 235119. [Google Scholar] [CrossRef]
- Wang, J.T.; Weng, H.; Chen, C.F. Topological nodal line semimetals in graphene network structures. Adv. Phys-X 2019, 4, 1625724. [Google Scholar] [CrossRef]
- Weng, H.; Liang, Y.; Xu, Q.; Yu, R.; Fang, Z.; Dai, X.; Kawazoe, Y. Topological node-line semimetal in three-dimensional graphene networks. Phys. Rev. B 2015, 92, 045108. [Google Scholar] [CrossRef]
- Wang, J.T.; Weng, H.; Nie, S.; Fang, Z.; Kawazoe, Y.; Chen, C.F. Body-centered orthorhombic C16: A novel topological node-line semimetal. Phys. Rev. Lett. 2016, 116, 195501. [Google Scholar] [CrossRef]
- Cheng, Y.; Feng, X.; Cao, X.T.; Wen, B.; Wang, Q.; Kawazoe, Y.; Jena, P. Body-centered tetragonal C16: A novel topological node-line semimetallic carbon composed of tetrarings. Small 2017, 13, 1602894. [Google Scholar] [CrossRef]
- Chen, Y.; Xie, Y.; Yang, S.A.; Pan, H.; Zhang, F.; Cohen, M.L.; Zhang, S.B. Nanostructured carbon allotropes with Weyl-like loops and points. Nano Lett. 2015, 15, 6974–6978. [Google Scholar] [CrossRef]
- Wang, J.T.; Chen, C.; Kawazoe, Y. Topological nodal line semimetal in an orthorhombic graphene network structure. Phys. Rev. B 2018, 97, 245147. [Google Scholar] [CrossRef]
- Li, Z.Z.; Chen, J.; Nie, S.; Xu, L.F.; Mizuseki, H.; Weng, H.; Wang, J.T. Orthorhombic carbon oC24: A novel topological nodal line semimetal. Carbon 2018, 133, 39–43. [Google Scholar] [CrossRef]
- Wang, J.T.; Qian, Y.; Weng, H.; Wang, E.G.; Chen, C.F. Three-dimensional crystalline modification of graphene in all-sp2 hexagonal lattices with or without topological nodal lines. J. Phys. Chem. Lett. 2019, 10, 2515–2521. [Google Scholar] [CrossRef]
- Bu, K.; Wang, J.T.; Weng, H.; Chen, C.F. Topological semimetal in an sp2-sp3 hybridized carbon network with nodal rings. Phys. Rev. B 2020, 101, 205104. [Google Scholar] [CrossRef]
- Bu, K.; Qian, Y.; Wang, J.T.; Weng, H. Hybrid Nodal Chain in an Orthorhombic Graphene Network. Phys. Rev. B 2021, 103, L081108. [Google Scholar] [CrossRef]
- Tao, Y.; Bu, K.; Wang, J.T. Orthorhombic C32: A topological semimetal with nodal ring. Phys. Lett. A 2022, 451, 128397. [Google Scholar] [CrossRef]
- Liu, J.; Li, X.; Wang, Q.; Kawazoe, Y.; Jena, P. A new 3D Dirac nodal-line semi-metallic graphene monolith for lithium ion battery anode materials. J. Mater. Chem. A 2018, 6, 13816–13824. [Google Scholar] [CrossRef]
- Ni, D.; Shen, Y.; Sun, W.; Wang, Q. Design of 3D topological nodal-net porous carbon for sodium-ion battery anodes. J. Mater. Chem. A 2022, 10, 7754–7763. [Google Scholar] [CrossRef]
- Zhao, Z.; Hang, Y.; Zhang, Z.; Guo, W. Topological hybrid nodal-loop semimetal in a carbon allotrope constructed by interconnected Riemann surfaces. Phys. Rev. B 2019, 100, 115420. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, Z.; Guo, W. A family of all sp2-bonded carbon allotropes of topological semimetals with strain-robust nodal-lines. J. Mater. Chem. C 2020, 8, 1548–1555. [Google Scholar] [CrossRef]
- Kroto, H.W.; Heath, J.R.; O’Brien, S.C.; Curl, R.F.; Smalley, R.E. C60: Buckminsterfullerene. Nature 1984, 318, 162–163. [Google Scholar] [CrossRef]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1981, 354, 56–58. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Yin, M.T. Si-III (BC-8) crystal phase of Si and C: Structural properties, phase stabilities, and phase transitions. Phys. Rev. B 1984, 30, 1773. [Google Scholar] [CrossRef]
- Johnston, L.R.; Hoffmann, R. Superdense Carbon, C8: Supercubane or Analogue of γ-Si? J. Am. Chem. Soc. 1989, 111, 810–819. [Google Scholar] [CrossRef]
- Knudson, M.D.; Desjarlais, M.P.; Dolan, D.H. Shock-wave exploration of the high-pressure phases of carbon. Science 2008, 322, 1822–1825. [Google Scholar] [CrossRef] [PubMed]
- Vora, H.; Moravec, T.J. Structural investigation of thin films of diamondlike carbon. J. Appl. Phys. 1981, 52, 6151–6157. [Google Scholar] [CrossRef]
- Mao, W.L.; Mao, H.K.; Eng, P.J.; Trainor, T.P.; Newville, M.; Kao, C.C.; Heinz, D.L.; Shu, J.; Meng, Y.; Hemley, R.J. Bonding changes in compressed superhard graphite. Science 2003, 202, 425–427. [Google Scholar] [CrossRef]
- Chen, P.W.; Huang, F.L.; Yun, S.R. Characterization of the condensed carbon in detonation soot. Carbon 2003, 41, 2093–2099. [Google Scholar] [CrossRef]
- Pantea, D.; Brochu, S.; Thiboutot, S.; Ampleman, G.; Scholz, G. A morphological investigation of soot produced by the detonation of munitions. Chemosphere 2006, 65, 821–831. [Google Scholar] [CrossRef]
- Kirai, H.; Kondo, K.I. Modified Phases of Diamond Formed Under Shock Compression and Rapid Quenching. Science 1991, 253, 772–774. [Google Scholar]
- Wen, B.; Li, T.; Dong, C.; Zhang, X.; Yao, S.; Cao, Z.; Wang, D.; Ji, S.; Jin, J. Preparation of diamond nanocrystals from catalysed carbon black in a high magnetic field. J. Phys. Condens. Matter 2003, 15, 8049. [Google Scholar] [CrossRef]
- Wen, B.; Li, T.; Dong, C.; Zhang, X.; Yao, S.; Cao, Z.; Wang, D.; Ji, S.; Jin, J. Study of the stability of n-diamond. J. Phys. Condens. Matter 2004, 16, 2991. [Google Scholar] [CrossRef]
- Wen, B.; Li, T.; Dong, C.; Zhang, X.; Yao, S.; Cao, Z.; Wang, D.; Ji, S.; Jin, J. Formation mechanism of diamond nanocrystal from catalysed carbon black. J. Phys. Condens. Matter 2004, 16, 6891. [Google Scholar] [CrossRef]
- Wen, B.; Zhao, J.; Li, T.; Dong, C.; Jin, J. n-diamond from catalysed carbon nanotubes: Synthesis and crystal structure. J. Phys. Condens. Matter 2005, 17, L513. [Google Scholar] [CrossRef]
- Wen, B.; Li, T.; Dong, C.; Jin, J. Transformation mechanism from carbon nanotubes to n-diamond. J. Mater. Res. 2005, 20, 1485–1489. [Google Scholar] [CrossRef]
- Wen, B.; Zhao, J.; Li, T.; Dong, C. n-diamond: An intermediate state between rhombohedral graphite and diamond? New J. Phys. 2006, 8, 62. [Google Scholar] [CrossRef]
- Hou, L.; Cui, X.; Guan, B.; Wang, S.; Li, R.; Liu, Y.; Zhu, D.; Zheng, J. Synthesis of a monolayer fullerene network. Nature 2022, 606, 507–510. [Google Scholar] [CrossRef]
- Pan, F.; Ni, K.; Xu, T.; Chen, H.; Wang, Y.; Gong, K.; Liu, C.; Li, X.; Lin, M.L.; Li, S.; et al. Long-range ordered porous carbons produced from C60. Nature 2023, 614, 95–101. [Google Scholar] [CrossRef]
- Wang, J.T.; Chen, C.F.; Kawazoe, Y. New cubic carbon phase via graphitic sheet rumpling. Phys. Rev. B 2012, 85, 214104. [Google Scholar] [CrossRef]
- Li, Z.Z.; Lian, C.S.; Xu, J.; Xu, L.F.; Wang, J.T.; Chen, C.F. Computational prediction of body-centered cubic carbon in an all-sp3 six-member ring configuration. Phys. Rev. B 2015, 91, 214106. [Google Scholar] [CrossRef]
- Li, Z.Z.; Wang, J.T.; Mizuseki, H.; Chen, C.F. Computational discovery of a new rhombohedral diamond phase. Phys. Rev. B 2018, 98, 094107. [Google Scholar] [CrossRef]
- Bu, K.; Li, Z.Z.; Wang, J.T. Computational prediction of a simple cubic carbon allotrope consisting of C12 clusters. J. Chem. Phys. 2017, 147, 064512. [Google Scholar] [CrossRef] [PubMed]
- Bu, K.; Wang, J.T.; Li, Z.Z.; Mizuseki, H.; Kawazoe, Y. A superhard orthorhombic carbon with all six-membered-ring in sp3 bonding networks. Phys. Lett. A 2019, 383, 2809–2812. [Google Scholar] [CrossRef]
- Li, Q.; Ma, Y.; Oganov, A.R.; Wang, H.; Wang, H.; Xu, Y.; Cui, T.; Mao, H.K.; Zou, G. Superhard Monoclinic Polymorph of Carbon. Phys. Rev. Lett. 2009, 102, 175506. [Google Scholar] [CrossRef]
- Umemoto, K.; Wentzcovitch, M.R.; Saito, S.; Miyake, T. Body-Centered Tetragonal C4: A Viable sp3 Carbon Allotrope. Phys. Rev. Lett. 2010, 104, 125504. [Google Scholar] [CrossRef]
- Wang, J.T.; Chen, C.F.; Kawazoe, Y. Low-Temperature Phase Transformation from Graphite to sp3 Orthorhombic Carbon. Phys. Rev. Lett. 2011, 106, 075501. [Google Scholar] [CrossRef]
- Amsler, M.; Flores-Livas, J.A.; Lehtovaara, L.; Balima, F.; Ghasemi, S.A.; Machon, D.; Pailhès, S.; Willand, A.; Caliste, D.; Botti, S.; et al. Crystal Structure of Cold Compressed Graphite. Phys. Rev. Lett. 2012, 108, 065501. [Google Scholar] [CrossRef]
- Sheng, X.L.; Yan, Q.B.; Ye, F.; Zheng, Q.R.; Su, G. T-Carbon: A Novel Carbon Allotrope. Phys. Rev. Lett. 2011, 106, 155703. [Google Scholar] [CrossRef]
- Samara Carbon Allotrope Database. Available online: http://sacada.sctms.ru (accessed on 22 May 2025).
- Hoffmann, R.; Kabanov, A.A.; Golov, A.A.; Proserpio, D.M. Homo Citans and Carbon Allotropes: For an Ethics of Citation. Angew. Chem. Int. Ed. 2016, 55, 10962–10976. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, R.; Zhu, X.; Pan, A.; Han, C.; Li, X.; Zhao, D.; Ma, C.; Wang, W.; Su, H.; et al. Pseudo-topotactic conversion of carbon nanotubes to T-carbon nanowires under picosecond laser irradiation in methanol. Nat. Commun. 2017, 8, 683. [Google Scholar] [CrossRef] [PubMed]
- Wells, A.F. The geometrical basis of crystal chemistry. Part 1. Acta Crystallogr. 1954, 7, 535–544. [Google Scholar] [CrossRef]
- He, C.; Shi, X.; Clark, S.J.; Li, J.; Pickard, C.J.; Ouyang, T.; Zhang, C.; Tang, C.; Zhong, J. Complex Low Energy Tetrahedral Polymorphs of Group IV Elements from First Principles. Phys. Rev. Lett. 2018, 121, 175701. [Google Scholar] [CrossRef]
- Shi, X.; Li, S.; Li, J.; Ouyang, T.; Zhang, C.; Tang, C.; He, C.; Zhong, J. High-Throughput Screening of Two-Dimensional Planar sp2 Carbon Space Associated with a Labeled Quotient Graph. J. Phys. Chem. Lett. 2021, 12, 11511–11519. [Google Scholar] [CrossRef]
- Calderon, H.A.; Estrada-Guel, I.; Alvarez-Ramírez, F.; Hadjiev, V.G.; Hernandez, F.C.R. Morphed graphene nanostructures: Experimental evidence for existence. Carbon 2016, 102, 288–296. [Google Scholar] [CrossRef]
- Kresse, G.; Furthüller, J. Effcient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef]
- Armiento, R.; Mattsson, A.E. Functional designed to include surface effects in self-consistent density functional theory. Phys. Rev. B 2005, 72, 085108. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953. [Google Scholar] [CrossRef]
- Heyd, J.; Scuseria, G.E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207–8215. [Google Scholar] [CrossRef]
- Togo, A.; Oba, F.; Tanaka, I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B 2008, 78, 134106. [Google Scholar] [CrossRef]
- Murnaghan, F.D. The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. USA 1944, 30, 244–247. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.J.; Zhao, E.J.; Xiang, H.P.; Hao, X.F.; Liu, X.J.; Meng, J. Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys. Rev. B 2007, 76, 054115. [Google Scholar] [CrossRef]
- Chen, X.Q.; Niu, H.; Li, D.; Li, Y. Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics 2011, 19, 1275–1281. [Google Scholar] [CrossRef]
- Occelli, F.; Loubeyre, P.; LeToullec, R. Properties of diamond under hydrostatic pressures up to 140 GPa. Nat. Mater. 2002, 2, 151–154. [Google Scholar] [CrossRef]
- Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511–519. [Google Scholar]
Structure | Space Group | Method | a (Å) | b (Å) | c (Å) | (°) | () | (Å) | (eV) | (eV) | (GPa) | (GPa) | () |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Diamond | AM05 | 3.552 | 5.60 | 1.538 | −9.018 | 5.36 | 451 | 93.5 | 3.45 | ||||
Exp [66] | 3.567 | 5.67 | 1.544 | 5.47 | 446 | 96 | 3.52 | ||||||
BC12 | AM05 [41] | 5.139 | 5.66 | 1.574 | −8.134 | 2.98 | 429 | 76.7 | 3.41 | ||||
BC8 | AM05 [41] | 4.443 | 5.48 | 1.617 | −8.340 | 3.58 | 407 | 82.5 | 3.53 | ||||
R16 | AM05 | 4.514 | 90.88 | 5.75 | 1.466–1.755 | −8.505 | 4.45 | 386 | 91 | 3.36 | |||
O16 | AM05 | 4.405 | 4.740 | 4.384 | 5.72 | 1.493–1.730 | −8.546 | 4.23 | 418 | 85 | 3.38 | ||
oP16 | AM05 | 4.646 | 4.277 | 5.133 | 6.37 | 1.353–1.691 | −8.570 | Semimetal | 370 | 56 | 3.03 | ||
T20 | AM05 | 5.801 | 3.441 | 5.79 | 1.524–1.569 | −8.881 | 5.80 | 422 | 83.5 | 3.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ju, X.; Bu, K.; Zhang, C.; Sun, Y. Computational Investigation of an All-sp3 Hybridized Superstable Carbon Allotrope with Large Band Gap. Materials 2025, 18, 2533. https://doi.org/10.3390/ma18112533
Ju X, Bu K, Zhang C, Sun Y. Computational Investigation of an All-sp3 Hybridized Superstable Carbon Allotrope with Large Band Gap. Materials. 2025; 18(11):2533. https://doi.org/10.3390/ma18112533
Chicago/Turabian StyleJu, Xiaoshi, Kun Bu, Chunxiao Zhang, and Yuping Sun. 2025. "Computational Investigation of an All-sp3 Hybridized Superstable Carbon Allotrope with Large Band Gap" Materials 18, no. 11: 2533. https://doi.org/10.3390/ma18112533
APA StyleJu, X., Bu, K., Zhang, C., & Sun, Y. (2025). Computational Investigation of an All-sp3 Hybridized Superstable Carbon Allotrope with Large Band Gap. Materials, 18(11), 2533. https://doi.org/10.3390/ma18112533