Solidification-Induced Wear Behavior of Composite Coatings Fabricated via Laser Cladding
Abstract
:1. Introduction
2. Material and Experimental Procedures
3. Results and Discussion
3.1. Macroscopic Characteristics
3.2. Microstructural Characteristics
3.2.1. Grain and Eutectic Carbide
3.2.2. Phase Composition
3.3. Microhardness
3.4. Toughness
3.5. Wear Resistance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EH-LIHC | Electrothermal Heating-Laser Induced Hot Coating |
EDS | Energy-Dispersive Spectrometer |
EBSD | Electron Backscatter Diffraction |
XRD | X-ray diffraction |
SEM | Scanning Electron Microscopy |
TEM | Transmission Electron Microscopy |
HRTEM | High-Resolution Transmission Electron Microscopy |
References
- Cai, Y.; Chen, Y.; Luo, Z.; Gao, F.; Li, L. Manufacturing of FeCoCrNiCux medium-entropy alloy coating using laser cladding technology. Mater. Des. 2017, 133, 91–108. [Google Scholar] [CrossRef]
- Parent, P.-N.; Paris, J.-Y.; Alexis, J.; Boher, C. Influence of the scanning strategy on the microstructure and the tribological behavior of a Ni-based superalloy processed by L-PBF additive manufacturing. Wear 2025, 564–565, 205671. [Google Scholar] [CrossRef]
- Ma, J.; Li, L.; Wang, Z.; Yang, T.; Guo, F. A novel in-situ Al2O3@TiC@TiB multilayer core–shell ceramic particle reinforced Fe-based composite coating by laser cladding. Mater. Lett. 2025, 388, 138321. [Google Scholar] [CrossRef]
- Fu, K.; Zhong, C.; Xue, Y.; Ren, X.; Luan, B. Interfacial phase transformation and element diffusion mechanism of high-speed laser cladding Inconel 625 in high-temperature environment. Mater. Charact. 2024, 211, 113879. [Google Scholar] [CrossRef]
- Li, W.; Li, X.; Sun, C.; Sun, R.; Hu, T.; Wang, S.; Yuan, S.; Zhang, W.; Lashari, M.I. Multi-scale experimental investigation on microstructure related subsurface fatigue cracking behavior of selective-laser-melted superalloy at elevated temperature. Mater. Charact. 2023, 201, 112960. [Google Scholar] [CrossRef]
- Chen, H.; Yu, D.T.; Mao, J.T.; Wu, C.L.; Zhang, S.; Zhang, C.H.; Wang, Q.; Zhang, D. Microstructure and tribo-corrosion behavior of TC4 composites reinforced by in situ synthesized TiC ceramics particles through laser cladding. Ceram. Int. 2025, in press. [Google Scholar] [CrossRef]
- Li, M.; Han, B.; Song, L.; He, Q. Enhanced surface layers by laser cladding and ion sulfurization processing towards improved wear-resistance and self-lubrication performances. Appl. Surf. Sci. 2020, 503, 144226. [Google Scholar] [CrossRef]
- Yang, L.; Li, Z.; Zhang, Y.; Wei, S.; Liu, F. Al-TiC in situ composite coating fabricated by low power pulsed laser cladding on AZ91D magnesium alloy. Appl. Surf. Sci. 2018, 435, 1187–1198. [Google Scholar] [CrossRef]
- Meng, L.; Zhu, B.; Liu, X.; Zeng, X. Investigation on the Ni60-WC composite coatings deposited by extreme-high-speed laser-induction hybrid cladding technology: Forming characteristics, microstructure and wear behaviors. Surf. Coat. Technol. 2023, 473, 130033. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, T.; Chen, L.; Yu, T.; Sun, J.; Guan, C. Microstructure and mechanical properties of Ti–C–TiN-reinforced Ni204-based laser-cladding composite coating. Ceram. Int. 2021, 47, 5918–5928. [Google Scholar] [CrossRef]
- Bolelli, G.; Colella, A.; Forlin, E.; Gehlen, L.R.; Lusvarghi, L.; Miconi, L.; Pintaude, G.; Puddu, P. Tribological performance of NbC-based hardmetal HVOF coatings with Fe-Cr-Mo matrix. Wear 2025, 564–565, 205680. [Google Scholar] [CrossRef]
- Hu, Z.; Li, Y.; Lu, B.; Tan, N.; Cai, L.; Yong, Q. Effect of WC content on microstructure and properties of high-speed laser cladding Ni-based coating. Opt. Laser Technol. 2022, 155, 108449. [Google Scholar] [CrossRef]
- Wang, T.; Wu, J.; Hu, Y.; Zhou, L. Comparative investigation on anti-wear mechanism and properties of nano and micron WC reinforce Hastelloy-X composites using oscillating laser deposition. Wear 2025, 564–565, 205731. [Google Scholar] [CrossRef]
- Li, R.; Yuan, W.; Yue, H.; Zhu, Y. Study on microstructure and properties of Fe-based amorphous composite coating by high-speed laser cladding. Opt. Laser Technol. 2022, 146, 107574. [Google Scholar] [CrossRef]
- Li, Y.; Wang, K.; Fu, H.; Guo, X.; Lin, J. Microstructure and wear resistance of in-situ TiC reinforced AlCoCrFeNi-based coatings by laser cladding. Appl. Surf. Sci. 2022, 585, 152703. [Google Scholar] [CrossRef]
- Macêdo, G.; Pelcastre, L.; Prakash, B.; Hardell, J. High temperature friction and wear of hot stamping tool materials produced by laser metal deposition. Wear 2025, 568–569, 205682. [Google Scholar] [CrossRef]
- Yan, X.; Zheng, Y.; Qiu, Y.; Qiao, G.; Du, W.; He, H.; Bai, Q. Role of reinforcement on the microstructure of WC reinforced Fe-based composite coating prepared by direct energy deposition. Mater. Charact. 2024, 209, 113731. [Google Scholar] [CrossRef]
- Lin, D.; Xu, L.; Jing, H.; Han, Y.; Zhao, L.; Minami, F. Effects of annealing on the structure and mechanical properties of FeCoCrNi high-entropy alloy fabricated via selective laser melting. Addit. Manuf. 2020, 32, 101058. [Google Scholar] [CrossRef]
- Liu, C.; Xu, P.; Zheng, D.; Liu, Q. Study on microstructure and properties of a Fe-based SMA/PZT composite coating produced by laser cladding. J. Alloys Compd. 2020, 831, 154813. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, L.; Yang, X.; Zhang, T.; Sun, R. Optimization of microstructure and properties of composite coatings by laser cladding on titanium alloy. Ceram. Int. 2021, 47, 2230–2243. [Google Scholar] [CrossRef]
- Lu, J.Z.; Cao, J.; Lu, H.F.; Zhang, L.Y.; Luo, K.Y. Wear properties and microstructural analyses of Fe-based coatings with various WC contents on H13 die steel by laser cladding. Surf. Coat. Tech. 2019, 369, 228–237. [Google Scholar] [CrossRef]
- Lu, J.; Xue, K.; Lu, H.; Xing, F.; Luo, K. Laser shock wave-induced wear property improvement and formation mechanism of laser cladding Ni25 coating on H13 tool steel. J. Mater. Process. Technol. 2021, 296, 117202. [Google Scholar] [CrossRef]
- Shang, X.; Liu, Q.; Guo, Y.; Ding, K.; Liao, T.; Wang, F. Nano-TiC reinforced [Cr–Fe4Co4Ni4]Cr3 high-entropy-alloy composite coating fabricated by laser cladding. J. Mater. Res. Technol. 2022, 21, 2076–2088. [Google Scholar] [CrossRef]
- Todaro, C.; Easton, M.; Qiu, D.; Brandt, M.; StJohn, D.; Qian, M. Grain refinement of stainless steel in ultrasound-assisted additive manufacturing. Addit. Manuf. 2021, 37, 101632. [Google Scholar] [CrossRef]
- Su, Y.; Wang, Z.; Xu, X.; Luo, K.; Lu, J. Effect of closed-loop controlled melt pool width on microstructure and tensile property for Fe-Ni-Cr alloy in directed energy deposition. J. Manuf. Process. 2022, 82, 708–721. [Google Scholar] [CrossRef]
- Tong, Z.; Liu, H.; Jiao, J.; Zhou, W.; Yang, Y.; Ren, X. Improving the strength and ductility of laser directed energy deposited CrMnFeCoNi high-entropy alloy by laser shock peening. Addit. Manuf. 2020, 35, 101417. [Google Scholar] [CrossRef]
- Xie, Z.; Zhang, C.; Wang, R.; Li, D.; Zhang, Y.; Li, G.; Lu, X. Microstructure and wear resistance of WC/Co-based coating on copper by plasma cladding. J. Mater. Res. Technol. 2021, 15, 821–833. [Google Scholar] [CrossRef]
- Xu, X.; Lu, H.; Qiu, J.; Luo, K.; Su, Y.; Xing, F.; Lu, J. High-speed-rate direct energy deposition of Fe-based stainless steel: Process optimization, microstructural features, corrosion and wear resistance. J. Manuf. Process. 2022, 75, 243–258. [Google Scholar] [CrossRef]
- Zhang, M.; Li, M.; Chi, J.; Wang, S.; Ren, L.; Fang, M.; Zhou, C. Microstructure evolution, recrystallization and tribological behavior of TiC/WC composite ceramics coating. Vacuum 2019, 166, 64–71. [Google Scholar] [CrossRef]
- Munagala, V.N.V.; Torgerson, T.B.; Scharf, T.W.; Chromik, R.R. High temperature friction and wear behavior of cold-sprayed Ti6Al4V and Ti6Al4V-TiC composite coatings. Wear 2019, 426–427, 357–369. [Google Scholar] [CrossRef]
- Chen, W.; Peng, Y.; Wang, Y.; Cao, P.; Zhu, Y.; Guo, Y. Research on high-temperature friction and wear performances of Stellite 12 laser cladding layer against coated boron steels. Wear 2023, 520–521, 204665. [Google Scholar] [CrossRef]
- Wu, D.; Qu, S.; Zhang, Q.; Zhou, H. Enhanced wear resistance of blades made of martensitic steels: A study of diverse α′-matrix/carbide microstructures. Mater. Charact. 2023, 201, 112939. [Google Scholar] [CrossRef]
- Zeng, Y.; Guo, J.; Dou, M.; Xu, K.; Li, L.; Zhao, Z. Mechanism of high temperature mechanical properties enhancement of Ni-based superalloys repaired by laser directed energy deposition: Microstructure analysis and crystal plasticity simulation. Mater. Charact. 2024, 211, 113854. [Google Scholar] [CrossRef]
- Cheng, J.; Zhen, J.; Zhu, S.; Yang, J.; Ma, J.; Li, W.; Liu, W. Friction and wear behavior of Ni-based solid-lubricating composites at high temperature in a vacuum environment. Mater. Des. 2017, 122, 405–413. [Google Scholar] [CrossRef]
- Pole, M.; Sadeghilaridjani, M.; Shittu, J.; Ayyagari, A.; Mukherjee, S. High temperature wear behavior of refractory high entropy alloys based on 4-5-6 elemental palette. J. Alloys Compd. 2020, 843, 156004. [Google Scholar] [CrossRef]
- Ren, X.; Fu, H.; Xing, J.; Yi, Y. Research on high-temperature dry sliding friction wear behavior of Ca Ti modified high boron high speed steel. Tribol. Int. 2019, 132, 165–176. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, B.; Yu, Y.; Zhang, Z.; Zhu, S.; Lou, X.; Wang, Z. Study of high temperature friction and wear performance of (CoCrFeMnNi)85Ti15 high-entropy alloy coating prepared by plasma cladding. Surf. Coat. Tech. 2020, 384, 125337. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, W.; Chen, D.; Liu, X.; Hu, W.; Liu, L.; Yan, J.; Xiong, X. High temperature friction and wear performance of TiB2-50Ni composite coating sprayed by HVOF technique. Surf. Coat. Tech. 2021, 407, 126766. [Google Scholar] [CrossRef]
- Nemati, N.; Emamy, M.; Yau, S.; Kim, J.-K.; Kim, D.-E. High temperature friction and wear properties of graphene oxide/polytetrafluoroethylene composite coatings deposited on stainless steel. Rsc. Adv. 2016, 6, 5977–5987. [Google Scholar] [CrossRef]
- Huang, C.; Zou, B.; Liu, Y.; Zhang, S.; Huang, C.; Li, S. Study on friction characterization and wear-resistance properties of Si3N4 ceramic sliding against different high-temperature alloys. Ceram. Int. 2016, 42, 17210–17221. [Google Scholar] [CrossRef]
- Renz, A.; Prakash, B.; Hardell, J.; Lehmann, O. High-temperature sliding wear behaviour of Stellite®12 and Tribaloy®T400. Wear 2018, 402–403, 148–159. [Google Scholar] [CrossRef]
- Du, H.; Hou, Z.; Tang, Z.; Yao, Z. Wear mechanism and three-phase synergistic effect of self-mated SiC/Si/graphite composites in unlubricated sliding. Wear 2025, 564–565, 205674. [Google Scholar] [CrossRef]
Type | C | Cr | Si | Mn | Mo | Fe |
---|---|---|---|---|---|---|
M2 | 0.79 | 4.07 | 0.23 | 0.34 | 5.20 | Balanced |
H13 | 0.42 | 5.21 | 1.05 | 0.31 | 1.48 | Balanced |
Laser Cladding Process | |
---|---|
Scanning speed (mm/s) | 5 |
Z-axis lift h (mm) | 0.4 |
Carrier gas speed Q (L/min) | 12 |
Laser power P (W) | 2000 |
Powder feeder speed (rpm) | 3 |
Laser spot diameter(mm) | 2 |
Partical size range(µm) | 40–45 |
Wear Process | |
---|---|
Load F (N) | 50 |
Wear length s (mm) | 4 |
Frequency f (Hz) | 12 |
Friction time t (min) | 50 |
Friction temperature T (°C) | 500 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Yan, X.; Liu, Z.; Wang, Y.; Zheng, K.; Bai, Q. Solidification-Induced Wear Behavior of Composite Coatings Fabricated via Laser Cladding. Materials 2025, 18, 2521. https://doi.org/10.3390/ma18112521
Wang Z, Yan X, Liu Z, Wang Y, Zheng K, Bai Q. Solidification-Induced Wear Behavior of Composite Coatings Fabricated via Laser Cladding. Materials. 2025; 18(11):2521. https://doi.org/10.3390/ma18112521
Chicago/Turabian StyleWang, Zidan, Xue Yan, Zhiqiang Liu, Youwei Wang, Kailun Zheng, and Qian Bai. 2025. "Solidification-Induced Wear Behavior of Composite Coatings Fabricated via Laser Cladding" Materials 18, no. 11: 2521. https://doi.org/10.3390/ma18112521
APA StyleWang, Z., Yan, X., Liu, Z., Wang, Y., Zheng, K., & Bai, Q. (2025). Solidification-Induced Wear Behavior of Composite Coatings Fabricated via Laser Cladding. Materials, 18(11), 2521. https://doi.org/10.3390/ma18112521