In Situ Thermogravimetric Analysis of Curved Surfaces During High-Temperature Oxidation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Thermogravimetry
2.3. Metallographic Preparation and Imaging
3. Results and Discussion
3.1. Oxide Microstructural Characterisation
3.2. Quantitative Oxide Gain Analysis
4. Conclusions
- Post-test inspection of the TGA data revealed a 5% discrepancy with the mass gain predicted by the model once damped oscillator motion as the buoyancy and vortex-induced forced vibrations effects were accounted for.
- The multi-phase oxide formed during TGA testing (1000 °C isothermal soak for 15 min with 5 K.min−1 heating and cooling ramps) was porous with a mean thickness of 401.0 ± 4.3 µm. The oxide phases closest to the oxide–air boundary displayed evidence of delamination and the lowest interfacial strength and cohesion, whereas the innermost phase remained adhered to the steel, suggesting high metal–oxide interfacial strength and adhesion. The latter state was similar to that seen in an as-received industrial sample that had a compact, homogeneous oxide.
- Although Kendall et al.’s model [7] underpredicts the oxide thickness gain, it does not account for the time spent at a temperature where oxidation is significant (>700 °C). For the same time spent at 1000 °C, the model predicts 670.6 µm, which is an overprediction given that the sample experiences a temperature change of 300 °C in the same time.
- There are also general factors that can affect oxide kinetics, to varying degrees, which are not accounted for in the model and/or experiments described, e.g., surface roughness, humidity, and porosity.
- The much thinner, homogenous oxide observed on the industrial sample was attributed to the lack of replication of mechanical operations, especially hydraulic descaling associated with conveyance tube manufacturing, during experimental and computational investigations.
- Overall, successful experimental and industrial validation revealed a scope for the computational model to be refined in future work to better reflect specific complexities associated with manufacturing processes such as conveyance tube manufacturing, e.g., transient heating, porosity, and mechanical effects during manufacturing such as hydraulic descaling.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BED | backscatter electron detector |
CV | coefficient of variance |
d.p. | decimal places |
DFT | discrete Fourier transform |
FEGSEM | field emission gun scanning electron microscopy |
FFT | fast Fourier transform |
HVAC | heating ventilation and air conditioning |
n.b. | nominal bore |
SNR | signal-to-noise ratio |
TGA | thermogravimetric analysis |
VIV | vortex-induced vibration |
Appendix A. Troubleshooting Experimental Issues for Curved Surfaces and Thermogravimetric Analysis (TGA)
Appendix A.1
Appendix A.2
References
- Simmons, C.H.; Phelps, N.; Maguire, D.E. CAD Organization and Applications. In Manual of Engineering Drawing: Technical Product Specification and Documentation to British and International Standards, 4th ed.; Butterworth-Heinemann: Oxford, UK, 2012; pp. 23–38. Available online: https://ifind.swansea.ac.uk/permalink/44WHELF_SWA/1jlslid/alma998192368202417 (accessed on 14 May 2024).
- Hosseinzadeh, M.; Kasiri, N.; Rezaei, M. A comprehensive multiscale review of shaft furnace and reformer in direct reduction of iron oxide. Miner. Eng. 2025, 222, 109123. [Google Scholar] [CrossRef]
- Goviazin, G.G.; Rittel, D.; Shirizly, A. Achieving high strength with low residual stress in WAAM SS316L using flow-forming and heat treatment. Mater. Sci. Eng. A 2023, 873, 145043. [Google Scholar] [CrossRef]
- Schutze, M. The Role of Stresses in High-Temperature Corrosion: The Potential of Quantitative Approaches. High Temp. Corros. Mater. 2023, 100, 365–397. [Google Scholar] [CrossRef]
- Shajan, N.; Kumar, R.; Manik, R.; Asati, B.; Dhagde, S.; Dhangi, D.; Kumar, S.; Mahapartra, M.M.; Arora, K.S. Role of residual stress in the failure of HF-ERW welded tubes. Eng. Fail. Anal. 2024, 161, 108342. [Google Scholar] [CrossRef]
- Wassilkowska, A.; Wojciech, D. Silicon as a component of ferric oxide scale covering ductile iron pipes after annealing. Eng. Fail. Anal. 2021, 125, 105381. [Google Scholar] [CrossRef]
- Kendall, M.; Coleman, M.; Cockings, H.; Sackett, E.; Owen, C.; Auinger, M. Computational Thermochemistry for Modelling Oxidation During the Conveyance Tube Manufacturing Process. Metals 2024, 14, 1402. [Google Scholar] [CrossRef]
- Grant, J. The Development of Novel Coating Solutions for the Improvement of Pre/Post Heat Treatment Performance Properties of Carbon Steel Conveyance Tubes. Ph.D. Thesis, Department of Materials Science and Engineering, Swansea University, Swansea, Wales, UK, 2024. [Google Scholar] [CrossRef]
- Hallstrom, S.; Halvarsson, M.; Hoglund, L.; Jonsson, T.; Agren, J. High temperature oxidation of chromium: Kinetic modeling and microstructural investigation. Solid State Ion. 2013, 240, 41–50. [Google Scholar] [CrossRef]
- De Oliveira Junior, M.M.; Costa, H.L.; Junior, W.M.S.; De Mello, J.D.B. Effect of iron oxide debris on the reciprocating sliding wear of tool steels. Wear 2019, 426–427, 1065–1075. [Google Scholar] [CrossRef]
- Vergne, C.; Boher, C.; Gras, R.; Levaillant, C. Influence of oxides on friction in hot rolling: Experimental investigations and tribological modelling. Wear 2005, 260, 957–975. [Google Scholar] [CrossRef]
- Lepesant, P.; Boher, C.; Berthier, Y.; Rezai-Aria, F. A phenomenological model of the third body particles circulation in a high temperature contact. Wear 2013, 298–299, 66–79. [Google Scholar] [CrossRef]
- Auinger, M.; Buchler, M.; Schoneich, H.; Gierl-Mayer, C.; Danninger, H. Hydrogen accumulation and diffusion in cylindrical-shaped pipeline steels with coating defects. Int. J. Hydrogen Energy 2023, 48, 34454–34462. [Google Scholar] [CrossRef]
- Zhang, A.; Zuo, Y.; Zhang, M.; Zhou, H. Numerical study on thermal performance and thermal stress of molten salt receiver tube based on induction heating. Appl. Therm. Eng. 2023, 235, 121353. [Google Scholar] [CrossRef]
- Kocabicak, A.C.; Wang, C.; Han, S.; Nguyen-Xuan, H.; Kosec, G.; Wang, L.; Wahab, M.A. A deep neural network approach to predict dimensional accuracy of thin-walled tubes in backward flow forming plasticity process. J. Manuf. Process. 2025, 141, 59–80. [Google Scholar] [CrossRef]
- Dutta, T.; Noushin, T.; Shawana, T.; Mishra, S.K. Road Map of Semiconductor Metal-Oxide-Based Sensors: A Review. Sensors 2023, 23, 6849. [Google Scholar] [CrossRef]
- Kumbhakar, P.; Gowda, C.C.; Mahapatra, P.L.; Mukherjee, M.; Malviya, K.D.; Chaker, M.; Chandra, A.; Lahiri, B.; Ajayan, P.M.; Jariwala, D.; et al. Emerging 2D metal oxides and their applications. Mater. Today 2021, 45, 142–168. [Google Scholar] [CrossRef]
- Gareev, K.G. Diversity of Iron Oxides: Mechanisms of Formation, Physical Properties and Applications. Magnetochemistry 2023, 9, 119. [Google Scholar] [CrossRef]
- van Rooij, T.J.T. Modelling of the Oxidation of Iron with Steam in COMSOL 5.5 and MATLAB. Bachelor’s Thesis, Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands, 2022. Available online: https://research.tue.nl/en/studentTheses/modelling-of-the-oxidation-of-iron-with-steam-in-comsol-55-and-ma (accessed on 14 April 2025).
- Manning, M.I. Geometrical effects on oxide scale integrity. Corros. Sci. 1981, 21, 301–316. [Google Scholar] [CrossRef]
- Birks, N.; Meier, G.H. Mechanisms of Oxidation. In Introduction to High Temperature Oxidation of Metals; Edward Arnold Ltd.: London, UK, 1983; pp. 31–65. [Google Scholar]
- Sun, W.; Tieu, A.K.; Jiang, Z.; Zhu, H.; Lu, C. Oxide scales growth of low-carbon steel at high temperatures. J. Mater. Process. Technol. 2004, 156, 1300–1306. [Google Scholar] [CrossRef]
- Schluckner, C.; Gaber, C.; Demuth, M.; Forstinger, S.; Prieler, R.; Hochenauer, C. CFD-model to predict the local and time-dependent scale formation of steels in air- and oxygen enriched combustion atmospheres. Appl. Therm. Eng. 2018, 143, 822–835. [Google Scholar] [CrossRef]
- Iordanova, I.; Surtchev, M.; Forcey, K.S.; Krastev, V. High-temperature surface oxidation oflow-carbon rimming steel. Surf. Interface Anal. 2000, 30, 158–160. [Google Scholar] [CrossRef]
- Clarke, D.R. The lateral growth strain accompanying the formation of a thermally grown oxide. Acta Mater. 2003, 51, 1393–1407. [Google Scholar] [CrossRef]
- Stott, F.H.; Atkinson, A. The modelling of growth stresses during high-temperature oxidation. Mater. High Temp. 1994, 12, 195–207. [Google Scholar] [CrossRef]
- Jiang, Z.Y.; Tang, J.; Sun, W.; Tieu, A.K.; Wei, D. Analysis of tribological feature of the oxide scale in hot strip rolling. Tribol. Int. 2010, 43, 1339–1345. [Google Scholar] [CrossRef]
- Wang, P.; Du, K.; Yin, H.; Wang, D. Enhancing oxide scale growth and adhesion via electrochemically regulating ion diffusion. J. Mater. Sci. Technol. 2023, 158, 133–144. [Google Scholar] [CrossRef]
- Mori, S.; Pidcock, A.; Simms, N.; Oakey, J. Fireside Corrosion of Heat Exchanger Materials for Advanced Solid Fuel Fired Power Plants. Oxid. Met. 2022, 97, 281–306. [Google Scholar] [CrossRef]
- Staalman, D.F.J.; Martin, B.; Speets, R.; Pronk, P. Improving the Through-Furnace Accuracy of Slab Temperature Prediction and Optimizing Pacing in Reheating Furnaces of a Hot Strip Mill. 2015. Available online: https://www.researchgate.net/profile/Dirk-Staalman/publication/281587410_Improving_the_Through-Furnace_Accuracy_of_Slab_Temperature_Prediction_and_Optimizing_Pacing_in_Reheating_Furnaces_of_a_Hot_Strip_Mill/links/55eeddd408aedecb68fd471c/Improving-the-Through-Furnace-Accuracy-of-Slab-Temperature-Prediction-and-Optimizing-Pacing-in-Reheating-Furnaces-of-a-Hot-Strip-Mill.pdf (accessed on 17 October 2022).
- Scientific Paper 249, The Emissivity of Metals and Oxides. IV. Iron Oxide. 1915. Available online: https://archive.org/details/emiss1283891915249249unse/page/n1/mode/2up (accessed on 16 March 2023).
- Yu, B.; Liu, Y.; Wei, L.; Zhang, X.; Du, Y.; Wang, Y.; Ye, S. A Mechanism of Anti-Oxidation Coating Design Based on Inhibition Effect of Interface Layer on Ions Diffusion within Oxide Scale. Coatings 2021, 11, 454. [Google Scholar] [CrossRef]
- Chaudhari, T.S.; Pise, A.S.; Mahato, A.K.; Satyam, K. Study on the scale formation of AISI–1018 carbon steel in walking beam steel reheat furnace. Mater. Today Proc. 2022, 62, 3916–3921. [Google Scholar] [CrossRef]
- Worden, K.; Cross, E.J.; Barthorpe, R.J.; Wagg, D.J.; Gardner, P. On Digital Twins, Mirrors, and Virtualizations: Frameworks for Model Verification and Validation. ASME J. Risk Uncertain. Eng. Syst. Part B. Mech. Eng. 2020, 6, 030902. [Google Scholar] [CrossRef]
- BS EN 10217-2; Welded Steel Tubes for Pressure Purposes—Technical Delivery Conditions (Part 2: Electric Welded Non-Alloy and Alloy Steel Tubes with Specified Elevated Temperature Properties). BSI: London, UK, 2019. Available online: https://bsol.bsigroup.com/Bibliographic/BibliographicInfoData/000000000030438140 (accessed on 20 January 2025).
- Tata Steel. Install® Plus 235 & Inline™ 265: Hot-Part-2 PED & High Temperature Carbon Steel Tubes for Building & Industrial Services. 2021. Available online: https://www.tatasteeleurope.com/construction/products/tube/conveyance (accessed on 14 May 2024).
- Heal, G.R. Thermogravimetry and Derivative Thermogravimetry. In Principles of Thermal Analysis and Calorimetry; Haines, P.J., Ed.; Royal Society of Chemistry: Cambridge, UK, 2002; pp. 10–54. Available online: https://ifind.swansea.ac.uk/permalink/44WHELF_SWA/1jlslid/alma998284251402417 (accessed on 17 October 2024).
- Rehm, R.G.; Baum, H.R. The Equations of Motion for Thermally Driven, Buoyant Flows. J. Res. Notional Bur. Stand. 1978, 83, 297–308. [Google Scholar] [CrossRef]
- Gao, W.; Wang, F.; Zhang, Y.; Tian, Z.; Wu, D.; Farrukh, S. Review of performance improvement strategies and technical challenges for ocean thermal energy conversion. Appl. Therm. Eng. 2025, 266, 125506. [Google Scholar] [CrossRef]
- Zou, H.; Wu, L.; Li, W.; Han, F.; Deng, Z. Thermally-induced vibration analysis of tensegrity modules during space deployment using dynamic stiffness method. Int. J. Solids Struct. 2023, 282, 112454. [Google Scholar] [CrossRef]
- Zhao, Y.; Jiang, S.; Wang, L.; Chen, K.; Wang, Y.; Dou, B.; Chen, X.; Wang, Z. Influence of half open coil structures on overall continuous induction heating of variable cross section pipe before quenching. Appl. Therm. Eng. 2025, 261, 125075. [Google Scholar] [CrossRef]
- Fang, J.; Wang, W.; Zhou, Y. Classical and Atomic Gravimetry. Remote Sens. 2024, 16, 2634. [Google Scholar] [CrossRef]
- Salmon, F. Unifying physics theories with a single postulate. Phys. Open 2025, 23, 100258. [Google Scholar] [CrossRef]
- Li, S.P.; Zuo, G.Q.; Zhang, C.L.; Carrera, E.; Chen, W.Q. Recent progress in thermal structures: Materials, structures, and analyses. Compos. Struct. 2025, 359, 119037. [Google Scholar] [CrossRef]
- Demchenko, Y.; Oleg, I.; Vedeneev, V. Experimental investigation of rotational vortex-induced vibrations of a circular cylinder attached to an elastic beam. J. Fluids Struct. 2025, 133, 104266. [Google Scholar] [CrossRef]
- Govardhan, R.N.; Ramesh, O.N. A stroll down Kármán street. Resonance 2005, 10, 25–37. [Google Scholar] [CrossRef]
- Shivamoggi, B.K. Vortex Flows. In Introduction to Theoretical and Mathematical Fluid Dynamics; John Wiley & Sons: Hoboken, NJ, USA, 2021; pp. 143–172. Available online: https://ifind.swansea.ac.uk/permalink/44WHELF_SWA/1jlslid/alma998888258302417 (accessed on 15 May 2025).
- Murari, B.; Zhao, S.; Zhang, Y.; Yang, J. Vortex-induced vibration of a functionally graded metamaterial plate attached to a cylinder in laminar flow. Thin-Walled Struct. 2024, 199, 111790. [Google Scholar] [CrossRef]
- Zhao, L.; Han, T.; Hu, C.; Luo, S.; Zhou, Q.; Cui, W. Pressure and flow patterns during multiple-order vertical vortex-induced vibrations of a 6:1 rectangular cylinder. J. Fluids Struct. 2025, 135, 104314. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, L.; He, C. Flow induced vibration investigation of a main steam pipe suffering from high temperature steam flow. Prog. Nucl. Energy 2022, 143, 104040. [Google Scholar] [CrossRef]
- Feng, Z.; Ye, H.; Lu, Y.; Zhang, H.; Liu, Z.; Huang, W. Flexible intelligent thermal management systems: Sensing devices, signals, and applications. Nano Energy 2025, 138, 110842. [Google Scholar] [CrossRef]
- Randall, R.B.; Antoni, J. Choosing the right signal processing tools for mechanical systems. Mech. Syst. Signal Process. 2025, 224, 112090. [Google Scholar] [CrossRef]
- Madgula, S.; Veeramsetty, V.; Durgam, R. Signal processing approaches for power quality disturbance classification: A comprehensive review. Results Eng. 2025, 25, 104569. [Google Scholar] [CrossRef]
- Chen, R.Y.; Yeun, W.Y.D. Review of the High-Temperature Oxidation of Iron and Carbon Steels in Air or Oxygen. Oxid. Met. 2003, 59, 433–468. [Google Scholar] [CrossRef]
- Hallstrom, S.; Hoglund, L.; Agren, J. Modeling of iron diffusion in the iron oxides magnetite and hematite with variable stoichiometry. Acta Mater. 2010, 59, 53–60. [Google Scholar] [CrossRef]
- Campbell, C.E. Diffusivity and Mobility Data. In ASM Handbook; ASM International: Materials Park, OH, USA, 2009; Volume 22. Available online: https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=854444 (accessed on 14 May 2024).
- Wilkstrom, P.; Blasiak, W.; Du, S.C. A study on oxide scale formation of low carbon steel using thermo gravimetric technique. Ironmak. Steelmak. 2008, 35, 621–632. [Google Scholar] [CrossRef]
- Auinger, M.; Vogel, A.; Praig, V.G.; Danninger, H.; Rohwerder, M. Thermogravimetry and insitu mass spectrometry at high temperatures compared to thermochemical modelling—The weight loss during selective decarburisation at 800 °C. Corros. Sci. 2014, 48, 188–192. [Google Scholar] [CrossRef]
- Birosca, S.; Dingley, D.; Higginson, R.L. Microstructural and microtextural characterization of oxide scale on steel using electron backscatter diffraction. J. Microsc. 2004, 213, 235–240. [Google Scholar] [CrossRef]
- Song, E.J.; Suh, D.W.; Bhadeshia, H.K.D.H. Oxidation of silicon containing steel. Ironmak. Steelmak. 2012, 39, 599–604. [Google Scholar] [CrossRef]
- West, G.D.; Birosca, S.; Higginson, R.L. Phase determination and microstructure of oxide scales formed on steel at high temperature. J. Microsc. 2005, 217, 122–129. [Google Scholar] [CrossRef]
- Lee, J.H.; Noh, W.; Kim, D.; Lee, M. Spallation analysis of oxide scale on low carbon steel. Mater. Sci. Eng. A 2016, 676, 385–394. [Google Scholar] [CrossRef]
- Kalasin, N.N.; Yenchum, S.; Nilsonthi, T. Adhesion behaviour of scales on hot-rolled steel strips produced from continuous casting slabs. Mater. Today Proc. 2018, 5, 9359–9367. [Google Scholar] [CrossRef]
- Sheasby, J.S.; Boggs, W.E.; Turkdogan, E.T. Scale growth on steels at 1200 °C: Rationale of rate and morphology. Met. Sci. 1984, 18, 127–136. [Google Scholar] [CrossRef]
- Basabe, V.; Szpunar, J. Phase Composition of Oxide Scales during Reheating in Hot Rolling of Low Carbon Steel. Steel Res. Int. 2006, 27, 818–824. [Google Scholar] [CrossRef]
- Goodhew, P.J.; Beanland, R.; Humphreys, J. Electrons and their interaction with the specimen. In Electron Microscopy and Analysis, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2014; pp. 20–39. Available online: https://ifind.swansea.ac.uk/permalink/44WHELF_SWA/1sssfk8/alma998280372102417 (accessed on 14 May 2024).
- Torres, M.; Colas, R. A model for heat conduction through the oxide layer of steel during hot rolling. J. Mater. Process. Technol. 2000, 105, 258–263. [Google Scholar] [CrossRef]
- Burke, D.P.; Higginson, R.L. Characterisation of multicomponent scales by electron back scattered diffraction (EBSD). Scr. Mater. 2000, 42, 277–281. [Google Scholar] [CrossRef]
- Entchev, P.B.; Lagoudas, D.C.; Slattery, J.C. Effects of non-planar geometries and volumetric expansion in the modeling of oxidation in titanium. Int. J. Eng. Sci. 2001, 39, 695–714. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, J.; Wan, S.; Yi, G.; Yu, X.; Fan, W.; Jing, W.; Kou, J.; Cheng, Q.; Shan, Y. Effect of microstructure and microtexture evolution of oxide layer over J82B steel on mechanical descaling properties. Mater. Today Commun. 2023, 37, 107079. [Google Scholar] [CrossRef]
- Kaur, I.; Gust, W. Grain and interphase boundary diffusion. In Numerical Data and Functional Relationships in Science and Technology: Group III (Landolt-Bornstein); Mehrer, H., Ed.; Springer: Berlin/Heidelberg, Germany, 1990; Volume 26, pp. 630–708. [Google Scholar]
- Yu, X.; Zhou, J. Grain Boundary in Oxide Scale During High-Temperature Metal Processing. In Study of Grain Boundary Character; Tański, T.A., Borek, W., Eds.; IntechOpen: London, UK, 2017; Available online: https://www.intechopen.com/chapters/52955 (accessed on 14 May 2024).
- Mishin, Y.; Herzig, C. Grain boundary diffusion: Recent progress and future research. Mater. Sci. Eng. A 1999, 260, 55–71. [Google Scholar] [CrossRef]
- Schutze, M. An approach to a global model of the mechanical behaviour of oxide scales. Mater. High Temp. 1994, 12, 237–247. [Google Scholar] [CrossRef]
- Zambrano, O.A.; Coronado, J.J.; Rodriguez, S.A. Mechanical properties and phases determination of low carbon steel oxide scales formed at 1200 °C in air. Surf. Coat. Technol. 2015, 282, 155–162. [Google Scholar] [CrossRef]
- Krzyzanowski, M.; Beynon, J.H. The tensile failure of mild steel oxides under hot rolling conditions. Steel Res. Int. 1999, 70, 22–27. [Google Scholar] [CrossRef]
- Birosca, S.; Higginson, R.L. Phase identification of oxide scale on low carbon steel. Mater. High Temp. 2005, 22, 179–184. [Google Scholar] [CrossRef]
- Krzyzanowski, M.; Beynon, J.H. Modelling the boundary conditions for thermomechanical processing—Oxide scale behaviour and composition effects. Model. Simul. Mater. Sci. Eng. 2000, 8, 927–945. [Google Scholar] [CrossRef]
- Higginson, R.L.; Roebuck, B.; Palmiere, E.J. Texture development in oxide scales on steel substrates. Scr. Mater. 2002, 47, 337–342. [Google Scholar] [CrossRef]
- Mouayd, A.A.; Koltsov, A.; Sutter, E.; Tribollet, B. Effect of silicon content in steel and oxidation temperature on scale growth and morphology. Mater. Chem. Phys. 2014, 143, 996–1004. [Google Scholar] [CrossRef]
- Noh, W.; Lee, J.; Kim, D.; Song, J.; Lee, M. Effects of the residual stress, interfacial roughness and scale thickness on the spallation of oxide scale grown on hot rolled steel sheet. Mater. Sci. Eng. A 2019, 739, 301–316. [Google Scholar] [CrossRef]
- De, P.; Halder, J.; Gowda, C.C.; Kansal, S.; Priya, S.; Anshu, S.; Chowdhury, A.; Mandal, D.; Biswas, S.; Dubey, B.K.; et al. Role of porosity and diffusion coefficient in porous electrode used in supercapacitors—Correlating theoretical and experimental studies. Electrochem. Sci. Adv. 2023, 3, e2100159. [Google Scholar] [CrossRef]
- Krzyzanowski, M.; Beynon, J.H.; Farrugia, D.C.J. A Pivotal Role of Secondary Oxide Scale During Hot Rolling and for Subsequent Product Quality. In Oxide Scale Behaviour in High Temperature Metal Processing; Wiley-VCH Verlag GmbH & Co. KgaA: Weinheim, Germany, 2010; pp. 7–27. [Google Scholar]
- Poirier, D.; Grandmaison, E.; Matovic, M.; Barnes, K.R.; Nelson, B. High Temperature Oxidation of Steel in an Oxygen-Enriched Low NOX Furnace Environment. IFRF Combust. J. 2006. Available online: https://www.academia.edu/19759388/High_Temperature_Oxidation_of_Steel_in_an_Oxygen_enriched_Low_NOX_Furnace_Environment (accessed on 25 August 2022).
- Paul, A. The Kirkendall Effect in Solid-State Diffusion. Ph.D. Thesis, Laboratory of Materials and Interface Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands, 2004. Available online: https://www.phase-trans.msm.cam.ac.uk/2004/Kirkendall.Aloke.pdf (accessed on 26 July 2023).
- Matsuno, F. Blistering and Hydraulic Removal of Scale Films of Rimmed Steel at High Temperature. Iron Steel Inst. Jpn. (ISIJ) Int. 1980, 20, 413–421. [Google Scholar] [CrossRef]
- Weiss, B.; Sturn, J.; Vogslam, S.; Strobl, S.; Mali, H.; Winter, F.; Schenk, J. Structural and morphological changes during reduction of hematite to magnetite and wustite in hydrogen rich reduction gases under fluidised bed conditions. Ironmak. Steelmak. 2011, 38, 65–73. [Google Scholar] [CrossRef]
- He, K.; Zheng, Z.; Chen, Z. A numerical investigation on the hydrogen reduction of wüstite using a 2D mesoscale method. Int. J. Hydrogen Energy 2022, 47, 8118–8129. [Google Scholar] [CrossRef]
- Smith, S.W. Statistics, Probability and Noise. In Digital Signal Processing: A Practical Guide for Engineers and Scientists, 1st ed.; Newnes: Boston, MA, USA, 2003; pp. 11–34. Available online: https://ifind.swansea.ac.uk/permalink/44WHELF_SWA/1jlslid/alma998526144902417 (accessed on 10 January 2025).
- Biglarbeigi, P.; Morelli, A.; Bhattacharya, G.; Ward, J.; Finlay, D.; Bhalla, N.; Payam, A.F. Incongruous Harmonics of Vibrating Solid-Solid Interface. Small 2024, 21, 2409410. [Google Scholar] [CrossRef] [PubMed]
- Terzioglu, F.; Rongong, J.A. Selection of granular damper parameters to achieve optimum vibration attenuation on vibrating structures. Mech. Syst. Signal Process. 2025, 229, 112512. [Google Scholar] [CrossRef]
P235GH | C | Si | Mn | P | S | Cr | Ni | Al | Cu | Nb |
---|---|---|---|---|---|---|---|---|---|---|
% wt | ≤0.16 | 0.35 | ≤1.20 | 0.025 | 0.020 | 0.30 | 0.30 | 0.020 | 0.30 | 0.010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kendall, M.; Auinger, M.; Robinson, C.L.J.; Owen, C.; Sackett, E. In Situ Thermogravimetric Analysis of Curved Surfaces During High-Temperature Oxidation. Materials 2025, 18, 2463. https://doi.org/10.3390/ma18112463
Kendall M, Auinger M, Robinson CLJ, Owen C, Sackett E. In Situ Thermogravimetric Analysis of Curved Surfaces During High-Temperature Oxidation. Materials. 2025; 18(11):2463. https://doi.org/10.3390/ma18112463
Chicago/Turabian StyleKendall, Megan, Michael Auinger, Cadyn L. J. Robinson, Chris Owen, and Elizabeth Sackett. 2025. "In Situ Thermogravimetric Analysis of Curved Surfaces During High-Temperature Oxidation" Materials 18, no. 11: 2463. https://doi.org/10.3390/ma18112463
APA StyleKendall, M., Auinger, M., Robinson, C. L. J., Owen, C., & Sackett, E. (2025). In Situ Thermogravimetric Analysis of Curved Surfaces During High-Temperature Oxidation. Materials, 18(11), 2463. https://doi.org/10.3390/ma18112463