Application of Modified Natural Zeolite—Clinoptilolite for Bacterial Control in the Environment
Abstract
1. Introduction
2. Structural Features of Natural Zeolites
3. Modification of Natural Clinoptilolite
3.1. Modification with Transition Metal Cations
3.2. Modification with Nano Oxide Particles
3.3. Modification with Organic Species
4. Practical Application of Modified NZ in a Real Environment
Health Protection
5. Factors That Influence the Antibacterial Activity of Functionalized NZ
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Munk, P.; Brinch, C.; Moller, F.D.; Petersen, T.N.; Hendriksen, R.S.; Seyfarth, A.M.; Kjeldgaard, J.S.; Svendsen, C.A.; van Bunnik, B.; Berglund, F.; et al. Genomic analysis of sewage from 101 countries reveals global landscape of antimicrobial resistance. Nat Commun. 2022, 13, 7251. [Google Scholar] [CrossRef]
- Rozman, U.; Pušnik, M.; Kmetec, S.; Duh, D.; Šostar Turk, S. Reduced Susceptibility and Increased Resistance of Bacteria against Disinfectants: A Systematic Review. Microorganisms 2021, 10, 2550. [Google Scholar] [CrossRef] [PubMed]
- Pavlović, J.; Hrenović, J.; Povrenović, D.; Rajić, N. Advances in the Applications of Clinoptilolite-Rich Tuffs. Materials 2024, 17, 1306. [Google Scholar] [CrossRef] [PubMed]
- Hrenović, J.; Zeljezić, D.; Kopjar, N.; Sarpola, A.; Bronić, J.; Sekovanić, L. Antimicrobial activity of commercial zeolite A on Acinetobacter junii and Saccharomyces cerevisiae. J. Hazard. Mater. 2010, 183, 655–663. [Google Scholar] [CrossRef]
- Allen, H.E.; Cho, S.H.; Neubecker, T.A. Ion exchange and hydrolysis of Type A zeolite in natural waters. Water Res. 1983, 17, 1871–1879. [Google Scholar] [CrossRef]
- Peixoto, P.; Guedes, J.F.; Rombi, E.; Fonseca, A.M.; Aguiar, C.A.; Neves, I.C. Metal Ion–Zeolite Materials against Resistant Bacteria, MRSA. Ind. Eng. Chem. Res. 2021, 60, 12883–12892. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef]
- Rodríguez-Melcón, C.; Alonso-Calleja, C.; García-Fernández, C.; Carballo, J.; Capita, R. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) for Twelve Antimicrobials (Biocides and Antibiotics) in Eight Strains of Listeria monocytogenes. Biology 2022, 11, 46. [Google Scholar] [CrossRef]
- Morris-Schaffer, K.; McCoy, M.J. A Review of the LD50 and Its Current Role in Hazard Communication. ACS Chem. Health Saf. 2021, 28, 25. [Google Scholar] [CrossRef]
- European Committee on Antimicrobial Susceptibility Testing (EUCAST). EUCAST Reading Guide; Version 15.0; EUCAST: Vaxjo, Sweden, 2025. [Google Scholar]
- Sobuś, N.; Czekaj, I.; Dychuk, V.; Kobasa, I.M. Characteristics of the structure of natural zeolites and their potential application in catalysis and adsorption processes. Tech. Trans. 2020, 117, 043. [Google Scholar] [CrossRef]
- Chen, G.; Liu, G.; Pan, Y.; Liu, G.; Gu, X.; Jin, W.; Xu, N. Zeolites and metal-organic frameworks for gas separation: The possibility of translating adsorbents into membranes. Chem. Soc. Rev. 2023, 52, 4586–4602. [Google Scholar] [CrossRef]
- Moustafa, M.; Zagho, M.M.; Hassan, M.K.; Khraisheh, M.; Al Ali Al-Maadeed, M.; Nazarenko, S. A review on recent advances in CO2 separation using zeolite and zeolite-like materials as adsorbents and fillers in mixed matrix membranes (MMMs). Chem. Eng. J. Adv. 2021, 6, 100091. [Google Scholar]
- Morante-Carballo, F.; Montalván-Burbano, N.; Carrión-Mero, P.; Espinoza-Santos, N. Cation Exchange of Natural Zeolites: Worldwide Research. Sustainability 2021, 13, 7751. [Google Scholar] [CrossRef]
- Kumari, S.; Chowdhry, J.; Kumar, M.; Chandra Garg, M. Zeolites in wastewater treatment: A comprehensive review on scientometric analysis, adsorption mechanisms, and future prospects. Environ. Res. 2024, 260, 119782. [Google Scholar] [CrossRef] [PubMed]
- Meiramkulova, K.; Kydyrbekova, A.; Devrishov, D.; Nurbala, U.; Tuyakbayeva, A.; Zhangazin, S.; Ualiyeva, R.; Kolpakova, V.; Yeremeyeva, Y.; Mkilima, T. Comparative Analysis of Natural and Synthetic Zeolite Filter Performance in the Purification of Groundwater. Water 2023, 15, 588. [Google Scholar] [CrossRef]
- Król, M.; Dechnik, J.; Szymczak, P.; Handke, B.; Szumera, M.; Stoch, P. Thermal Behavior of Clinoptilolite. Crystals 2024, 14, 646. [Google Scholar] [CrossRef]
- Carotenuto, G.; Camerlingo, C. Kinetic investigation of water physisorption on natural clinoptilolite at room temperature. Microporous Mesoporous Mater. 2020, 302, 110238. [Google Scholar] [CrossRef]
- Erdoğan, A.B.; Sakizci, M.; Yörükoğullari, E. Adsorption of Sulphur Dioxide Using Natural and Modified Gördes Clinoptilolites. Adsorpt. Sci. Technol. 2011, 29, 413–422. [Google Scholar]
- Carotenuto, G. How ‘Hydrophilic Sites’ Work in Water Adsorption/Desorption by Natural Clinoptilolite. EJERS 2019, 4, 183–189. [Google Scholar]
- Misaelides, P. Application of natural zeolites in environmental remediation: A short review. Microporous Mesoporous Mater. 2011, 144, 15–18. [Google Scholar] [CrossRef]
- Pavlović, J.; Rajić, N. Clinoptilolite—An Efficient Carrier for Catalytically Active Nano Oxide Particles. Minerals 2023, 13, 877. [Google Scholar] [CrossRef]
- Pavlović, J.; Novak Tušar, N.; Rajić, N. Synthesis and Photocatalytic Efficacy of Distinct Nano-Oxides in the Breakdown of Organic Contaminants. Catalysts 2024, 14, 771. [Google Scholar] [CrossRef]
- Grifasi, N.; Ziantoni, B.; Fino, D.; Piumetti, M. Fundamental properties and sustainable applications of the natural zeolite clinoptilolite. Environ. Sci. Pollut. Res. 2024, 1–36. [Google Scholar] [CrossRef] [PubMed]
- Younas, F.; Bibi, I.; Zulfqar, A.; Shahid, M.; Bilal, S.M.; Mahroz, H.M.; Niazi, N.K.; Nawaz, M.F. Environmental Applications of Natural and Surface-Modified Zeolite. In Clay Composites; Advances in Material Research and Technology; Vithanage, M., Lazzara, G., Rajapaksha, A.U., Eds.; Springer: Singapore, 2023; pp. 373–396. [Google Scholar] [CrossRef]
- Ambrozova, P.; Kynicky, J.; Urubek, T.; Nguyen, V.D. Synthesis and Modification of Clinoptilolite. Molecules 2017, 22, 1107. [Google Scholar] [CrossRef]
- Oheix, E.; Jean Daou, T.; Pieuchot, L. Antimicrobial zeolites and metal–organic frameworks. Mater. Horiz. 2024, 11, 6222–6256. [Google Scholar] [CrossRef]
- Saidina, S.; Jumata, M.A.; Aminc, N.A.A.M.; Al-Hammadi, A.S.S. Organic and inorganic antibacterial approaches in combating bacterial infection for biomedical application. Mater. Sci. Eng. C 2021, 118, 1113. [Google Scholar] [CrossRef]
- Nikolov, A.; Dobreva, L.; Danova, S.; Miteva-Staleva, J.; Krumova, E. Natural and Modified Zeolite Clinoptilolite with Antimicrobial Properties: A Review. Acta Microbiol. Bulg. 2023, 39, 147–161. [Google Scholar] [CrossRef]
- Mintcheva, N.; Panayotova, M.; Gicheva, G.; Gemishev, O.; Tyuliev, G. Effect of Exchangeable Ions in Natural and Modified Zeolites on Ag Content, Ag Nanoparticle Formation and Their Antibacterial Activity. Materials 2021, 14, 4153. [Google Scholar] [CrossRef]
- Top, A.; Ülkü, S. Silver, zinc, and copper exchange in a Na-clinoptilolite and resulting effect on antibacterial activity. App. Clay Sci. 2004, 27, 13–19. [Google Scholar] [CrossRef]
- Hrenović, J.; Milenković, J.; Ivanković, T.; Rajić, N. Antibacterial activity of heavy metal-loaded natural zeolite. J. Hazard. Mater. 2012, 201–202, 260–264. [Google Scholar] [CrossRef]
- Milenković, J.; Hrenović, J.; Matijašević, D.; Nikšić, M.; Rajić, N. Bactericidal activity of Cu−, Zn−, and Ag-containing zeolites toward Escherichia coli isolates. Environ. Sci. Pollut. Res. 2017, 24, 20273–20281. [Google Scholar] [CrossRef] [PubMed]
- Ivankovic, T.; Dikic, J.; Rolland du Roscoat, S.; Dekic, S.; Hrenović, J.; Ganjto, M. Removal of emerging pathogenic bacteria using metal-exchanged natural zeolite bead filter. Water Sci. Technol. 2019, 80, 1085–1098. [Google Scholar] [CrossRef] [PubMed]
- Hrenovic, J.; Milenkovic, J.; Goic-Barisic, I.; Rajic, N. Antibacterial activity of modified natural clinoptilolite against clinical isolates of Acinetobacter baumannii. Microporous Mesoporous Mater. 2013, 169, 148–152. [Google Scholar] [CrossRef]
- De la Rosa-Gómez, I.; Olguín, M.T.; Alcántara, D. Bactericides of coliform microorganisms from wastewater using silver-clinoptilolite rich tuffs. App. Clay Sci. 2008, 40, 45–53. [Google Scholar] [CrossRef]
- Król, M.; Syguła-Cholewińska, J.; Sawoszczuk, T. Zeolite-Supported Aggregate as Potential Antimicrobial Agents in Gypsum Composites. Materials 2022, 15, 3305. [Google Scholar] [CrossRef] [PubMed]
- Akhigbe, L.; Ouki, S.; Saro, D. Removal of Escherichia coli and heavy metals from aqueous solutions using silver-modified clinoptilolite. Desalin. Water Treat. 2015, 55, 777–782. [Google Scholar] [CrossRef]
- Milenković, J.K.; Hrenović, J.J.; Goić-Barišić, I.S.; Tomić, M.D.; Rajić, N.Z. Antibacterial activity of copper-containing clinoptilolite/PVC composites toward clinical isolate of Acinetobacter baumannii. J. Serb. Chem. Soc. 2015, 80, 819–826. [Google Scholar] [CrossRef]
- Haile, T.; Nakhla, G. The inhibitory effect of antimicrobial zeolite on the biofilm of Acidithiobacillus thiooxidans. Biodegradation 2010, 21, 123–134. [Google Scholar] [CrossRef]
- Cowan, M.M.; Abshire, K.Z.; Houk, S.L.; Evans, S.M. Antimicrobial efficacy of a silver-zeolite matrix coating on stainless steel. J. Ind. Microbiol. Biotechnol. 2003, 30, 102–106. [Google Scholar] [CrossRef]
- İyigündoğdu, Z.; Demirci, S.; Bac, N.; Şahin, F. Development of durable antimicrobial surfaces containing silver- and zinc-ion–exchanged zeolites. Turk. J. Biol. 2014, 38, 420–427. [Google Scholar] [CrossRef]
- Narin, G.; Albayrak, C.B.; Ülkü, S. Preparation and characterization of antibacterial cobalt- exchanged natural zeolite/poly(vinyl alcohol) hydrogels. J. Sol-Gel Sci. Technol. 2014, 69, 214–230. [Google Scholar] [CrossRef]
- Yang, W.J.; Shen, C.C.; Ji, Q.L.; An, H.J.; Wang, J.J.; Liu, Q.D.; Zhang, Z.Z. Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA. Nanotechnology 2009, 20, 085102. [Google Scholar] [CrossRef] [PubMed]
- Rizzello, L.; Pompa, P.P. Nanosilver-based antibacterial drugs and devices: Mechanisms, methodological drawbacks, and guidelines. Chem. Soc. Rev. 2014, 43, 1501–1518. [Google Scholar] [CrossRef]
- Dikić, J.; Hrenović, J.; Durn, G.; Kovačić, A.; Rajić, N. Antibacterial activity of metal-containing clinoptilolite in natural seawater. Desalin. Water Treat. 2019, 170, 75–79. [Google Scholar] [CrossRef]
- Cerrillo, J.L.; Palomares, A.E.; Rey, F. Silver exchanged zeolites as bactericidal additives in polymeric materials. Microporous Mesoporous Mater. 2020, 305, 110367. [Google Scholar] [CrossRef]
- Azizi-Lalabadi, M.; Alizadeh-Sani, M.; Khezerlou, A.; Mirzanajafi-Zanjani, M.; Zolfaghari, H.; Bagheri, V.; Divband, B.; Ehsani, A. Nanoparticles and Zeolites: Antibacterial Effects and their Mechanism against Pathogens. Curr. Pharm. Biotechnol. 2019, 20, 1074–1086. [Google Scholar] [CrossRef]
- Besinis, A.; De Peralta, T.; Handy, R.D. The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicology 2014, 8, 1–16. [Google Scholar] [CrossRef]
- Azizi-Lalabadi, M.; Ehsani, A.; Divband, B.; Alizadeh-Sani, M. Antimicrobial activity of Titanium dioxide and Zinc oxide nanoparticles supported in 4A zeolite and evaluation the morphological characteristic. Sci. Rep. 2019, 9, 17439. [Google Scholar] [CrossRef]
- Alswat, A.A.; Ahmad, M.B.; Saleh, T.A.; Hussein, M.Z.B.; Ibrahim, N.A. Effect of zinc oxide amounts on the properties and antibacterial activities of zeolite/zinc oxide nanocomposite. Mater. Sci. Eng. C Matter Biol. Appl. 2016, 68, 505–511. [Google Scholar] [CrossRef]
- Li, M.; Wu, L.; Zhang, Z.; Mai, K. Preparation of ZnO-supported 13X zeolite particles and their antimicrobial mechanism. J. Mater. Res. 2017, 32, 4232–4240. [Google Scholar] [CrossRef]
- Hrenovic, J.; Milenkovic, J.; Daneu, N.; Matonickin Kepcija, R.; Rajic, N. Antimicrobial activity of metal oxide nanoparticles supported onto natural clinoptilolite. Chemosphere 2012, 88, 1103–1107. [Google Scholar] [CrossRef] [PubMed]
- Du, B.D.; Phu, D.V.; Quoc, L.E.; Hien, N.Q. Synthesis and Investigation of Antimicrobial Activity of Cu2O Nanoparticles/Zeolite. J. Nanopart. 2017, 2017, 7056864. [Google Scholar] [CrossRef]
- Bezza, F.A.; Tichapondwa, S.M.; Chirwa, E.M.C. Fabrication of Monodispersed Copper Oxide Nanoparticles with Potential Application as Antimicrobial Agents. Sci. Rep. 2020, 10, 16680. [Google Scholar] [CrossRef] [PubMed]
- Kamila, E.A.; Abidin, Z.; Arief, I.I.; Trivadila, T. Synthesis, Characterization, Antibacterial Activity, and Potential Water Filter Application of Copper Oxide/Zeolite Composite. Makara J. Sci. 2023, 27, 186–193. [Google Scholar]
- Romero, L.M.; Araya, N.; Palacio, D.A.; Sánchez-Sanhueza, G.A.; Pérez-Tijerina, E.; Solís, F.J.; Meléndrez, M.F.; Medina, C. Study of the Antibacterial Capacity of a Biomaterial of Zeolites Saturated with Copper Ions (Cu2+) and Supported with Copper Oxide (CuO) Nanoparticles. Nanomaterials 2023, 13, 2140. [Google Scholar] [CrossRef]
- Romero, L.M.; Palacio, D.A.; Esquivel, S.; Sánchez-Sanhueza, G.A.; Montaño, M.; Rojas, D.; Jaramillo, A.F.; Medina, C.; Montalba, C.; Meléndrez, M.F. Contact antibacterial and biocompatible polymeric, composite with copper zeolite filler and copper oxide, nanoparticles: A step towards new raw materials for the biomedical industry. Polymer 2024, 316, 127795. [Google Scholar] [CrossRef]
- Ma, Y.; Hou, J. Preparation and Antibacterial Activity of Nano Copper Oxide- Loaded Zeolite 10X. Int. J. Mol. Sci. 2022, 23, 8421. [Google Scholar] [CrossRef]
- Ribeiro, A.C.; de Oliveira, A.M.; Laiza, B.B.; Diório, A.; Magalhães-Ghiotto, G.A.V.; de Abreu Filho, B.A.; da Costa Neves, E.; de Almeida Duarte, F.; Bergamasco, R. Antibacterial activity of functionalized natural zeolites (NZ-AgNPs) and its application in bacteriological water treatment and commercial paints. Environ. Nanotechnol. Monit. Manag. 2024, 22, 101001. [Google Scholar] [CrossRef]
- Lima, E.; Guerra, R.; Lara, V. Gold nanoparticles as efficient antimicrobial agents for Escherichia coli and Salmonella typhi. Chem. Cent. J. 2013, 7, 11. [Google Scholar] [CrossRef]
- Ivanković, T.; Hrenović, J. Surfactants in the environment. Arh. Hig. Rada. Toksikol. 2010, 61, 95–110. [Google Scholar] [CrossRef]
- Hrenovic, J.; Rozic, M.; Sekovanic, L.; Anic-Vucinic, A. Interaction of surfactant-modified zeolites and phosphate accumulating bacteria. J. Hazard. Mater. 2008, 156, 576–582. [Google Scholar] [CrossRef] [PubMed]
- Reeve, P.J.; Fallowfield, H.J. Natural and surfactant modified zeolites: A review of their applications for water remediation with a focus on surfactant desorption and toxicity towards microorganisms. J. Environ. Manag. 2018, 205, 253–261. [Google Scholar] [CrossRef]
- Marchese, A.; Orhan, I.E.; Daglia, M.; Barbieri, R.; Di Lorenzo, A.; Nabavi, S.F.; Gortzi, O.; Izadi, M.; Nabavi, S.M. Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chem. 2016, 1, 402–414. [Google Scholar] [CrossRef]
- Gan, C.; Langa, E.; Ballestero, D.; Pino-Otín, M.R. Comparative ecotoxicity assessment of highly bioactive isomeric monoterpenes carvacrol and thymol on aquatic and edaphic indicators and communities. Chemosphere 2024, 368, 143666. [Google Scholar] [CrossRef]
- Dikić, J.; Lukic, I.; Pajnik, J.; Pavlovic, J.; Hrenovic, J.; Rajic, N. Antibacterial activity of thymol/carvacrol and clinoptilolite composites prepared by supercritical solvent impregnation. J. Porous Mate. 2021, 28, 1577–1584. [Google Scholar] [CrossRef]
- Kalebić, B.; Pavlović, J.; Dikić, J.; Rečnik, A.; Gyergyek, S.; Škoro, N.; Rajić, N. Use of Natural Clinoptilolite in the Preparation of an Efficient Adsorbent for Ciprofloxacin Removal from Aqueous Media. Minerals 2021, 11, 518. [Google Scholar] [CrossRef]
- Jevtić, S.; Grujić, S.; Hrenović, J.; Rajić, N. Surfactant-modified clinoptilolite as a salicylate carrier, salicylate kinetic release and its antibacterial activity. Microporous Mesoporous Mater. 2012, 159, 30–35. [Google Scholar] [CrossRef]
- Liang, Y.; Jie, G.; Changfeng, Z.; Lixiong, Z. Preparation of zeolite-A/chitosan hybrid composites and their bioactivities and antimicrobial activities. Mater. Sci. Eng. C Matter Biol. Appl. 2013, 33, 3652–3660. [Google Scholar]
- Tegl, G.; Stagl, V.; Mensah, A.; Huber, D.; Somitsch, W.; Grosse-Kracht, S.; Guebitz, G.M.G. The chemo enzymatic functionalization of chitosan zeolite particles provides antioxidant and antimicrobial properties. Eng. Life Sci. 2018, 18, 334–340. [Google Scholar] [CrossRef]
- Jiménez-Reyes, M.; Almazán-Sánchez, P.T.; Almazán-Sánchez, M.; Solache-Ríos, M. Radioactive waste treatments by using zeolites. A short review. J. Environ. Rad. 2021, 233, 106610. [Google Scholar] [CrossRef]
- Sinegani, A.A.S.; Noroozi, O. Effect of dosage and particle size of natural zeolite on the survival of Escherichia coli in soil. J. Water Environ. Nanotechnol. 2019, 4, 296. [Google Scholar]
- Hrenovic, J.; Dekic, S.; Dikic, J.; Kazazic, S.; Durn, G.; Rajic, N. Metal-loaded zeolite remediation of soils contaminated with pandrug-resistant Acinetobacter baumannii. Arh. Hig. Rada Toksikol. 2020, 71, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Setlow, P. Spore Resistance Properties. Microbiol. Spectr. 2014, 2, 201–215. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, C.S.; Bech, T.B. Soil survival of Salmonella and transfer to freshwater and fresh produce. Int. Food Res. 2012, 45, 557–566. [Google Scholar] [CrossRef]
- Sepehrnia, N.; Mahboubi, A.A.; Mosaddeghi, M.R.; Safari Sinejani, A.A.; Khodakaramian, G. Retention modes of manure-fecal coliforms in soil under saturated hydraulic condition. J. Environ. Manag. 2018, 227, 209–215. [Google Scholar] [CrossRef]
- Chee-Sanford, J.C.; Mackie, R.I.; Koike, S.; Krapac, I.G.; Lin, Y.-F.; Yannarell, A.C.; Maxwell, S.; Aminov, R.I. Fate and Transport of Antibiotic Residues and Antibiotic Resistance Genes following Land Application of Manure Waste. J. Environ. Qual. 2009, 38, 1086–1108. [Google Scholar] [CrossRef]
- Xu, C.; Kong, L.; Gao, H.; Cheng, X.; Wang, X. A Review of Current Bacterial Resistance to Antibiotics in Food Animals. Front Microbiol. 2022, 12, 822689. [Google Scholar] [CrossRef]
- Levy, S.B.; Marshall, B. Antibacterial resistance worldwide: Causes, challenges and responses. Nat. Med. 2004, 10, 122–129. [Google Scholar] [CrossRef]
- Guber, A.K.; Shelton, D.R.; Pachepsky, Y.A. Transport and Retention of Manure-Borne Coliforms in Soil. Vadose Zone J. 2005, 4, 828–837. [Google Scholar] [CrossRef]
- Noroozi, O.; Sinegani, A.A.S.; Farhangi, M.B. Escherichia coli transport through soil columns amended with nano-zeolite and cow manure. Ecohydrol. Hydrobiol. 2025, 25, 115–125. [Google Scholar] [CrossRef]
- Oliver, D.M.; Clegg, D.M.; Haygarth, P.M.; Heathwaite, A.L. Assessing the Potential for Pathogen Transfer from Grassland Soils to Surface Waters. Adv. Agron. 2005, 85, 125–180. [Google Scholar]
- Javaid, A.; Munir, N.; Abideen, Y.; Siddiqui, Z.S.; Yong, J.W.H. The role of natural and synthetic zeolites as soil amendments for mitigating the negative impacts of abiotic stresses to improve agricultural resilience. Plant Stress 2024, 14, 100627. [Google Scholar] [CrossRef]
- Özogul, F.; Šimat, V.; Gokdogan, S.; Regenstein, J.M.; Özogul, Y. Effect of Natural Zeolite (clinoptilolite) on in vitro Biogenic Amine Production by Gram Positive and Gram Negative Pathogens. Front. Microbiol. 2018, 9, 2585. [Google Scholar] [CrossRef] [PubMed]
- Sarabi, A.; Nizet, S.; Röhrich, A.; Tschegg, C. Unveiling the Broad-Spectrum Virucidal Potential of Purified Clinoptilolite-Tuff. Microorganisms 2024, 12, 1572. [Google Scholar] [CrossRef] [PubMed]
- Kraljević Pavelić, S.; Simović Medica, J.; Gumbarević, D.; Filosević, A.; Przulj, N.; Pavelić, K. Critical review on zeolite clinoptilolite safety and medical applications in vivo. Front. Pharmacol. 2018, 9, 1350. [Google Scholar] [CrossRef] [PubMed]
- Cerri, G.; Farina, M.; Brundu, A.; Dakovic, A.; Giunchedi, P.; Gavini, E.; Rassu, G. Natural zeolites for pharmaceutical formulations: Preparation and evaluation of a clinoptilolite-based material. Microporous Mesoporous Mater. 2016, 223, 58–67. [Google Scholar] [CrossRef]
- Kukobat, R.; Škrbić, R.; Vallejos-Burgos, F.; Mercadelli, E.; Gardini, D.; Silvestroni, L.; Zanelli, C.; Esposito, L.; Stević, D.; Gotovac Atlagić, S.; et al. Enhanced dissolution of anticancer drug letrozole from mesoporous zeolite clinoptilolite. J. Colloid Interface Sci. 2024, 653, 170–178. [Google Scholar] [CrossRef]
- Vargas, A.M.; Cipagauta-Ardila, C.C.; Molina-Velasco, D.R.; Ríos-Reyes, C.A. Surfactant-modified natural zeolites as carriers for diclofenac sodium release: A preliminary feasibility study for pharmaceutical applications. Mater. Chem. Phys. 2020, 256, 123644. [Google Scholar] [CrossRef]
- Rodríguez-Fuentes, G.; Barrios, M.A.; Iraizoz, A.; Perdomo, I.; Cedré, B. Enterex: Anti-diarrheic drug based on purified natural clinoptilolite. Zeolites 1997, 19, 441–448. [Google Scholar] [CrossRef]
- Mauro Gavini, F.E.; Brundu, A.; Bonferoni, M.C.; Juliano, C.; Rassu, G.; Cerri, G. Antibacterial activity of Na-clinoptilolite against Helicobacter pylori: In-vitro tests, synergistic effect with amoxicillin and stability of the antibiotic formulated with the zeolite. Microporous Mesoporous Mater. 2019, 288, 109592. [Google Scholar]
- Pond, W.G.; Yen, J.T.; Hill, D.A. Decreased Absorption of Orally Administered Ammonia by Clinoptilolite in Rats (41076). Proc. Soc. Exp. Biol. Med. 1981, 166, 369–373. [Google Scholar] [CrossRef]
- Deinsberger, J.; Meisslitzer, C.; Marquart, E.; Nizet, S.; Gouya, G.; Tschegg, C.; Uspenska, K.; Wolzt, M.; Niederdöckl, J.; Freissmuth, M.; et al. Topically administered purified clinoptilolite-tuff for the treatment of cutaneous wounds: A prospective, randomised phase I clinical trial. Wound Repair Regen. 2022, 30, 198–209. [Google Scholar] [CrossRef] [PubMed]
- El-Kasaby, A.; Nanoff, C.; Nizet, S.; Tschegg, C.; Freissmuth, M. Purified Clinoptilolite-Tuff as a Trap for Amines Associated with Chronic Wounds: Binding of Cadaverine, Putrescine, Histamines and Polyamines. Sci. Pharm. 2025, 93, 7. [Google Scholar] [CrossRef]
- Li, Y.; Li, H.; Zhou, L.; Shentu, J.; Zhang, X.; Fan, J. Hemostatic Efficiency and Wound Healing Properties of Natural Zeolite Granules in a Lethal Rabbit Model of Complex Groin Injury. Materials 2012, 5, 2586–2596. [Google Scholar] [CrossRef]
- Hubner, P.; Donati, N.; de Menezes Quines, L.K.; Tessaro, I.C.; Marcilio, N.R. Gelatin-based films containing clinoptilolite-Ag for application as wound dressing. Mater. Sci. Eng. C 2020, 107, 110215. [Google Scholar] [CrossRef] [PubMed]
- Viseras, C.; Carazo, E.; Borrego-Sánchez, A.; García-Villén, F.; Sánchez-Espejo, R.; Cerezo, P.; Aguzzi, C. Clay Minerals in Skin Drug Delivery. Clays Clay Miner. 2019, 67, 59–71. [Google Scholar] [CrossRef]
- Grancarić, A.M.; Tarbuk, A.; Kovaček, I. Nanoparticles of acticated natural zeolite on textiles for protection and therapy. Chem. Ind. Chem. Eng. Q. 2009, 15, 203–210. [Google Scholar] [CrossRef]
- Park, S.; Park, H.H.; Ko, Y.-S.; Lee, S.J.; Le, S.; Woo, K.; Ko, G.P. Disinfection of various bacterial pathogens using novel silver nanoparticle-decorated magnetic hybrid colloids. Sci. Total. Environ. 2017, 609, 289. [Google Scholar] [CrossRef]
- Dekić, S.; Hrenović, J.; Ivanković, T.; van Wilpe, E. Survival of ESKAPE pathogen Acinetobacter baumannii in water of different temperatures and pH. Water Sci. Technol. 2018, 78, 1370–1376. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hrenović, J.; Rajić, N. Application of Modified Natural Zeolite—Clinoptilolite for Bacterial Control in the Environment. Materials 2025, 18, 2411. https://doi.org/10.3390/ma18102411
Hrenović J, Rajić N. Application of Modified Natural Zeolite—Clinoptilolite for Bacterial Control in the Environment. Materials. 2025; 18(10):2411. https://doi.org/10.3390/ma18102411
Chicago/Turabian StyleHrenović, Jasna, and Nevenka Rajić. 2025. "Application of Modified Natural Zeolite—Clinoptilolite for Bacterial Control in the Environment" Materials 18, no. 10: 2411. https://doi.org/10.3390/ma18102411
APA StyleHrenović, J., & Rajić, N. (2025). Application of Modified Natural Zeolite—Clinoptilolite for Bacterial Control in the Environment. Materials, 18(10), 2411. https://doi.org/10.3390/ma18102411