Comprehensive Study on Design Optimization and Retardation Mechanism of SS-GGBS-FA Ternary Geopolymer Mortar
Abstract
:1. Introduction
2. Raw Materials and Experiment Methods
2.1. Raw Materials
2.2. Mix Design
2.3. Geopolymer Preparation
2.3.1. Alkaline Activator Preparation
2.3.2. Exploration of the Different Mixing Methods on Geopolymer Properties
2.4. Test Methods
2.4.1. Fluidity
2.4.2. Setting Time
2.4.3. Hydration Heat
2.4.4. Micro-Analysis
3. Results and Discussion
3.1. Mix Proportion Optimization
3.1.1. Effect of Steel Slag Content on Setting Time
3.1.2. Effect of Steel Slag Content on Compressive Strength
3.1.3. Effect of GGBS/FA Mass Ratio on Setting Time
3.1.4. Effect of GGBS/FA Mass Ratio on Compressive Strength
3.2. Effect of BaCl2 on Ternary Geopolymer Mortar
3.2.1. Effect of BaCl2 Mixing Method on the Setting Time of TGM
3.2.2. Effect of BaCl2 Dosage on the Workability of TGM
3.2.3. Effect of BaCl2 Dosage on the Compressive Strength of TGM
3.3. Heat of Hydration Analysis
3.4. Microstructural Analysis
3.4.1. XRD Analysis
3.4.2. SEM-EDS Analysis
3.5. Retarding Mechanism of BaCl2 Under Method C
4. Conclusions
- Incorporating high-alkalinity steel slag significantly accelerates the setting of TGM but reduces its compressive strength. At 60% SS content, the initial and final setting times are reduced to 8 and 19 min, respectively. Moreover, excessive steel slag leads to a rapid decline in compressive strength.
- Increasing the GGBS/FA mass ratio shortens the setting time of the TGM while significantly improving its compressive strength. As the GGBS/FA ratio increases from 1:5 to 5:1, the 7-day and 28-day compressive strengths increase by 227.8% and 130.1%, respectively.
- The BaCl2 mixing method and dosage strongly influence the setting behavior of TGM. Method C (pre-coating) shows the best retardation performance by forming a BaSiO3 layer around precursor particles, effectively delaying the setting time. Under Method C, both initial and final setting times increase markedly with higher BaCl2 dosages.
- XRD, SEM, and EDS analyses indicate that under the C mixing method, BaCl2 forms a BaSiO3 precipitate layer that encapsulates the precursor particles. This encapsulation delays the early-stage hydration reactions and reduces the formation of early hydration products.
- The BaSiO3 precipitate layer formed under Method C retards the reaction through a dual mechanism: it physically hinders the interaction between the alkali activator and precursor particles, and chemically reduces the alkalinity by consuming SiO32− ions, thus delaying the depolymerization–polymerization process.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miranda, T.; Leitão, D.; Oliveira, J.; Corrêa-Silva, M.; Araújo, N.; Coelho, J.; Fernández-Jiménez, A.; Cristelo, N. Application of Alkali-Activated Industrial Wastes for the Stabilisation of a Full-Scale (Sub)Base Layer. J. Clean. Prod. 2020, 242, 118427. [Google Scholar] [CrossRef]
- Shi, C.; Jiménez, A.F.; Palomo, A. New Cements for the 21st Century: The Pursuit of an Alternative to Portland Cement. Cem. Concr. Res. 2011, 41, 750–763. [Google Scholar] [CrossRef]
- Hassan, A.; Arif, M.; Shariq, M. Use of Geopolymer Concrete for a Cleaner and Sustainable Environment—A Review of Mechanical Properties and Microstructure. J. Clean. Prod. 2019, 223, 704–728. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, Y.; Shi, Z.; Li, Z. Properties and Mechanisms of Geopolymers Constructed from Polymerized CGP-OSA- GGBS Ternary-Based Solid Wastes. Constr. Build. Mater. 2024, 450, 138710. [Google Scholar] [CrossRef]
- Gao, X.; Yu, Q.L.; Brouwers, H.J.H. Properties of Alkali Activated Slag–Fly Ash Blends with Limestone Addition. Cem. Concr. Compos. 2015, 59, 119–128. [Google Scholar] [CrossRef]
- Gao, W. Comprehensive Utilization of Steel Slag: A Review. Powder Technol. 2023, 422, 118449. [Google Scholar] [CrossRef]
- Wang, J.; Chang, L.; Wang, Y.; Liu, H.; Yue, D.; Cui, S.; Lan, M. Research status of improving cementitious activity and volume stability of steel slag. Mater. Rep. 2023, 37, 21100032. [Google Scholar]
- Guo, J.; Bao, Y.; Wang, M. Steel Slag in China: Treatment, Recycling, and Management. Waste Manag. 2018, 78, 318–330. [Google Scholar] [CrossRef]
- Song, W.; Zhu, Z.; Peng, Y.; Wan, Y.; Xu, X.; Pu, S.; Song, S.; Wei, Y. Effect of Steel Slag on Fresh, Hardened and Microstructural Properties of High-Calcium Fly Ash Based Geopolymers at Standard Curing Condition. Constr. Build. Mater. 2019, 229, 116933. [Google Scholar] [CrossRef]
- Wang, Q.; Yan, P.; Mi, G. Effect of Blended Steel Slag–GBFS Mineral Admixture on Hydration and Strength of Cement. Constr. Build. Mater. 2012, 35, 8–14. [Google Scholar] [CrossRef]
- Long, Q.; Liu, Y.; Zhao, Q.; Zhou, M.; Li, B. Effects of GGBFS:FA Ratio and Humid-Heat-Treating on the Mechanical Performance and Microstructure of the Steel Slag-Based Ternary Geopolymer. Constr. Build. Mater. 2023, 392, 131750. [Google Scholar] [CrossRef]
- Song, W.L.; Zhu, Z.D.; Pu, S.Y.; Song, S.; Peng, Y.; Gu, X.; Wei, Y. Mechanical Performance and Micro-mechanism of Alkali-activated Binary/Ternary Composite Industrial Waste Residues Cementitious Materials. Mater. Rep. 2020, 34, 22070–22077. [Google Scholar]
- Mahmoodi, O.; Siad, H.; Lachemi, M.; Sahmaran, M. Synthesis and Optimization of Binary Systems of Brick and Concrete Wastes Geopolymers at Ambient Environment. Constr. Build. Mater. 2021, 276, 122217. [Google Scholar] [CrossRef]
- Gómez-Casero, M.A. Effect of Steel Slag and Curing Temperature on the Improvement in Technological Properties of Biomass Bottom Ash Based Alkali-Activated Materials. Constr. Build. Mater. 2021, 302, 124205. [Google Scholar] [CrossRef]
- Li, Q.; Wang, J.; Zhou, Z.; Du, P.; Zhang, X. Effect of BaCl2 on the Hydration Properties of Ultrahigh Performance Geopolymer Concrete. Constr. Build. Mater. 2023, 403, 133074. [Google Scholar] [CrossRef]
- Toobpeng, N.; Thavorniti, P.; Jiemsirilers, S. Effect of Additives on the Setting Time and Compressive Strength of Activated High-Calcium Fly Ash-Based Geopolymers. Constr. Build. Mater. 2024, 417, 135035. [Google Scholar] [CrossRef]
- GB/T 2419-2005; Test Method for Fluidity of Cement Mortar. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2005.
- GB/T 1346-2011; Test Methods for Water Requirement of Normal Consistency, Setting Time and Soundness of the Portland Cement. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2011.
- Yang, X.; Wu, S.; Xu, S.; Chen, B.; Chen, D.; Wang, F.; Jiang, J.; Fan, L.; Tu, L. Effects of GBFS Content and Curing Methods on the Working Performance and Microstructure of Ternary Geopolymers Based on High-Content Steel Slag. Constr. Build. Mater. 2024, 410, 134128. [Google Scholar] [CrossRef]
- Li, Y.; Shen, L.; Mirmoghtadaei, R.; Ai, L. A Design of Experiment Approach to Study the Effects of Raw Material on the Performance of Geopolymer Concrete. Adv. Civ. Eng. Mater. 2017, 6, 526–549. [Google Scholar] [CrossRef]
- Hanjitsuwan, S.; Phoo-ngernkham, T.; Li, L.; Damrongwiriyanupap, N.; Chindaprasirt, P. Strength Development and Durability of Alkali-Activated Fly Ash Mortar with Calcium Carbide Residue as Additive. Constr. Build. Mater. 2018, 162, 714–723. [Google Scholar] [CrossRef]
- Feng, W. Study of Triethanolamine on Regulating Early Strength of Fly Ash-Based Chemically Foamed Geopolymer. Cem. Concr. Res. 2022, 162, 107005. [Google Scholar] [CrossRef]
- Mohamed, O.A.; Najm, O.; Zuaiter, H.A. Setting Time, Sulfuric Acid Resistance, and Strength Development of Alkali-Activated Mortar with Slag & Fly Ash Binders. Results Eng. 2024, 21, 101711. [Google Scholar]
- Van Deventer, J.S.J.; Provis, J.L.; Duxson, P.; Lukey, G.C. Reaction Mechanisms in the Geopolymeric Conversion of Inorganic Waste to Useful Products. J. Hazard. Mater. 2007, 139, 506–513. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Li, Y.; Wang, S.; Fan, X. Study on retardation of preparing grouting material by alkali-activated fine slag powder. Concrete 2014, 10, 81–85. [Google Scholar]
- Yu, Q.; Zhao, S.; Huang, J.; Qiao, F.; Guo, W.; Yin, S.; Wen, Z.; Gu, G. Retardation of gelation and improvement of flowability for alkali-activated carbonatite-slag cementitious-grouting material. J. Chin. Ceram. Soc. 2005, 33, 871–875. [Google Scholar]
- Shi, C.; Day, R.L. A Calorimetric Study of Early Hydration of Alkali-Slag Cements. Cem. Concr. Res. 1995, 25, 1333–1346. [Google Scholar] [CrossRef]
- He, H.; Zhi, X.; Fan, F.; Ye, H.; Zhang, R.; Song, Y. Effect of Retarders on the Properties of Ultra-High Strength Alkali-Activated Concrete. Constr. Build. Mater. 2024, 411, 134605. [Google Scholar] [CrossRef]
- Wang, Q.; Kang, S.R.; Wu, L.M.; Tang, N.; Zhang, Q. Molecular Simulation of N-A-S-H and C-A-S-H in Geopolymer Cementitious System. J. Build. Mater. 2020, 23, 184–191. [Google Scholar]
- Wei, S. The Correlation between Al Incorporation and Alkali Fixation by Calcium Aluminosilicate Hydrate: Observations from Hydrated C3S Blended with and without Metakaolin. Cem. Concr. Res. 2023, 172, 107249. [Google Scholar] [CrossRef]
- Yang, J.; Li, D.; Fang, Y. Effect of Synthetic CaO-Al2O3-SiO2-H2O on the Early-Stage Performance of Alkali-Activated Slag. Constr. Build. Mater. 2018, 167, 65–72. [Google Scholar] [CrossRef]
- Nan, X.; Yang, X.; Zhang, Y.; Tang, W.; Zhang, F. Synergistic Hydration Mechanism of Steel Slag-Slag Based Cementitious Material. J. Build. Mater. 2024, 27, 366–374. [Google Scholar]
- Bao, S.; Qin, L.; Zhang, Y.; Luo, Y.; Huang, X. A Combined Calcination Method for Activating Mixed Shale Residue and Red Mud for Preparation of Geopolymer. Constr. Build. Mater. 2021, 297, 123789. [Google Scholar] [CrossRef]
Raw Material | SiO2 | CaO | Al2O3 | Fe2O3 | MgO | MnO | SO3 | TiO2 | K2O | P2O5 |
---|---|---|---|---|---|---|---|---|---|---|
GGBS | 30.1 | 39.37 | 15.5 | 0.43 | 6.26 | 0.19 | 2.18 | 0.734 | 0.328 | - |
FA | 41.8 | 10.79 | 23.54 | 4.36 | 1.97 | 0.08 | 3.27 | 1.28 | 1.94 | 0.52 |
SS | 11.7 | 40.45 | 3.51 | 27.03 | 6.14 | 2.09 | 0.27 | 0.691 | 0.036 | 1.92 |
Sample | Raw Material/g | Activator | W/B | |||
---|---|---|---|---|---|---|
SS | GGBS | FA | Modulus | Alkali Content/% | ||
S0GF11 | 0 | 250 | 250 | 1.5 | 6 | 0.33 |
S20GF11 | 100 | 200 | 200 | |||
S30GF11 | 150 | 175 | 175 | |||
S40GF11 | 200 | 150 | 150 | |||
S50GF11 | 250 | 125 | 125 | |||
S60GF11 | 300 | 100 | 100 | |||
S40GF15 | 200 | 50 | 250 | |||
S40GF12 | 100 | 200 | ||||
S40GF21 | 200 | 100 | ||||
S40GF51 | 250 | 50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, C.; Geng, J.; Liu, G. Comprehensive Study on Design Optimization and Retardation Mechanism of SS-GGBS-FA Ternary Geopolymer Mortar. Materials 2025, 18, 2388. https://doi.org/10.3390/ma18102388
Jin C, Geng J, Liu G. Comprehensive Study on Design Optimization and Retardation Mechanism of SS-GGBS-FA Ternary Geopolymer Mortar. Materials. 2025; 18(10):2388. https://doi.org/10.3390/ma18102388
Chicago/Turabian StyleJin, Chen, Jian Geng, and Genjin Liu. 2025. "Comprehensive Study on Design Optimization and Retardation Mechanism of SS-GGBS-FA Ternary Geopolymer Mortar" Materials 18, no. 10: 2388. https://doi.org/10.3390/ma18102388
APA StyleJin, C., Geng, J., & Liu, G. (2025). Comprehensive Study on Design Optimization and Retardation Mechanism of SS-GGBS-FA Ternary Geopolymer Mortar. Materials, 18(10), 2388. https://doi.org/10.3390/ma18102388