Adsorption Application of Choline Chloride Modified MIL-101 (Cr) in Carbon Capture and Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Equipment
2.2. Material Preparation
2.2.1. Preparation of MIL-101 (Cr)
2.2.2. Preparation of n-ChCl-MIL-101 (Cr)
2.3. Characterization of Materials
2.3.1. XRD Characterization and Testing Conditions
2.3.2. SEM Characterization and Testing Conditions
2.3.3. N2 Adsorption Instrument Characterization and Testing Conditions
2.3.4. FT-IR Characterization and Testing Conditions
2.3.5. ThermogravimetricCharacterization and Testing Conditions
2.3.6. EDS Characterization and Testing Conditions
2.4. Adsorption Experiment
2.4.1. CO2 Adsorption Experiment
2.4.2. CO2 Adsorption Penetration Experimental Apparatus
2.4.3. Adsorption Penetration Experiment Process
- Before starting the adsorption experiment, according to the experimental requirements, 1 g of adsorbent was placed in a quartz glass tube and fixed at both ends with cotton balls.
- The entire pipeline was blown with N2. The adsorption experiment was started once the CO2 gas analyzer could not detect any CO2 concentration.
- The two valves of the quartz glass tube were closed, and CO2 gas and N2 gas were introduced. Preliminary calibration was performed through a glass rotor flowmeter, and a soap bubble flowmeter was leveraged for secondary calibration. The flow ratio of CO2 to N2 was 15:85; that is, the flow rate of CO2 was 6 mL/min, and the flow rate of N2 was 34 mL/min.
- After completing the calibration, the two valves that entered the glass quartz tube were opened, and the two valves that entered the soap bubble flowmeter were closed. The fixed bed adsorption experiment was started and the CO2 concentration obtained from the adsorption reaction online was monitored in order to obtain the CO2 concentration at different times. When the outlet CO2 concentration was detected to be the same as that in the inlet mixed gas, monitoring ceased.
- The device and the entire gas path were closed, the adsorption experiment was ended, and the adsorption penetration curve was drawn.
2.4.4. Adsorption–Desorption Cycle Experimental Process
2.4.5. Adsorption Isotherms and Isotherm Equations
- (1)
- Langmuir equation
- (2)
- Freundlich equation
3. Results and Discussions
3.1. Feature Analysis
3.1.1. XRD Analysis
3.1.2. SEM Analysis
3.1.3. N2 Adsorption Instrument Analysis
3.1.4. FT-IR Analysis
3.1.5. Thermogravimetric Analysis
3.1.6. EDS Analysis
3.2. Adsorption Experiment
3.2.1. CO2 Adsorption Experiment
3.2.2. Analysis of Adsorption Breakthrough Curve
3.2.3. Adsorption Desorption Cycle Experimental Process
3.2.4. Adsorption Isotherms and Isotherm Equations
3.2.5. Analysis of CO2/N2 Adsorption Selectivity
3.3. Analysis of the Mechanism of MIL-101 (Cr) Modified by Choline Chloride
3.3.1. The Change in Microstructure Promotes Adsorption
3.3.2. Generation of Active Sites
3.3.3. Change in Electron Cloud Density
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chang, H.-W.; Chang, T.; Xiang, F.; Mikhaylov, A.; Grigorescu, A. Revisiting R&D intensity and CO2 emissions link in the USA using time varying granger causality test: 1870~2020. Heliyon 2023, 9, e20319. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, S.; Das, M.; Klunk, M.A.; Xavier, S.J.S.; Caetano, N.R.; Wander, P.R. Copper and chromium removal from synthetic textile wastewater using clay minerals and zeolite through the effect of pH. J. Iran. Chem. Soc. 2021, 18, 3377–3386. [Google Scholar] [CrossRef]
- Klunk, M.A.; Shah, Z.; Caetano, N.R.; Conceição, R.V.; Wander, P.R.; Dasgupta, S.; Das, M. CO2 sequestration by magnesite mineralisation through interaction of Mg-brine and CO2: Integrated laboratory experiments and computerised geochemical modelling. Int. J. Environ. Stud. 2020, 77, 492–509. [Google Scholar] [CrossRef]
- Koli, M.; Ranjan, R.; Singh, S.P. Functionalized graphene-based ultrafiltration and thin-film composite nanofiltration membranes for arsenic, chromium, and fluoride removal from simulated groundwater: Mechanism and effect of pH. Process. Saf. Environ. Prot. 2023, 179, 603–617. [Google Scholar] [CrossRef]
- Jiang, L.; Liu, W.; Wang, R.; Gonzalez-Diaz, A.; Rojas-Michaga, M.; Michailos, S.; Pourkashanian, M.; Zhang, X.; Font-Palma, C. Sorption direct air capture with CO2 utilization. Prog. Energy Combust. Sci. 2023, 95, 101069. [Google Scholar] [CrossRef]
- Rochelle, G.T. Air pollution impacts of amine scrubbing for CO2 capture. Carbon Capture Sci. Technol. 2024, 11, 100192. [Google Scholar] [CrossRef]
- Boré, A.; Dziva, G.; Chu, C.; Huang, Z.; Liu, X.; Qin, S.; Ma, W. Achieving sustainable emissions in China: Techno-economic analysis of post-combustion carbon capture unit retrofitted to WTE plants. J. Environ. Manag. 2023, 349, 119280. [Google Scholar] [CrossRef]
- Ohashi, Y.; Ogawa, T.; Suzuki, K. An Update of the Development of Carbon Dioxide Removal System from the Flue Gas of Coal Fired Power Plant in Toshiba. Energy Procedia 2013, 37, 1924–1932. [Google Scholar] [CrossRef]
- Zheng, X.; Lam, K.L. An overview of environmental co-benefits and trade-offs to reduce greenhouse gas emissions in municipal wastewater management. Sustain. Prod. Consum. 2024, 46, 1–10. [Google Scholar] [CrossRef]
- Cui, B.; Ju, X.; Ma, H.; Meng, S.; Liu, Y.; Wang, J.; Wang, D.; Yang, Z. Aerogel-based carbon capture materials: Research progress and application prospects. Sep. Purif. Technol. 2024, 354, 128794. [Google Scholar] [CrossRef]
- Leung, D.Y.C.; Caramanna, G.; Maroto-Valer, M.M. An overview of current status of carbon dioxide capture and storage technologies. Renew. Sustain. Energy Rev. 2014, 39, 426–443. [Google Scholar] [CrossRef]
- Zhou, D.-D.; Zhang, X.-W.; Mo, Z.-W.; Xu, Y.-Z.; Tian, X.-Y.; Li, Y.; Chen, X.-M.; Zhang, J.-P. Adsorptive separation of carbon dioxide: From conventional porous materials to metal–organic frameworks. EnergyChem 2019, 1, 100016. [Google Scholar] [CrossRef]
- Policicchio, A.; Conte, G.; Agostino, R.G.; Desiderio, G.; Papanikolaou, G.; Lanzafame, P.; Cozza, D.; Giordano, G.; Migliori, M. Large carbon dioxide adsorption in ZTC at medium pressure: Effects of surface functionalization. Carbon 2023, 201, 991–1000. [Google Scholar] [CrossRef]
- Dziejarski, B.; Serafin, J.; Andersson, K.; Krzyżyńska, R. CO2 capture materials: A review of current trends and future challenges. Mater. Today Sustain. 2023, 24, 100483. [Google Scholar] [CrossRef]
- Noorani, N.; Pourebrahimi, S.; Mehrdad, A. Enhancing CO2 adsorption performance of cold oxygen plasma-treated almond shell-derived activated carbons through ionic liquid incorporation. J. CO2 Util 2024, 88, 102927. [Google Scholar] [CrossRef]
- Zhou, G.; Yang, S.; Tian, Y.; Liu, Y.; Liu, Z.; Dong, X. Adsorption application of tetraethylenepentamine (TEPA) modified SBA-15@MIL-101(Cr) in carbon capture and storage (CCS). Microporous Mesoporous Mater. 2022, 344, 112232. [Google Scholar] [CrossRef]
- Kim, M.; Lee, J.W.; Kim, S.; Kang, Y.T. CO2 adsorption on zeolite 13X modified with hydrophobic octadecyltrimethoxysilane for indoor application. J. Clean. Prod. 2022, 337, 130597. [Google Scholar] [CrossRef]
- Ahsan, S.; Ayub, A.; Meeroff, D.; Lashaki, M.J. A comprehensive comparison of zeolite-5A molecular sieves and amine-grafted SBA-15 silica for cyclic adsorption-desorption of carbon dioxide in enclosed environments. Chem. Eng. J. 2022, 437, 135139. [Google Scholar] [CrossRef]
- Fu, Q.; Ding, J.; Wang, W.; Lu, J.; Huang, Q. Carbon Dioxide Adsorption over Amine-Functionalized MOFs. Energy Procedia 2017, 142, 2152–2157. [Google Scholar] [CrossRef]
- Bhoria, N.; Pokhrel, J.; Anastasiou, S.; Reddy, K.S.K.; Romanos, G.; Karanikolos, G.N. Composite porous nanostructures as multi-action adsorbents and membrane fillers for carbon dioxide separation: Comparative performance of metal organic framework—Graphene oxide hybrids. Mater. Today Proc. 2021, 37, 4044–4048. [Google Scholar] [CrossRef]
- Wang, R.; Gao, J.; Vijayalakshmi, M.; Tang, H.; Chen, K.; Reddy, C.V.; Kakarla, R.R.; Anjana, P.M.; Rezakazemi, M.; Cheolho, B.; et al. Metal–organic frameworks and their composites: Design, synthesis, properties, and energy storage applications. Chem. Eng. J. 2024, 496, 154294. [Google Scholar] [CrossRef]
- Pourebrahimi, S.; Pirooz, M. Synthesis of a novel freestanding conjugated triazine-based microporous membrane through superacid-catalyzed polymerization for superior CO2 separation. Chem. Eng. J. Adv. 2022, 11, 100315. [Google Scholar] [CrossRef]
- Jiang, L.; Li, S.; Deng, M.; Hu, W.; Lü, C. Metal-organic frameworks (MOFs) wrapped palladium nanoparticles-loaded Fe3O4@CFR core-shell magnetic nanohybrid as heterogeneous catalyst with robust catalytic properties. Colloids Surfaces A Physicochem. Eng. Asp. 2024, 694, 134171. [Google Scholar] [CrossRef]
- Zhang, D.; Guan, Y.; Hensen, E.J.M.; Chen, L.; Wang, Y. Porous MOFs supported palladium catalysts for phenol hydrogenation: A comparative study on MIL-101 and MIL-53. Catal. Commun. 2013, 41, 47–51. [Google Scholar] [CrossRef]
- Chang, N.; Zhang, H.; Shi, M.-S.; Li, J.; Shao, W.; Wang, H.-T. Metal-organic framework templated synthesis of TiO2 @MIL-101 core-shell architectures for high-efficiency adsorption and photocatalysis. Mater. Lett. 2017, 200, 55–58. [Google Scholar] [CrossRef]
- Chen, Y. Preparation of MIL-101 Based on Different Metal Substrates and Study on Its Adsorption Performance for CO2. Master’s Thesis, Nanjing University of Information Science & Technology, Nanjing, China, 2019. [Google Scholar] [CrossRef]
- Tan, F. Preparation and Application of Metal-Organic Framework Material MIL-100(Fe). Master’s Thesis, Dalian University of Technology, Dalian, China, 2015. [Google Scholar]
- Pourebrahimi, S.; Kazemeini, M.; Vafajoo, L. Embedding graphene nanoplates into MIL-101 (Cr) pores: Synthesis, characterization, and CO2 adsorption studies. Ind. Eng. Chem. Res. 2017, 56, 3895–3904. [Google Scholar] [CrossRef]
- Zhang, L. Research on Simultaneous Removal of H2S and CO2 by Alkaline Functionalized Deep Eutectic Solvents. Master’s Thesis, Beijing University of Chemical Technology, Beijing, China, 2022. [Google Scholar] [CrossRef]
- Yang, Y. Modification of Metal-Organic Framework Material MIL-53(Cr) and Its Performance in Adsorbing CO2 and CH4. Master’s Thesis, South China University of Technology, Guangzhou, China, 2014. [Google Scholar]
- Vorobyova, V.; Skiba, M.; Vasyliev, G. Deep eutectic solvents: Quantum chemical investigation, thermal stability and physicochemical properties. Chem. Phys. 2024, 586, 112401. [Google Scholar] [CrossRef]
- Anta, M.E.; Alonso, C.G.; Tagliavini, E.; Sainz, D. Sustainable chemistry. In Encyclopedia of Toxicology, 4th ed.; Wexler, P., Ed.; Academic Press: Oxford, UK, 2024; pp. 847–863. [Google Scholar]
- Li, E.; Li, Y.; Liu, S.; Yao, P. Choline amino acid ionic liquids as green corrosion inhibitors of mild steel in acidic medium. Colloids Surfaces A Physicochem. Eng. Asp. 2023, 657, 130541. [Google Scholar] [CrossRef]
- Yang, K.; Cheng, S.; Yao, Z.; Li, S.; Yang, Y. Amine-grafted MIL-101(Cr) and Cu-BTC via post-synthetic modification for synergistic enhancement of CO2 uptake. Solid State Sci. 2024, 153, 107572. [Google Scholar] [CrossRef]
- Osman, A.I.; Hefny, M.; Maksoud, M.I.A.A.; Elgarahy, A.M.; Rooney, D.W. Recent advances in carbon capture storage and utilisation technologies: A review. Environ. Chem. Lett. 2021, 19, 797–849. [Google Scholar] [CrossRef]
- Dubey, A.; Arora, A. Advancements in carbon capture technologies: A review. J. Clean. Prod. 2022, 373, 133932. [Google Scholar] [CrossRef]
- Xie, Y.; Chen, C.; Ren, X.; Wang, X.; Wang, H.; Wang, X. Emerging natural and tailored materials for uranium-contaminated water treatment and environmental remediation. Prog. Mater. Sci. 2019, 103, 180–234. [Google Scholar] [CrossRef]
- Rada, Z.H.; Abid, H.R.; Sun, H.; Shang, J.; Li, J.; He, Y.; Liu, S.; Wang, S. Effects of -NO2 and -NH2 functional groups in mixed-linker Zr-based MOFs on gas adsorption of CO2 and CH4. Prog. Nat. Sci. 2018, 28, 160–167. [Google Scholar] [CrossRef]
- Gao, W.; Liang, S.; Wang, R.; Jiang, Q.; Zhang, Y.; Zheng, Q.; Xie, B.; Toe, C.Y.; Zhu, X.; Wang, J.; et al. Industrial carbon dioxide capture and utilization: State of the art and future challenges. Chem. Soc. Rev. 2020, 49, 8584–8686. [Google Scholar] [CrossRef]
- Mukherjee, D.; Hassan, S.; Shajahan, J.; Prokofjevs, A.; Kuila, D. Synergistic enhancement of CO2 capture via amine decorated hierarchical MIL-101(Cr)/SBA-15 composites. Mater. Chem. Phys. 2024, 322, 129533. [Google Scholar] [CrossRef]
- Hoa, L.T.M. Structural properties and evaluation of crystal fraction by cryogenic heat capacity measurements of Fe-based nanocrystalline alloy. J. Alloys Compd. 2006, 420, 50–53. [Google Scholar] [CrossRef]
- Saikia, M.; Bhuyan, D.; Saikia, L. Keggin type phosphotungstic acid encapsulated chromium (III) terephthalate metal organic framework as active catalyst for Biginelli condensation. Appl. Catal. A Gen. 2015, 505, 501–506. [Google Scholar] [CrossRef]
- Duma, Z.; Makgwane, P.R.; Masukume, M.; Swartbooi, A.; Rambau, K.; Mehlo, T.; Mavhungu, T. A comprehensive review of metal-organic frameworks sorbents and their mixed-matrix membranes composites for biogas cleaning and CO2/CH4 separation. Mater. Today Sustain. 2024, 27, 100812. [Google Scholar] [CrossRef]
- Gabruś, E.; Wojtacha-Rychter, K.; Aleksandrzak, T.; Smoliński, A.; Król, M. The feasibility of CO2 emission reduction by adsorptive storage on Polish hard coals in the Upper Silesia Coal Basin: An experimental and modeling study of equilibrium, kinetics and thermodynamics. Sci. Total Environ. 2021, 796, 149064. [Google Scholar] [CrossRef]
- Nabil, G.M.; Althomali, R.H.; Mahmoud, M.E. Decorated gelatin polymer onto copper aluminum layered double hydroxides for superior removal of Congo red: Optimization and adsorption evaluation of kinetics, isotherms, and thermodynamics. J. Mol. Struct. 2025, 1319, 139303. [Google Scholar] [CrossRef]
- Elhamdy, W.A. Sustainable phosphorous porous biochar generated from sugarcane bagasse for effective adsorption coupled reduction of hexavalent chromium: Evaluating the method’s greenness. Inorg. Chem. Commun. 2024, 169, 112931. [Google Scholar] [CrossRef]
- Pal, S.; Kulandaivel, S.; Yeh, Y.-C.; Lin, C.-H. Recent trends in superhydrophobic metal−organic frameworks and their diverse applications. Coord. Chem. Rev. 2024, 518, 216108. [Google Scholar] [CrossRef]
- Chowdhury, S.; Mishra, R.; Saha, P.; Kushwaha, P. Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk. Desalination 2011, 265, 159–168. [Google Scholar] [CrossRef]
- Li, Z.; Yu, C. Chapter 4—Physicochemical basics and paradigms of nanomaterials. In Nanostructured Materials; Li, Z., Yu, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 93–143. [Google Scholar]
- Hassan, S.S.M.; Awwad, N.S.; Aboterika, A.H.A. Removal of synthetic reactive dyes from textile wastewater by Sorel’s cement. J. Hazard. Mater. 2009, 162, 994–999. [Google Scholar] [CrossRef] [PubMed]
- Salestan, S.K.; Pirzadeh, K.; Rahimpour, A.; Abedini, R. Poly (ether-block amide) thin-film membranes containing functionalized MIL-101 MOFs for efficient separation of CO2/CH4. J. Environ. Chem. Eng. 2021, 9, 105820. [Google Scholar] [CrossRef]
- Askarieh, M.; Farshidi, H.; Rashidi, A.; Pourreza, A.; Alivand, M.S. Comparative evaluation of MIL-101(Cr)/calcium alginate composite beads as potential adsorbents for removing water vapor from air. Sep. Purif. Technol. 2022, 291, 120830. [Google Scholar] [CrossRef]
- Peng, L.; Wang, Z.; Zhu, H.; Zeng, T.; Zhou, W.; Yao, S.; Song, H. Synthesis, physico-chemical properties of novel tropine-amino acid based ionic liquids and their effects on the lipase activity. J. Mol. Liq. 2021, 342, 116938. [Google Scholar] [CrossRef]
- Abdelkareem, M.A.; Abbas, Q.; Sayed, E.T.; Shehata, N.; Parambath, J.; Alami, A.H.; Olabi, A. Recent advances on metal-organic frameworks (MOFs) and their applications in energy conversion devices: Comprehensive review. Energy 2024, 299, 131127. [Google Scholar] [CrossRef]
- Pei, Y.; Zhang, Y.; Ma, J.; Zhao, Y.; Li, Z.; Wang, H.; Wang, J.; Du, R. Carboxyl functional poly(ionic liquid)s confined in metal–organic frameworks with enhanced adsorption of metal ions from water. Sep. Purif. Technol. 2022, 299, 121790. [Google Scholar] [CrossRef]
- Abbas, M.; Trari, M. Application of photocatalysis for the decontamination of water contaminated with the Acid Orange 10 dye in the presence of TiO2 under irradiation. Desalination Water Treat. 2022, 250, 288–297. [Google Scholar] [CrossRef]
- Kang, J.-K.; Kim, M.-G.; Kim, S.-B.; Jeong, S.; Oh, J.-E. Comparative study on Perfluoro(2-methyl-3-oxahexanoic) acid removal by quaternary ammonium functionalized silica gel and granular activated carbon from batch and column experiments and molecular simulation-based interpretation. Sci. Total Environ. 2024, 926, 171753. [Google Scholar] [CrossRef] [PubMed]
MOF Materials | Specific Surface Area (m2/g) | Average Pore Diameter (nm) | Pore Volume (cm3/g) | CO2 Adsorption Capacity (mg/g) | Reference |
---|---|---|---|---|---|
MIL-101 (Cr) | 2546.69 | 0.98 | 1.95 | 44.21 | [26] |
MIL-101 (Fe) | 1129.43 | 3.76 | 0.93 | 36.28 | [26] |
MIL-101 (Al) | 1847.57 | 1.85 | 1.43 | 32.41 | [26] |
MIL-100 (Fe) | 1501 | 1.33–2.7 | 1.01 | 63.27 | [27] |
Ethylenediamine modified MIL-101 | 2215 | 1.24 | 1.69 | 107.35 | [28] |
Modified MIL-101 pentaethylenehexamine | 1791 | 2.04 | 1.37 | 58.94 | [29] |
MIL-53 | 2579 | 0.57 | 0.72 | 106.72 | [30] |
NH3-MIL-53 | - | - | 0.81 | 132.58 | [30] |
Material | Chemical Formula | Purity | Manufacturer |
---|---|---|---|
Chromium nitrate nonahydrate | Cr(NO3)3·9H2O | 99% | Macklin (Shanghai, China) |
Terephthalic acid | HOOCC6H4COOH | 99% | Macklin (Shanghai, China) |
N,N-Dimethylformamide (DMF) | HCON(CH3)2 | 99% | Macklin (Shanghai, China) |
Anhydrous ethanol | C2H5OH | AR | Macklin (Shanghai, China) |
Hydrofluoric acid | HF | AR | Macklin (Shanghai, China) |
Deionized water | H2O | -- | Self-prepared |
Carbon dioxide | CO2 | 99.99% | Huayang Gas (Foshan, China) |
Experimental Equipment | Model | Manufacturer |
---|---|---|
Electronic Balance | F2004N | Shanghai Scientific Precision Instrument Co., Ltd. (Shanghai, China) |
Magnetic Stirrer | DF-101S | Henan Yuhua Instrument Co., Ltd. (Zhengzhou, China) |
Electrothermal Constant-Temperature Forced-Air Drying Oven | OHG-905385 | Shanghai Xinmiao Medical Instrument Manufacturing Co., Ltd. (Shanghai, China) |
High-speed Centrifuge | TD4K-Z | Changsha Dongwang Experimental Instrument Co., Ltd. (Changsha, China) |
Hydrothermal Reaction Kettle | YZHR-100 | Beijing Yanzheng Biotechnology Co., Ltd. (Beijing, China) |
Recirculating Water-type Multi-purpose Vacuum Pump | SHZ-D-III | Henan Yuhua Instrument Co., Ltd. (Zhengzhou, China) |
Micropipette (20–200 μL) | 20–200 μL | Dilong Xunchuang Experimental Instrument Co., Ltd. (Beijing, China) |
Numerical Control Ultrasonic Cleaner | KQ5200DE | Kunshan Ultrasonic Instrument Co., Ltd. (Suzhou, China) |
Scanning Electron Microscope | Quanta 200F | FEI Company (Eindhoven, The Netherlands) |
Nitrogen Adsorption-Desorption Analyzer | ASAP2020 | Micromeritics Instrument Corporation (Norcross, GA, USA) |
X-ray Powder Diffractometer | EMPYREAN | PANalytical B.V. (Almelo, The Netherlands) |
Thermogravimetric Analyzer | CW-TE240 | Shanghai Chengwei Instrument Technology Co., Ltd. (Shanghai, China) |
Fourier Transform Infrared Spectrometer | VERTEX 70 | Bruker Corporation (Ettlingen, Germany) |
Carbon Dioxide Adsorption Analyzer | LYT-1971-2011 | Shandong Shengtai Instrument Co., Ltd. (Jinan, China) |
MOF Materials | Specific Surface Area (m2/g) | Pore Volume (cm3/g) | Average Pore Diameter (nm) |
---|---|---|---|
MIL-101 | 2088.05 | 0.99 | 1.89 |
0.075-ChCl-MIL-101(Cr) | 1817.02 | 0.99 | 2.18 |
0.1-ChCl-MIL-101(Cr) | 1384.47 | 0.72 | 1.95 |
0.125-ChCl-MIL-101(Cr) | 1777.81 | 0.90 | 2.02 |
MIL-101(Cr) | 0.075-ChCl-MIL-101(Cr) | 0.1-ChCl-MIL-101(Cr) | 0.125-ChCl-MIL-101(Cr) | |||||
---|---|---|---|---|---|---|---|---|
Elemental | Wt% | At% | Wt% | At% | Wt% | At% | Wt% | At% |
C | 44.47 | 59.51 | 52.32 | 68.79 | 59.04 | 73.14 | 55.73 | 68.60 |
O | 37.06 | 37.24 | 30.62 | 24.03 | 25.43 | 19.06 | 28.13 | 21.63 |
Cr | 18.47 | 3.25 | 17.51 | 2.94 | 11.24 | 1.25 | 10.21 | 1.19 |
Cl | 0 | 0 | 3.16 | 4.24 | 4.29 | 6.55 | 5.93 | 8.58 |
Langmuir | Freundlich | |||||
---|---|---|---|---|---|---|
qm (mmol·g−1) | KL (Kpa/mmol) | R2 | qm (mmol·g−1) | n | R2 | |
MIL-101(Cr) | 5.19465 | 0.00181 | 0.999 | 0.01177 | 1.0902 | 0.999 |
0.075-ChCl-MIL-101(Cr) | 6.37377 | 0.00252 | 0.999 | 0.02144 | 1.1177 | 0.999 |
0.1-ChCl-MIL-101(Cr) | 7.94415 | 0.00191 | 0.999 | 0.01254 | 1.07 | 0.999 |
0.125-ChCl-MIL-101(Cr) | 8.94544 | 0.00239 | 0.999 | 0.01802 | 1.1189 | 0.999 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, E.; Zhang, Z.; Zhou, M.; Yao, P. Adsorption Application of Choline Chloride Modified MIL-101 (Cr) in Carbon Capture and Storage. Materials 2025, 18, 2370. https://doi.org/10.3390/ma18102370
Li E, Zhang Z, Zhou M, Yao P. Adsorption Application of Choline Chloride Modified MIL-101 (Cr) in Carbon Capture and Storage. Materials. 2025; 18(10):2370. https://doi.org/10.3390/ma18102370
Chicago/Turabian StyleLi, Entian, Zuquan Zhang, Minghe Zhou, and Pei Yao. 2025. "Adsorption Application of Choline Chloride Modified MIL-101 (Cr) in Carbon Capture and Storage" Materials 18, no. 10: 2370. https://doi.org/10.3390/ma18102370
APA StyleLi, E., Zhang, Z., Zhou, M., & Yao, P. (2025). Adsorption Application of Choline Chloride Modified MIL-101 (Cr) in Carbon Capture and Storage. Materials, 18(10), 2370. https://doi.org/10.3390/ma18102370